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Abstract: The examples of phase equilibria in binary systems, solid/liquid (SLE), liquid/liquid (LLE),
vapor/liquid (VLE), as well as liquid/liquid equilibria in ternary systems mainly containing ionic
liquids (ILs), or the infragrance materials, or pharmaceuticals with molecular organic solvents, such as
an alcohol, or water, or hydrocarbons, are presented. The most popular correlation methods of the
experimental phase equilibrium data are presented, related to the excess Gibbs free energy models such
as Wilson, universal-quasichemical, UNIQUAC and non-random two-liquid model, NRTL as well as
several popular theories for the modeling of the phase equilibria and excess molar enthalpy, HE in
binary or ternary mixtures are presented: the group contribution method (Mod. UNIFAC) and modified
UNIFAC model for pharmaceuticals and lattice theory based on non-random hydrogen bonding
(NRHB). The SLE, LLE, or VLE and HE of these systems may be described by the Perturbed-Chain
Polar Statistical Associating Fluid Theory (PC-SAFT), or a Conductor-like Screening Model for Real
Solvents (COSMO-RS). The examples of the application of ILs as extractants for the separation
of aromatic hydrocarbons from alkanes, sulfur compounds from alkanes, alkenes from alkanes,
ethylbenzene from styrene, butan-1-ol from water phase, or 2-phenylethanol (PEA) from water are
discussed on the basis of previously published data. The first information about the selectivity of
extrahent for separation can be obtained from the measurements of the limiting activity coefficient
measurements by the gas–liquid chromatography technique. This review outlines the main research
work carried out over the last few years on direct measurements of phase equilibria, or HE and
limiting activity coefficients, the possibility of thermodynamic modeling with emphasis on recent
research achievements and potential for future research.

Keywords: (vapor; or solid; or liquid/liquid) phase equilibria; HE; limiting activity coefficients;
ionic liquids; infragrance materials; pharmaceuticals; extraction; correlation GE models; prediction
(Mod. UNIFAC; NRHB; PC-SAFT; COSMO-RS)

1. Introduction

Phase equilibria is fundamental knowledge to project new technology. Ionic liquids (ILs) are
new substances with specific physico-chemical properties used in catalysis, electrochemistry, new
materials and with large extraction possibilities [1–8]. The most popular use of ILs in recent years
is as high selectivity extrahents in the separation of aromatic/aliphatic hydrocarbons [9–13], sulfur
compounds/fuels (alkanes) [14–19], alkenes from alkanes [20–24], or water/butan-1-ol [25–31], or in
2-phenylethanol/water separation [32–35].

The separation problem involves two molecular solutes to be separated and IL used as an entrainer,
the solid/liquid equilibrium (SLE), or liquid/liquid equilibrium (LLE) and vapor/liquid (VLE) data in
ternary systems comprising the IL and the solutes are always crucial for design and optimization of
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extraction and extractive distillation stages. That is why a vast amount of experimental work has dealt
with measurements of the SLE/LLE/VLE phase diagrams in ILs-based systems. The phase equilibria in
systems that contain ILs has been the object of investigation in our group from many years [33–45].

The infragrance materials are important additives in food and cosmetic technology, or as
biodegradable solvents, as inhibitors in many polymerization reactions and as flavor additives
in the pharmaceutical industry [46]. The SLE or LLE data provide a good tool for studying the
thermodynamic behavior of many systems. Thus, many phase equilibria of infragrance materials have
been measured by our group, for example, such as 2-phenylethanol, PEA (roses oil) [32–35,41,42].

Our special attention was given to the solubility of pharmaceuticals in typical solvents such as an
alcohol, or water [47–52]. Research on ILs in pharmaceutical applications has been of great interest
in recent years. ILs are useful for changing the kinetic in the delivery system and in general for the
increasing of solubility of drugs in water [52–54].

Mixtures of (IL/solvent) mainly exhibit simple eutectic systems (see Figure 1), or eutectic systems
with immiscibility gap in the liquid phase with upper critical solution temperature (UCST) (see Figure 2).
Strongly polar ILs reveals strong interaction with polar solvents such as water and alcohols, which is
evident as complete miscibility in the liquid phase. Figure 1 presents 1-butyl-3-methyl pyridinium
tosylate, {[BM3Py][TOS] (1) + 1-alcohol (2)} binary systems [55], which is typical for all ILs in mixtures
with alcohols. Solubility decreases as the alkane chain length of n-alcohol increases.

Figure 3 represents a typical picture for the solubility of pharmaceuticals (Niflumic acid) in water
and alcohol. The solubility is lower than the ideal solubility, and usually lower in water than in
alcohols [50]. Solubility of organic compounds depends on the structure and polar groups in the
molecule, the fusion temperature and on the enthalpy of fusion. The solubility of pharmaceuticals
depends on pH, which is not predictable. Solvents used in our studies included: water and ethanol,
which were typical media used for delivering of drugs; 1-octanol, which was a model compound of
human cell and skin-membrane.

