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Abstract: As is well known, the correct diagnosis for cancer is critical to save patients’ lives. Support
vector machine (SVM) has already made an important contribution to the field of cancer classification.
However, different kernel function configurations and their parameters will significantly affect
the performance of SVM classifier. To improve the classification accuracy of SVM classifier for
cancer diagnosis, this paper proposed a novel cancer classification algorithm based on the dragonfly
algorithm and SVM with a combined kernel function (DA-CKSVM) which was constructed from
a radial basis function (RBF) kernel and a polynomial kernel. Experiments were performed on six
cancer data sets from University of California, Irvine (UCI) machine learning repository and two
cancer data sets from Cancer Program Legacy Publication Resources to evaluate the validity of
the proposed algorithm. Compared with four well-known algorithms: dragonfly algorithm-SVM
(DA-SVM), particle swarm optimization-SVM (PSO-SVM), bat algorithm-SVM (BA-SVM), and genetic
algorithm-SVM (GA-SVM), the proposed algorithm was able to find the optimal parameters of SVM
classifier and achieved better classification accuracy on cancer datasets.

Keywords: cancer; combined kernel function; dragonfly algorithm; support vector machine (SVM);
parameter optimization; classification

1. Introduction

In the 21st century, cancer is expected to be the major cause of death all over the world. The
GLOBOCAN 2018 cancer morbidity and mortality estimates published by the International Agency
for Research on Cancer showed that there were 18.1 million new cancer cases and 9.6 million cancer
deaths in 2018 [1]. The correct diagnosis of cancer is essential for patients to receive timely and correct
treatment. Machine learning plays a unique and important role in the field of cancer treatment. For
example, some researchers applied neural networks to the classification of breast cancer [2,3], and
Dongmei Ai et al. [4] identified intestinal microorganisms associated with colorectal cancer by means
of decision tree aggregation with a random forest model.

Support vector machine (SVM) is a supervised machine learning method used to solve classification
and regression problems, firstly proposed by Vapnik on the basis of statistical learning theory [5]. SVM
was applied in many fields, such as economics [6], electrics [7], and medical science [8]. Especially
in the field of cancer diagnosis, many studies have already proven the excellent performance of
SVM classifier [9–11]. SVM uses the principle of structural risk minimization instead of empirical
minimization and it can obtain a better generalization ability from limited samples. Moreover, when
facing the problem that data cannot be linearly separated, SVM can not only use the idea of kernel
function to map nonlinear features to a high-dimensional space, but it can also avoid the problem of
“dimensional disaster”.
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The performance of SVM classifier depends on three aspects, these being the penalty parameter
C of SVM classifier, the type of the kernel function, and its parameters. To improve classification
accuracy of SVM classifier, some approaches were presented to search for the optimal parameters, such
as grid search [12] and gradient descent [13]. Although these methods have proven the effectiveness in
the corresponding literature experiments, they are likely to fall into the local optimum point easily
and have the defect of low efficiency. In recent years, some meta-heuristic algorithms, such as the
dragonfly algorithm (DA) [14], particle swarm optimization (PSO) [15], bat algorithm (BA), [16] and
genetic algorithm (GA) [17–19] have achieved competitive results when they were used to tune SVM
classifier’s parameters. However, most of this research only focused on the SVM classifier with a single
kernel function. Though some literature [20,21] indicates that combining multiple kernel functions
can obtain better performance than a single kernel function, little research has provided an in-depth
analysis of the performance of SVM classifier with a combined kernel function. There would therefore
seem to be a definite need to systematically study the complex optimization problem in the SVM
classifier with a combined kernel.

In 2015, Mirjalili proposed a new meta-heuristic algorithm called the dragonfly algorithm (DA) [22],
which has already been used to solve different optimization problems, such as feature selection [23,24],
the knapsack problem [25], and image processing [26]. Considering that DA has an excellent global
search ability and there are few studies on SVM classifier with combined kernels in the field of cancer
classification, this paper proposed a novel classification algorithm based on DA and SVM classifier
with a combined kernel function (DA-CKSVM) to improve the classification ability for cancer diagnosis.
The objective of this research was to construct an SVM classifier with two different kernel functions
and use DA to optimize all the parameters in this SVM classifier, such as the parameters in both kernel
functions, the weight coefficient of the combined kernel, and SVM’s penalty parameter C.