Only a few ILs, such as imidazolium-, or pyridinium-, or pyrrolidinium-, or piperidinium-based
thiocyanate in binary systems with aromatic hydrocarbons revealed the lower critical solution
temperature (LCST) behavior [56]. Most of the ILs present LLE in binary systems with water,
or alcohols, as shown by the authors of [34].
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Figure 1. Plot of the solid/liquid (SLE) in binary systems {[BM3Py][TOS] (1) + 1-alcohol (2)} (�)
C4OH; (�) C6OH; (�) C8OH; (�) C10OH; Solid lines represent non-random two-liquid, NRTL equation;
exptl. [55].
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Figure 2. Plot of the SLE/liquid/liquid (LLE) in the systems of {[BMnPy][TOS] (1) + benzene (2)}:
�—{[BM4Py][TOS] (1) + benzene (2)}; �—{[BM3Py][TOS] (1) + benzene (2)}; �—{[HM3Py][TOS] (1) +

benzene (2)}; �—{[BMIM][TOS] (1) + benzene (2)}. Solid lines represent the NRTL equation; exptl. [55].
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Figure 3. Plot of the SLE of binary system {niflumic acid +N, ethanol, or •, 1-octanol}; Solid lines
represent the NRTL equation, dotted line presents the ideal solubility; exptl. [50].

All experimental data presented in this review, the experimental methods, the uncertainties of
the measurements and the purity of the materials were published earlier in papers cited here. Some
comparisons of the correlation or prediction of phase equilibria, correlation parameters and standard
deviations were also presented in published papers from our group. In this review, only the examples
of phase equilibria, some separation processes and useful thermodynamic methods of the correlation or
prediction are reviewed in light of different process parameters and the use of ILs as modern solvents.
The theories discussed in this work are used in all phase equilibrium processes, including ILs. Potential
for future research in the area is highlighted.

2. Correlation Methods

For the correlation of the measured data, SLE, LLE, VLE and the excess molar enthalpy, HE the
excess Gibbs free energy models, such as Wilson, universal-quasichemical, UNIQUAC and NRTL are
usually used [57–59]. As an example, the eutectic system may be described with these three methods
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to determine the solute activity coefficients, (γ1) from the correlation equation presented below as
Equation (1):

− ln x1 =
∆fusH1

R

(
1
T
−

1
Tfus,1

)
+

∆trH1

R

(
1
T
−

1
Ttr,1

)
−

∆fusCp,1
R

(
ln

T
Tfus,1

+
Tfus,1

T
− 1

)
+ lnγ1 (1)

where x1, γ1, ∆fusH1, ∆fusCp,1, Tfus,1, ∆trH1 and Ttr,1, T is the mole fraction, activity coefficient, enthalpy
of melting, heat capacity at melting temperature, melting temperature, enthalpy of the α/β phase
transition, transition temperature and the equilibrium temperature, respectively. The parameters of
the equations are funded by an optimization technique:

Ω =
n∑

i=1

[
(Ti)

exp
− (Ti(x1iP1, P2))

cal
]2

(2)

where Ω is the objective function, n the number of experimental points, and (Ti)exp and (Ti)cal, are the
experimental and calculated equilibrium temperature, respectively. P1 and P2 are the model parameters.
The deviations are described by the root-mean-square deviation of temperature:

σT =

 n∑
i=1

((Ti)
exp
− (Ti)

cal)
2

n− 2


1/2

(3)

The volume parameter r and surface parameter q in the UNIQUAC equation were described
as follows:

ri = 0.02981Vm (4)

qi =
(Z− 2)ri

Z
+

2(1− li)
Z

(5)

where Vm—molar volume of component i at temperature T = 298.15 K, Z is the coordination number
(Z = 10), and li is the bulk factor (li = 0 for the linear molecules).

The NRTL model is usually used for the LLE correlation in binary systems [59]:

GE

RT
= x1x2

[
τ21G21

x1 + x2G21
+

τ12G12

G12x1 + x2

]
(6)

where:
τ12 = (g12 − g22)/RT (7)

τ21 = (g21 − g11)/RT (8)

G12 = exp(−α12τ12) (9)

G21 = exp(−α12τ21) (10)

The γ1 are calculated from:

ln(γ1) = x2
2

τ21

(
G21

x1 + x2G21

)2

+
τ12G12

(x2 + x1G12)
2

 (11)

To calculate the activity coefficient from Equation (11), the objective function (OF) was used:

OF =
n∑

i=1

{
(∆x1)

2
i + (∆x∗1)

2
i

}
(12)



Processes 2019, 7, 277 5 of 27

where ∆x or ∆x * (in the second phase) is the difference:

∆x = xcal. − xexp. (13)

The deviation from experimental points in mole fractions is expressed as:

σx =

 n∑
i=1

(∆x1)
2
i

n− 2
+

n∑
i=1

(∆x∗1)
2
i

n− 2


1/2

(14)

The NRTL equation was used for the description of the hundreds of binary SLE and LLE data of
ILs, or non-ILs systems, or infragrance materials, or pharmaceutical mixtures.

The LLE in ternary systems is presented in Figure 4, as an example. The experimental tie-lines for
extraction water/butan-1-ol [26] were fitted by the NRTL model [59].
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Figure 4. Experimental tie lines of the system {[DoMIM][NTf2] (1) + butan-1-ol (2) + water (3)} at
T = 298.15 K; (#—#) experimental data in mass fraction; (�—�) NRTL correlation; exptl. [26].

The method of correlation of liquid phase in ternary systems was presented by Wales [60].
The following objective function F(P), was used in the calculations:

F(P) =
n∑

i=1

[
xI exp

2 − xIcalc
2 (PT)

]2
+

[
xI exp

3 − xIcalc
3 (PT)

]2
+

[
xII exp

2 − xIIcalc
2 (PT)

]2
+

[
xII exp

3 − xIIcalc
3 (PT)

]2
(15)

where P is the parameters vector, xI exp
2 , xI exp

3 and xIcalc
2i (PT), xIcalc

3 (PT) and xII exp
2 , xII exp

3 and xIIcalc
2 (PT),

xIIcalc
3 (PT) are the experimental and calculated mole fractions of phase I or II. The third parameter,
αij in the NRTL model (usually αij = 0.2 or 0.3) is adjusted for the best correlation between 0 and 1.
The root-mean square deviation, RMSD values were expressed as:

RMSD =

∑
i

∑
l

∑
m

[
xexp

ilm − xcalc
ilm

]2
/6k

1/2

(16)

where x is the mole fraction and the subscripts i, l, and m designate the component, phase, and tie-line,
respectively. Using different values of parameter αij for the correlation of the experimental tie-lines
mole fractions, we can get the lowest values of RMSD.

All mentioned models, such as Wilson, UNIQUAC and NRTL [57–59] are well-established methods
used for the correlation of the experimental data, SLE, LLE, VLE and the excess molar enthalpy, HE

and have been used for many years. They are useful in the calculation of the activity coefficients in real
systems with ILs, or without ILs from the experimental data. It is always possible to use the parameters
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from binary systems for the prediction of phase equilibria in the ternary systems or to extend the range
of temperature. It is worth mentioning in this moment that the Wilson model is very popular and easy
to use in the SLE description, but only for the systems with complete miscibility in the liquid phase.

3. Predictive Methods

The most convenient theories used for the modeling of the phase equilibria and HE have been
presented by us: group contribution model (Mod. UNIFAC) [61,62] and modified UNIFAC model
for pharmaceuticals [63], or lattice theory based on non-random hydrogen bonding (NRHB) [64].
In many works the SLE, LLE, or VLE and HE of ILs were described by Perturbed-Chain Polar Statistical
Associating Fluid Theory (PC-SAFT) [65,66] or Conductor-like Screening Model for Real Solvents
(COSMO-RS) [67].

VLE of (IL/solvent) has been measured in our laboratory with an ebuliometric method. The VLE
data usually represented simple zeotropic binary mixtures. The HE data, measured with an isothermal
titration calorimeter is usually negative for the (aromatic hydrocarbon + IL) binary mixture. This is
a result of interaction of solvent with the IL. The positive values are observed for alcohols, because
of the breaking of hydrogen bonding in alcohol associates (see for example N-alkylisoquinolinium
bis{(trifluoromethyl)sulfonyl}imides [CniQuin][NTf2] (where Cn = CnH2n+1; n = 4, 6, 8) ILs with
benzene, toluene, pyridine, or butan-1-ol [68]). The VLE and HE modeling of these systems were
made using PC-SAFT theory. To get a better prediction of the phase equilibria, the parameters of pure
substances have to be obtained from experimental data of pure substances such as density, or the
solubility parameters. The literature values of density or γ∞ of solvents were used to determine binary
interaction parameters of the models. The VLE and HE data were possible to calculate with deviations
of about 4.1% of the IL mole fraction. The use of the PC-SAFT model enabled us to describe the phase
behavior in a qualitative manner for many ILs with different cations [68]. The model predicted the
order in which the HE of aromatic hydrocarbon in the IL decreases, including the number of carbon
atoms of alkyl substituent in benzene ring, or in cation of the IL [68].

To have the possibility to choose the IL as selective solvent in separation process, the knowledge
of the phase equilibrium behavior, or HE is fundamental. Several modern thermodynamic models
have been used for the prediction of phase equilibrium and HE in recent years [69]. In particular,
accurate predictions of the VLE and LLE with PC-SAFT [65,66] and soft-SAFT [70,71] for systems with
[NTf2]-based ILs and hydrocarbon, or alcohol, or water have been demonstrated very recently.

Thus, the modeling of mixtures with ILs is important. The modeling allows us to understand the
interactions in the solution and then to choose the prediction method. It is widely known that ILs have
no measurable vapor pressures, which make the prediction of phase equilibria in multicomponent
systems difficult. Therefore, modeling of systems with ILs needs special ideas. Many reviews of
possible methods are presented in literature [69,72–74]. The statistical associating fluid theory (SAFT)
and its modifications as (PC-SAFT) [65,66], (soft-SAFT) [75], (tPC-SAFT) [76,77] have become very
popular for the description of the ILs solutions.