The overall structure of the study takes the form of eight chapters, including this introductory
chapter. The remaining part of the paper proceeds as follows: The related work on cancer classification
is described briefly in Section 2. Section 3 introduces the basic idea of SVM. Section 4 deals with the
construction of the combined kernel. Then, DA is introduced in Section 5. Section 6 is devoted to
present the proposed algorithm. Section 7 focuses on the experimental results and discussions. Finally,
conclusions and future work are provided in Section 8.

2. Related Work

Since SVM was proposed, many researchers have used it to conduct research on cancer classification.
For example, Guangru Xu et al. [27] used SVM analysis to predict the recurrence risk and prognosis
for patients with colon cancer. Youlin Tuo et al. [28] constructed an SVM classifier to evaluate the
possibility of breast cancer metastasis and obtained high classification accuracy in several independent
data sets. Yuanpeng Li et al. [29] used both SVM models and partial-least-square discriminant analysis
to diagnose early gastric cancer. The experimental results showed the diagnostic model obtained from
SVM was evidently better than the partial-least-square discriminant analysis.

It should be noted that a great deal of research has already recognized that the parameters of
SVM classifier play a vital role in improving the effects of classification. The kernel function and its
parameters define a nonlinear mapping from the input space to the high-dimensional space, while
the trade-off between minimizing the training error and maximizing the classification margin was
determined by the penalty parameter C of SVM. Different parameter configurations will lead to
different classification results. Therefore, how to select appropriate parameters becomes the main
challenge on improving the classification ability of SVM classifier.

A number of researchers have focused on optimizing the parameters of kernel functions to obtain
better classification accuracy in cancer diagnosis. M. Prabukumar et al. [30] used SVM classifier
to identify the lung cancer and more than 98% accuracy was achieved. The grid search method
was employed to search for the optimal parameters in this study. Himar Fabelo et al. [31] used
radial basis function (RBF) kernel function, linear kernel function, polynomial kernel function, and
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sigmoid kernel function to construct SVM classifiers to recognize brain tumors, respectively, and
the cross-validation method was utilized to find the optimum parameters of SVM classifiers. By
comparing the classification effects of four different models, the results proved that polynomial kernel
had advantages in a few evaluation metrics, but in general RBF kernel function got the best classification
results. The literature [17] applied linear, quadratic, RBF, and third-order polynomial SVMs for the
screening and classification of prostate cancer, in which the parameter of RBF kernel and parameter C
were optimized by the exhaustive method. However, the four models did not perform very well. Then,
they combined SVM with the principal component analysis (PCA), the successive projections algorithm
(SPA), and GA to automatically optimize penalty parameter C and the parameters in RBF kernel.
The experimental results showed that the combination of meta-heuristic algorithm GA and SVM
achieved the best performance. Overall, there seems to be some evidence to indicate that polynomial
kernel function and RBF kernel function have better performance than other kernel functions, and the
meta-heuristic algorithms have a better optimization ability than conventional optimization methods
such as grid search and gradient descent.

Further understanding of the nature of kernel functions will help to build a more powerful SVM
classifier. In 2001, Scholkopf et al. first divided the kernel function into local kernel function and
global kernel function [32]. Surveys conducted by Simts and Jordaan [33] showed that local kernels
have a good interpolation ability, while global kernels have a good extrapolation ability. They linearly
combined a local kernel function with a global kernel function to obtain a novel kernel function that
exploited the advantages of both kernel functions to make SVM classifiers achieve better performance.
Another important finding was that the performance of SVM classifier with the combined kernel
function is influenced by the weight coefficient of the kernel function. To stratify and predict clinical
outcomes in patients with ovarian cancer, Jaya Thomas and Lee Sael [34] combined a linear kernel
function and a RBF kernel function in a weighted linear combination. They achieved satisfactory
results after optimizing parameters and the weight coefficient. However, they only used a separate
dataset that accounted for 25% of the total sample size to determine the parameters of kernels, which
may have led to less precise parameters. In terms of the weight coefficient optimization, they used
the optimization method proposed by Zien et al. [35]. Therefore, optimizing the weight coefficient
and parameters of kernel functions separately may cause uncoordinated results. Nguyen et al. [36]
combined three kernel functions which included inverse multi-quadric kernel, RBF kernel, and sigmoid
kernel, and optimized parameters with an evolutionary algorithm to construct an SVM classifier. The
classification results on cancer datasets indicated the methodology was superior to a single kernel
function. However, the weight coefficients of kernel functions were not taken into account.