The use of general thermodynamic relations helps us to obtain the fugacity coefficient as some
derivatives of Ares according to eqn. 17. In the original PC-SAFT, important factors are: the chain
reference fluid (hc), dispersive interactions (disp) and the association in the solution (assoc):

ãres
≡

Ares

NkBT
= ãhc + ãdisp + ãassoc (17)

where N is the number of molecules in the system and kB is Boltzmann constant.
For the associating mixtures two parameters (per one pair of sites) describing the strength of

association AB are used: the energy potential (εAB) and the volume (κAB) of association AB. These
parameters may be detected from pure substance properties and their mixtures, such as density,
solubility parameter or vapor pressure.
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It is generally known that between cations and anions of the IL the strong interaction is observed,
as well as hydrogen bonding with other solvents in the solution [78–81]. For the PC-SAFT model it is
necessary to assume combining rules for the cross-interaction parameters. The use of quadratic mixing
rules of Lorentz–Berthelot show in many cases good results. For example, for the PC-SAFT model [65]:

εi j =
√
εiε j(1− ki j), σi j =

σi + σ j

2
(18)

The expression for the calculation of the γ∞ of component i (solute) in binary mixtures with
component j (solvent) is as follows:

γ∞i =
ϕL,∞

i

ϕL,0
i

(19)

where ϕL,∞
i and ϕL,0

i are the fugacity coefficients of solute at infinite dilution (real or hypothetical)
state, respectively. The expressions for ϕL

i can be calculated from PC-SAFT theory. Description of
many phase equilibria confirmed that data of γ∞, use as experimental one or calculated from Mod.
UNIFAC are important for the description.

On the other hand, COSMO-RS is a combination of unimolecular quantum chemical (QC)
calculations and statistical mechanics (SM) [67,82,83]. Authors Klamt and Schüürmann of the QC
basis of COSMO-RS are well known and permanently working in the field [84]. The most important
property obtained from COSMO is the distribution of the density of screening charge induced at cavity
surface by the surrounding conductor (σ). It is important to define the ab initio calculated σ-profiles
of all solutes and solvents existing in the solution. The chemical potentials of the components, µ are
calculated according to the expression:

µi = µcomb
i +

∫
p(σ)µs(σ)dσ+ RT ln xi (20)

where µcomb
i is the combinatorial contribution depending on size and shape of molecule, µs(σ) is the

chemical potential of the surface segment of screening charge density σ. Method of calculation both
µcomb

i and µs(σ) was published earlier [84]. Knowledge of the chemical potential enables us to calculate
any phase equilibrium using known thermodynamic equations. Calculations are usually with the
COSMOtherm suite (version 17.0.1; February 2017) purchased from COSMOlogic GmbH and Co. KG
(Leverkusen, Germany) [85].

Coming back to the PC-SAFT calculations, the parameters (segment number m, segment diameter
σ, dispersive interaction energy u/kB, association energy εAB/kB and association volume κAB) for ILs
must be described. They are obtained from the correlation of the experimental densities, ρ or solubility
parameters, δH as described earlier [86]. The PC-SAFT theory was used to the description of many pure
ILs data [73,81,86–88]. The pure-fluid PC-SAFT parameters for typical molecular solvents (benzene,
toluene, thiophene, pyridine and alcohols) are already described in literature [87,88].

For the binary mixtures, the parameters connected with cross-interactions (i.e., cross-dispersion
and/or cross-association) have to be described. The cross-dispersive energy between IL (1) and solvent
(2) can be described by the quadratic combining rules of Lorentz–Berthelot: u12 = (u1u2)1/2(1 − k12),
σ12 = (σ1 + σ2)/2. For the cross-associating system, the cross-association energy and volume can be
calculated with Wolbach–Sandler combining rules as in original PC-SAFT paper [89]. The binary
interaction parameter k12 is usually calculated from γ2

∞ of molecular solvent in the IL. The prediction
of VLE, or LLE with k12 adjusted to γ2

∞ gives quite good results. The same level of description or even
better was obtained when γ2

∞ was calculated from the Mod. UNIFAC model. The accuracy was much
better in comparison with calculations to pure predictions based on assumption that k12 = 0.
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For the systems, where the densities and the experimental data of γ2
∞ are not available,

the predicted method such as the linear solvation-energy relationship (LSER) may be used [90].
The LSER model uses many adjustable parameters from the correlation of various thermodynamic
properties [90]. However, in many of our publications on phase equilibria of ILs, the γ2

∞ was predicted
with a Mod. UNIFAC model [91]. The comparison of the calculation based on the γ2

∞, calculated
from Mod. UNIFAC, PC-SAFT-UNIFAC and with PC-SAFT pure prediction (k12 = 0) together with
experimental data are shown in Figure 5 for LLE data of imidazolium-based IL with alcohols [92]
using the infinite dilution data of Heintz et al. [93]. Figures 6–8 show an example of the γ2

∞-based
calculations compared with PC-SAFT predictions (k12 = 0) and PC-SAFT-UNIFAC with experimental
data of VLE of different authors [94–96]. The procedure is described as well [34].
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The NRHB equation of state was also used by us for the modeling of systems with ILs [97,98].
The NRHB model was used for mixtures with [NTf2]-based ILs [74], and with piperidinium-based
ILs [64,70,99]. The NRHB model was used to predict binary LLE for systems containing [PMPIP][NTf2]
and linear alcohols (from C5OH to C11OH) [70]. For such polar mixtures, the NRHB theory (as well
as PC-SAFT, k12 = 0) was not able to predict immiscibility gap in the liquid phase. It was necessary
to involve the temperature dependent binary interaction parameters for the description of these
binary mixtures.

In many cases, the standard quadratic mixing rules of Lorentz–Berthelot were useful in the
PC-SAFT [65] and for NRHB [98]:

ε∗i j =
√
ε∗iε
∗

j(1− ki j) (21)

where kij is binary interaction parameter for pair i-j of components (kij = kji). Low deviations, about 4%
were obtained using the liquid density data for the pure [PMPIP][NTf2] IL in the description of LLE
data in binary systems of {[PMPIP][NTf2] + alcohols (C5OH, C6OH, C7OH, C8OH, C9OH, C10OH,
C11OH)} [70].
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The number of segments ri in NRHB theory was calculated from the specific volume:

ri =
Miv∗sp,i

v∗
(22)

where Mi is the molecular mass of component i. The number of external contacts is then qi = siri.
The association term of the NRHB model, vassoc is defined as:

vassoc =
m∑
α=1

n∑
β=1

Nαβ

rN
=

m∑
α=1

n∑
β=1

vαβ (23)

where Nαβ and vαβ are average per segment and total number of complexesα-β, respectively; the number
of donor groups of type α in molecule of type i is dαi and the number of acceptor groups of type β in

molecule of type i is aβi . The parameters corresponding to the internal energy, entropy and volume
change due to association of type α-β, (EH

αβ, SH
αβ and VH

αβ, respectively), are also introduced.
Using the presented parameters, the following equation of state can be defined:

P̃ + T̃

ln(1− ρ̃) − ρ̃
 t∑

i=1

ϕi
li
ri
− vassoc

− z
2

ln(1− ρ̃+ sρ̃) +
z
2

ln Γ00

 = 0 (24)

As usual, the chemical potential has to be presented for the description of phase equilibrium:

µi
RT = ln ϕi

ωiri
− ri

t∑
i=1

ϕi
li
ri
+ ln ρ̃+ ri(ṽ− 1) ln(1− ρ̃)

−
z
2 ri(ṽ− 1 + si) ln(1− ρ̃+ sρ̃) + z

2 siri
[
ln Γii +

ṽ−1
si

ln Γ00
]

+ri
P̃ṽ
T̃
−

siri

T̃i
+

µassoc
i
RT

(25)

where
li
ri

=
z
2
(1− si) +

1
ri
− 1 (26)

and P̃, T̃, T̃i and ρ̃ are reduced state variables are defined as follows:

P̃ =
Pv∗

ε∗
, T̃ =

RT
ε∗

, T̃i =
RT
ε∗i

, ρ̃ = ρv∗sp (27)

The reduced volume is defined as ṽ = 1/ρ̃ while the reduced density ρ̃ in Equation (25) is
calculated from the equation of state given in Equation (24). The formulas for the calculation of all
these parameters were presented elsewhere [64,70,74,99].

Usually, description of the maximum in LLE in binary systems is not exact because in the systems
with the UCST, the experimental curves are flat at the maximum [64,70,74,99].

The most popular nowadays thermodynamic models used for the prediction of the phase equilibria
and HE may be used for any binary, or ternary, or multicomponent systems including mixtures with
ILs. The oldest one is group contribution method (Mod. UNIFAC) [61,62] and it is pure predictive
method for phase equilibria or activity coefficient at infinite dilution. The lattice theory NRHB [64] is
mainly used for non-polar systems. In many works the SLE, LLE, or VLE and HE of binary systems are
described by the PC-SAFT [65,66], but for polar compounds the experimental data are necessary to
use for the description of binary interaction parameters. For such a systems we have semi-predictive
method only. The COSMO-RS model [67] is popular tool with deviation of 5–10% for phase equilibria
with larger deviations for systems with water and methanol.
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4. Separation Application Using Limiting Activity Coefficients

Much data are published in a field of separation applications using ILs; one of the most relevant is
separation of aromatic/aliphatic hydrocarbons, sulfur compounds/alkanes, alkenes/alkanes, water/PEA
or water/butan-1-ol or terpenes from natural sources. The best information about the selectivity
of the IL used for separation can be obtained from the measurements of the γ∞ by the gas–liquid
chromatography technique [27,98–115].

Recently, we presented the γ∞ of diverse organic solutes for new, synthesized in our laboratory
ILs [100–115]. The separation of hexane/hex-1-ene, or cyclohexane/cyclohexene, or ethylbenzene/styrene
was discussed with ILs presented in Table 1 [100–108], as well as separation of water/butan-1-ol with
ILs listed also in Table 1 [27,109–115].

Table 1. Structure and names of Ionic Liquids (ILs) discussed in presented review.

Structure Name, Abbreviation Ref.

Hexane/hex-1-ene, or cyclohexane/cyclohexene, or ethylbenzene/styrene separation
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where n3 is the number of moles of IL, R is the gas constant, T is temperature, VN is the net retention 
volume of the solute, *

1P  is the saturated vapor pressure of the solute at temperature T, B11 is the 
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1V  is the molar volume of the solute, Po is the outlet 
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where tR and tG are the retention times for the solute and an unreturned gas, respectively.  
Some examples of the IL, the selectivity (   2112 /S ) and the capacity (   22 /1 k ) for four 

separation problems: hexane (1)/hex-1-ene (2), cyclohexane (1)/cyclohexene (2), ethylbenzene 
(1)/styrene (2) and water (1)/butan-1-ol (2) at T = 328.15 K are presented in Tables 2–5.  