The traditional optimization methodologies such as grid search and gradient descent are not only
time-consuming, but also insufficient to synchronously optimize all parameters in the SVM classifier
with multiple kernel functions. Meta-heuristic algorithms have already been applied to search for the
optimal parameters of SVM classifier with a single kernel function and have been proven to have high
classification accuracy and stability. However, up until now, far too little attention has been paid to the
use of the meta-heuristic algorithm to optimize parameters in an SVM classifier with multiple kernel
functions by solving the complex optimization problem.

3. The Basic Idea of SVM and the Construction of the Combined Kernel Function

As a powerful supervised learning method, SVM is suitable to deal with classification problems
and regression problems. On the one hand, SVM has a high accuracy rate for linearly inseparable
data. On the other hand, linearly inseparable data can be mapped into a high-dimensional space
through kernel functions in SVM. This chapter will briefly introduce the basic principles of SVM with
the classical binary classification as an example.
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3.1. Linear SVM

Suppose that training data U =
{
(x1, y1), (x2, y2), · · · , (xn, yn)

}
is linearly separable, where xi ∈ Rn

represents the i-th training sample that is represented by m features, and yi ∈ {−1, 1} represents the
corresponding class label. The hyperplane ωT + b = 0 is the decision boundary of two types of data,
where a weight vector ω is a normal vector of the hyperplane, b is the deviation, and x is the training
sample. The goal of SVM is to determine the appropriate ω and b to make the hyperplane as far as
possible from the nearest samples. Therefore, the training samples can be correctly classified by:

ωTxi + b ≥ +1 f or yi = +1 (1)

ωTxi + b ≤ −1 f or yi = −1 (2)

One inequality can be obtained for the two formulas above:

yi(ω
Txi + b) ≥ 1,∀i = 1, 2, . . . , n (3)

In order to get the optimal hyperplane (ω·x) + b = 0, SVM needs to deal with the optimization
problem which is shown below:{

min Φ(ω) = 1
2‖ω‖

2

s.t. yi(ω
Txi + b) ≥ 1, i = 1, 2, . . . , n

(4)

where
(
min Φ(ω) = 1

2‖ω‖
2
)

is the objective function and yi(ω
Txi + b) ≥ 1 is the constraint. The optimal

solution of Equation (4) is the saddle point of the following Lagrange function:

L(ω, b, a) = 1
2‖ω‖

2
−

n∑
i=1

αi
[
yi(ω

Txi + b) − 1
]

αi ≥ 0, i = 1, 2, . . . n
(5)

where α is the Lagrange multiplier. Since the gradients of ω and b at the saddle point are zero, therefore:

∂L
∂ω

= ω−
n∑

i=1

αiyixi = 0⇒ ω =
n∑

i=1

αiyixi (6)

∂L
∂b

=
n∑

i=1

αiyi = 0⇒
n∑

i=1

αiyi = 0 (7)

Substituting Equations (6) and (7) into Equation (5), the problem of constructing an optimal
hyperplane is translated into a dual quadratic programming problem:

max W(α) =
n∑

i=1
αi −

1
2
∑
i, j
αiα jyiy jxT

i x j

s.t.
n∑

i=1
αiyi = 0,αi ≥ 0, i = 1, 2, . . . , n

(8)

ω, b and α can be obtained by solving Equations (6)–(8). Only a small part of αi are greater
than zero, and these corresponding samples which are closest to the hyperplane are called support
vectors (SVs).