Table 2. Selectivity and capacity at infinite dilution in hexane/hex-1-ene system at T = 328.15 K. 

Ionic Liquid 
12S  


2k  

[EMMor][DCA]  2.85 0.007 
[N-C3OHMIM][DCA]  2.52 0.010 

[BzMIM][DCA]  2.50 0.026 
[AMIM][DCA]  2.45 0.019 
[EMIM][TCM]  2.35 0.045 
[EMPYR][Lac]  2.24 0.020 

[BCN4PY][NTf2]  2.13 0.074 
[AMIM][NTf2]  1.94 0.094 
[BzMIM][NTf2]  1.90 0.108 

[N-C3OHMMor][NTf2] [115]

The γ∞13 for a solute (1) partitioning between a carrier gas helium (2) and a non-volatile liquid
solvent, IL (3) are determined using the gas–liquid chromatography (GLC). They are calculated from
the following formula [116,117]:

lnγ∞13 = ln
(

n3RT
VNP∗1

)
−

P∗1
(
B11 −V∗1

)
RT

+
Po J3

2

(
2B12 −V∞1

)
RT

(28)

where n3 is the number of moles of IL, R is the gas constant, T is temperature, VN is the net retention
volume of the solute, P∗1 is the saturated vapor pressure of the solute at temperature T, B11 is the second
virial coefficient of pure solute, V∗1 is the molar volume of the solute, Po is the outlet pressure, Po J3

2 is
the mean column pressure, B12 (the carrier gas) is the mixed second virial coefficient of the solute and
helium, and V∞1 is the partial molar volume of the solute at infinite dilution (calculated as a molar
volume of the solute) in the IL.

The thermodynamic constants and virial coefficients are defined in the literature [118,119] and in
our earlier work [120].

The pressure correction term, J3
2 , is defined as follows [121]:

J3
2 =

2
3
(Pi/Po)

3
− 1

(Pi/Po)
2
− 1

(29)

The VN, is described as:

VN =
(
J3
2

)−1
Uo(tR − tG) (30)

where tR and tG are the retention times for the solute and an unreturned gas, respectively.
Some examples of the IL, the selectivity (S∞12 = γ∞1 /γ∞2 ) and the capacity (k∞2 = 1/γ∞2 ) for

four separation problems: hexane (1)/hex-1-ene (2), cyclohexane (1)/cyclohexene (2), ethylbenzene
(1)/styrene (2) and water (1)/butan-1-ol (2) at T = 328.15 K are presented in Tables 2–5.
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Table 2. Selectivity and capacity at infinite dilution in hexane/hex-1-ene system at T = 328.15 K.

Ionic Liquid S∞12 k∞2
[EMMor][DCA] 2.85 0.007

[N-C3OHMIM][DCA] 2.52 0.010
[BzMIM][DCA] 2.50 0.026
[AMIM][DCA] 2.45 0.019
[EMIM][TCM] 2.35 0.045
[EMPYR][Lac] 2.24 0.020

[BCN4PY][NTf2] 2.13 0.074
[AMIM][NTf2] 1.94 0.094
[BzMIM][NTf2] 1.90 0.108

Table 3. Selectivity and capacity at infinite dilution in cyclohexane/cyclohexene system at T = 328.15 K.

Ionic Liquid S∞12 k∞2
[N-C3OHMMor][DCA] 3.98 0.251

[EMMor][DCA] 3.04 0.329
[N-C3OHPY][DCA] 2.79 0.359

[N-C3OHMIM][DCA] 2.64 0.379
[BzMIM][DCA] 2.46 0.406
[BzMIM][NTf2] 1.77 0.565

Table 4. Selectivity and capacity at infinite dilution in ethylbenzene/styrene system at T = 328.15 K.

Ionic Liquid S∞12 k∞2
[N-C3OHMMor][DCA] 2.55 0.097
[N-C3OHMIM][DCA] 2.38 0.160

[EMMor][DCA] 2.32 0.152
[N-C3OHPY][DCA] 2.27 0.138

[AMIM][DCA] 2.19 0.242
[BzMIM][DCA] 2.16 0.322
[EMIM][TCM] 2.01 0.474

[BCN4PY][NTf2] 1.85 0.694
[AMIM][NTf2] 1.75 0.629
[BzMIM][NTf2] 1.71 0.758

Table 5. Selectivity and capacity at infinite dilution in water/butan-1-ol system at T = 328.15. K.

Ionic Liquid S∞12 k∞2
[P8,8,8,8][NTf2] 5.75 0.781
[P14,6,6,6][TCM] 4.53 2.30
[P14,4,4,4][DBS] 3.77 5.29

[DoMIM][NTf2] 2.76 0.637
[N8,2,2,2][NTf2] 2.46 0.515

[N-C3OHMMor][NTf2] 0.44 0.326

The selectivity, S∞12 and the capacity k∞2 at infinite dilution for the chosen ILs in the discussed
separation problems were compared to the best in the literature data, which are shown as grey points
in Figures 9–12.
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The largest value of selectivity for hexane/hex-1-ene separation (S∞12 = 2.85) with a very low
capacity (k∞2 = 0.007) was presented by [EMMor][DCA] (see Table 2 [103]) and the lowest selectivity
was observed for [BzMIM][NTf2] (S∞12 = 1.90) with large capacity (k∞2 = 0.108) (see Table 2 [102]).
Similar results are for cyclohexane/cyclohexene separation: The largest values were observed for
[N-C3OHMMor][DCA] (S∞12 = 3.98 with capacity k∞2 = 0.251) and [EMMor][DCA] (S∞12 = 3.04 with
capacity k∞2 = 0.329, see Table 3 [103,105]). The lowest selectivity was presented by the [BzMIM][NTf2]
(S∞12 = 1.77) with the largest capacity (k∞2 = 0.565) (see Table 3 [102]).

The largest values for ethylbenzene/styrene were observed for [N-C3OHMMor][DCA] (S∞12 = 2.55
with capacity k∞2 = 0.097) and [N-C3OHMIM][DCA] (S∞12 = 2.38 with capacity k∞2 = 0.160, see
Table 4 [105]). The lowest selectivity was presented by the [BzMIM][NTf2] (S∞12 = 1.71) with the largest
capacity (k∞2 = 0.758) (see Table 4 [102]).

The water/butan-1-ol separation problem needs different ILs with long alkane chain substituents in
the cation or anion. The best values were observed for phosphonium-based ILs, such as [P8,8,8,8][NTf2]
(S∞12 = 5.75 with capacity k∞2 = 0.781) and [P14,6,6,6][NTf2] (S∞12 = 4.53 with capacity k∞2 = 2.30, see
Table 5 [112,114]). The lowest selectivity was presented by the [N-C3OHMMor][DCA] (S∞12 = 0.44) with
capacity (k∞2 = 0.326) at temperature T = 328.15 K (see Table 5 [105]).

The literature review on the hexane/hex-1-ene separation [24] has underlined the largest
selectivity obtained with the ILs with the thiocyanate anion. Very good results were obtained
with 1-butyl-3-methylimidazoliun thiocyanate, [BMIM][SCN] (S∞12 = 3.18) [122]. This type of ILs is
very promising in many other separation processes. Unfortunately, the high selectivity is usually
accompanied with low capacity (k∞2 < 0.05) [122].

As seen from Tables 2–5, proposed by us, ILs may be used in application in few petrochemical
separation processes. The higher values of selectivity in the separation process cyclohexane/cyclohexene
than those presented here were noted in the literature only for 1-butyl-3-methylimidazolium chloride,
[BMIM][Cl] [123]. The large selectivities for the ethylbenzene/styrene separation process were
obtained with [BMIM][Cl] [123], [BMIM][MeSO4] [124], [BMIM][BF4] [125], [AMIM][BF4] [126] and
[BMPY][DCA] [127].

It has been shown that using a simple experimental method, such as measurements of limiting
activity coefficients using the gas–liquid chromatography technique [27,98–115] it is possible to
determine the selectivity and capacity of any extrahent, including IL. It was also shown that ILs are
very good, high selective new solvents for different separation problems. The results obtained with ILs
are always better than those obtained with popular organic solvents.
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5. Separation in Ternary LLE Using COSMO-RS

The second experimental method of determining the selectivity of the separation is the
measurement of the ternary LLE data [24,34,35,39]. The possibility of prediction of ternary LLE
with COSMO-RS was presented by us in many works [128–130].

COSMO-RS was used by us for calculating LLE phase diagrams in ternary systems of
{IL+PEA+water} [130]. The PEA/water selectivity was calculated. The calculated selectivities and LLE
equilibrium data enable us to make a selection of IL for extraction of PEA form aqueous solutions.

In all works, the conformations of molecules were generated and optimized using COSMOconf [85]
and TURBOMOLE utilities [131–135].

Representative data on the COSMO-RS predicted vs. experimental LLE phase diagrams are shown
in Figure 13. The ternary LLE experimental tie-lines are presented in the systems: {[EMIM][NTf2]
+ hexane + hex-1-ene} [21], {[C8iQuin][NTf2] + PEA + water} [39], {[DoMIM][NTf2] + butan-1-ol +

water} [26] and {[BMPYR][FAP] + thiophene + heptane} [136] in comparison with predicted values
using COSMO-RS (level TZVP-COSMO) and COSMO-RS (level TZVPD-FINE).Processes 2019, 7, 277 18 of 26 
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In general, the deviation of predictions in ternary system is strongly dependent on the prediction
of LLE compositions in binary mixtures. As we can see, the model correctly captures the systems of
typical organic solvents with ILs. It is evidenced in Figure 13 that a great majority of ILs under study
may be predicted with the COSMO-RS model.

COSMO-RS model may be useful for chemical engineering and/or thermodynamics scientists as
new tool, which may suggest new applications of molecular solvents, or ILs in the separation processes.
It is possible to predict the structure of new compounds, or ILs of different cations and anions for the
chosen separation process. The method is shown, for example, for the prediction of the best ILs for the
desulfurization of fuels [137].

6. Molecular Simulation as A Thermodynamic Tool

The prediction of the physico-chemical properties, such as viscosity, or density, or phase equilibria
may be also studied using classical molecular dynamics (MD) simulations. The viscosities of the
mixture of the IL with typical molecular solvent is always different from an ideal mixing model.
Detailed analysis of the MD results reveals that different interaction between cations and anions of the
IL may be shown.