For an unknown sample x, the following formula can be used to determine its class:

y = sgn
(
ωTx + b

)
(9)
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However, in practical applications, data are usually not linearly separable, which will result in a
large number of misclassified samples. Hence, a relaxation term ξi ≥ 0 needs to be added into linear
SVM to relax the constraints as follows:

yi(ω
Txi + b) ≥ 1− ξi, ξi ≥ 0, i = 1, 2, . . . , n (10)

The corresponding objective function is:

Φ(ω, ξ) =
1
2
‖ω‖2 + C

n∑
i=1

ξi (11)

where penalty parameter C represents the degree of punishment for the error. The larger the C is, the
heavier the penalty will be.

3.2. Nonlinear SVM

For the non-linearly separable data, a kernel function is used to map them into a high-dimensional
space to make them linearly separable. The kernel function is defined as follows:

K(x1, x2) = φ(x1)
Tφ(x2) (12)

The optimization problem of SVM is shown in Equation (13): min Φ(ω) = 1
2‖ω‖

2 + C
n∑

i=1
ξi

s.t.yi(ω
Tφ(xi) + b) ≥ 1− ξi, ξi ≥ 0, i = 1, 2, . . . , n

(13)

4. The Construction of the Combined Kernel Function

Various types of kernel functions are usually applied in SVM classifier, such as the RBF kernel
function, linear kernel function, polynomial kernel function, and sigmoid kernel function. Each
type of kernel function has its own advantages and disadvantages. Studies conducted by Simts and
Jordaan [33] showed that in local kernels, only the data close to each other will affect the value of
kernels, while in global kernels, the data far from each other will also affect the value of kernels.
This means that the learning ability of local kernels is stronger than that of global kernels, but the
generalization ability of local kernels is weaker than that of global kernels. In order to improve the
classification accuracy of SVM classifier, this paper linearly combined a local kernel function with a
global kernel function to take advantages of these two kernel functions.

Four alternative kernel functions are listed below, which are usually used in SVM classifier:

(1) Linear kernel function
Klin(x, xi) = xT

∗ xi (14)

(2) Polynomial kernel function

Kpoly(x, xi) =
(
xT
∗ xi + 1

)d
(15)

(3) RBF kernel function

KRBF(x, xi) = exp
(
−gamma ∗ |x− xi|

2
)

(16)

(4) Sigmoid kernel function

Ksig(x, xi) = tanh
(
gamma ∗ xT

∗ xi + r
)

(17)

RBF kernel function is a local kernel function, while the other three are all global kernel functions.
According to the composition conditions of the kernel function, if a combined kernel function is linearly
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constructed from existing kernels, it is still a kernel function [37] and can be used in SVM classifier.
In view of local kernel function’s predominant learning ability and global kernel function’s outstanding
generalization ability, this paper combined a RBF kernel with a polynomial kernel to obtain a novel
combined kernel function which is shown in Equation (18):

Kc = λKRBF + (1− λ)Kpoly (18)

where λ is the weight coefficient in the range from 0–1. In this SVM classifier, the parameter tuning
problem is to search for the optimal combination of the parameters set (C, gamma, d, λ). The dragonfly
algorithm is applied in this paper to solve this complex optimization problem.

5. Dragonfly Algorithm (DA)

The dragonfly algorithm (DA) is a novel swarm intelligence algorithm presented by Mirjalili in
2015 [22]. The exclusive cluster behaviors of dragonflies, namely hunting and migration, are the main
source of inspiration for the algorithm. The hunting swarm is called the static swarm where dragonflies
gather into small groups and fly back and forth in a small area to hunt prey. On the other hand, in the
dynamic swarm, a big swarm of dragonflies can fly a long distance in one direction. These two states
are very similar to the exploratory phase and the exploitation phase of meta-heuristic algorithms. The
flight of the static swarm in a small area is similar to the exploring stage of the optimization algorithm,
while the flying of the dynamic group along one direction is beneficial to exploitation.

The behavior of any swarms follows the principles given by Reynolds [38]:

• Separation, whose aim is to avoid the collision between individuals and their neighbors in the
static swarm.

• Alignment, whose purpose is to match the individual velocity with others in the same group.
• Cohesion, which is used to indicate the tendency of individuals to move towards the center of

the group.