Molecular simulations based on classical potentials may predict the condensed phase properties
of these materials being the result of new chemical structure in the solution. MD simulations may also
predict many properties and unexpected phenomena of the mixtures with the ILs. An excellent review
was recently presented on the history of ILs molecular simulations, and examples of the recent use of
molecular dynamics and Monte Carlo simulation in understanding the structure of ILs, the process of
sorption in ILs, the immeasurable vapor pressure of ILs and the dynamics of ILs [138].

Significant advantages are obtained for example in MD simulation of the influence of soluble in
water ILs on the stability of protein and enzyme structures [139]. Besides the influence of concentration
of the IL, the structure, type of cation or anion can influence on distinct stabilization or denaturation
mechanisms. The review in this field showed that specific ion effects, and a preferential binding
model discuss protein-IL effects from a statistical mechanics perspective. The simulation of the
influence of water in the self-association behavior of the IL species and recent experimental results
were presented [139].

Molecular-based simulation methods similar to COSMO-RS may be useful in the prediction of
structure of new ILs with planned physical properties [140]. Recently the general information about
the topic of MD was presented in [140]. The calculations of thermodynamic and transport properties
are presented, as well as insight into the behavior of these systems at the molecular level [140]. These
information of the data base of force fields and simulation results of phase equilibria, VLE, LLE and
SLE are presented [140].

Wide spectrum of the force-field data base for ILs, including 11 cations in five classes, imidazolium-,
pyridinium-, pyrrolidinium-, piperidinium-, and tetraalkylammonium-based, and 12 anions,
chloride, perchlorate, nitrate, tetrafluoroborate, hexafluorophosphate, thiocyanate, dicyanamide,
tricyanomethanide, tetracyanoborate, bis(trifluoromethylsulfonyl)imide, triflate, and trifluoroacetate
was also recently presented [141]. The parameters are primarily derived from quantum-mechanical
data, with a few non-bonded parameters optimized using experimental data of density and viscosity.
The force field was validated using 46 ILs with the unsigned deviations from the experimental equal to
1.4%, 12.8%, and 3.7% for density, viscosity, and isobaric heat capacity, respectively. The force field was
used to analyze the interactions in terms of activation energies of viscosity and liquid structures in
terms of distribution functions and free energy maps for common ILs [141].

7. Summary and Future Perspective

In summary, the experimental and theoretical study of some binary and ternary systems involving
ILs and molecular solvents were presented. The focus was made for ILs because of enormous new
applications and phase equilibria measurements and monographs about it. Ionic liquids are new
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substances with specific physico-chemical properties, liquid at room temperature with no-vapor
pressure and amazing solvation properties. The advantages are on the physico-chemical properties and
better results in any scientific field in comparison with traditional molecular solvents and disadvantages
are hygroscopy of most of them, large viscosity and the cost. Typical results of SLE, LLE and VLE,
observed for system with the IL, were shown including: (1) positive deviations from Raoult’s law
for studied systems; (2) negative HE of {IL + aromatic hydrocarbon} mixtures; (3) positive HE of
{IL + alcohol} mixtures. These experimental results of SLE, LLE, VLE and HE, observed for systems with
the IL, definitely show the intermolecular interaction of the IL with aromatic/aliphatic hydrocarbons or
with alcohol.

The Wilson, NRTL and UNIQUAC models are popular thermodynamic models for correlation
of the binary IL or any molecular solvent/solvent systems and ternary systems with or without ILs.
In particular, the NRTL was confirmed to be an effective correlative model for binary and ternary LLE
data. Novel modeling methodology based on PC-SAFT theory including corrections in binary systems,
determined from γ2∞ data, or density of pure substances and in binary systems was demonstrated for
the modeling of binary and ternary systems. It was shown that the high quality of predictions can
be achieved with COSMO-RS in the case of LLE in the ternary systems studied. The use of NRHB,
PC-SAFT or COSMO-RS models for the systems involving ILs is more demanding because of more
difficult experimental methods in comparison with systems with typical molecular solvents. The results
of any model used for the description, correlation, or prediction of the mixture depend of kind of
system described (polar, non-polar, hydrogen-bonding, other specific interaction) not on the model.
This work can be helpful for the development and optimization of different methods of modeling of
phase equilibria (e.g., separations) and makes the process of simulation easier. In summary, this study
may give some insight into new separation technologies and their thermodynamic description.
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38. Domańska, U.; Paduszyński, K. Phase equilibria study in the binary systems (tetra-n- butylphosphonium
tosylate ionic liquid + 1-alcohol, or benzene, or n-alkylbenzene). J. Phys. Chem. B 2008, 112, 11054–11059.
[CrossRef]
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pharmaceuticals in water and alcohols with a group contribution method. J. Chem. Thermodyn. 2013,
62, 118–129. [CrossRef]
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128. Paduszyński, K. An overview of the performance of the COSMO-RS approach in predicting the activity
coefficients of molecular solutes in ionic liquids and derived properties at infinite dilution. Phys. Chem.
Chem. Phys. 2017, 19, 11835–11850. [CrossRef] [PubMed]
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