In order to survive, individuals in the group should be attracted to food and distracted by outward
enemies. Considering these behaviors, five primary factors are used to update individuals’ positions
in a swarm. The mathematical models for these behaviors are as follows:

(1) Separation

Si = −
N∑

j=1

X −X j (19)

where X represents the position of current individual, X j shows the position of j-th adjacent
individual, and N is the amount of neighboring individuals.

(2) Alignment

A j =

N∑
j=1

V j

N
(20)

where V j is the velocity of the j-th neighboring individual.
(3) Cohesion

Ci =

N∑
j=1

X j

N
−X (21)

(4) Attraction
Fi = X+

−X (22)

where X+ represents the position of the food source.
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(5) Distraction
Ei = X− + X (23)

where X− represents the position of the enemy.

The behavior of dragonflies is represented by the combination of the behaviors above. Similar
to the velocity vector in PSO, the step vector ∆X is used in DA to update the position of dragonflies,
which is defined as follows:

∆Xt+1 = (sSi + aAi + cCi + f Fi + eE) + w∆Xt (24)

where s and Si represent the separation weight and the separation of i-th individual, respectively; a and
Ai are the alignment weight and the alignment of the i-th individual, respectively; c and Ci indicate the
cohesion weight and the cohesion of the i-th individual, respectively; f and Fi show the food factor
and the food source of the i-th individual, respectively; e and Ei are the enemy factor and the position
of the enemy of the i-th individual, respectively; w represents the inertia weight, and t is the iteration
counter. The position vector is represented by the following formula:

Xt+1 = Xt + ∆Xt+1 (25)

where t is the current iteration.
In the absence of adjacent solutions, DA uses random walk or Levy flight [39] to improve the

randomness, stochastic behavior, and exploration of dragonflies. Therefore, the dragonflies update
their position as follows:

Xt+1 = Xt + Levy(d) ×Xt (26)

where d is the dimension of the position vector. The Levy flight can be calculated according to
Equation (27):

Levy(x) = 0.01×
r1 × σ

|r2|
1
β

(27)

where r1, r2 are two random numbers in [0, 1], β is a constant, and σ is calculated by Equation (28):

σ =

 Γ(1 + β) × sin
(πβ

2

)
Γ
( 1+β

2

)
× β× 2(

β−1
2 )


1/β

(28)

where Γ(x) = (x− 1)!.

6. Proposed Algorithm: DA-CKSVM

This section will elaborate the proposed algorithm DA-CKSVM, which uses DA to optimize
parameters of SVM with a combined kernel.

6.1. The Basic Process of DA-CKSVM

In the DA-CKSVM algorithm, each dragonfly represents a solution, that is, a combination of the
parameters set (C, gamma, d, λ) which defines a four-dimensional search space for the optimization
problem. The main process of the proposed algorithm is given below:

Algorithm 1: The main process of DA-CKSVM

Step 1: Set the maximum iteration times, the number of dragonflies, and the upper and lower bounds of each
parameter in the parameters set (C, gamma, d, λ).
Step 2: Initialize the step vectors, the values of s, a, c, f , e and w in Equation (24), and the position of
each individual.
Step 3: Train the SVM classifier with the training set and test it with the testing set.
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Step 4: Evaluate the fitness value of each individual and update the enemy and food source.
Step 5: Update the values of s, a, c, f , e and w.
Step 6: Calculate S, A, C, F and E according to Equations (19)–(23).
Step 7: Update the neighboring radius.
Step 8: If the dragonfly has at least one neighbor, the step vector and the position vector of the dragonfly will
be calculated according to Equations (24) and (25). If not, the position vector will be updated by Equation (26).
Step 9: Adjust the new position based on boundaries of the parameters.
Step 10: If the maximum iteration times is reached, go to the Step 11. Otherwise, loop to Step 3.
Step 11: Output the final SVM classifier with optimal parameters.

The schematic diagram in Figure 1 shows the whole process of the DA-CKSVM algorithm. As
can be seen from the diagram, DA-CKSVM algorithm first initializes the relevant parameters. After
that, the DA-CKSVM algorithm uses the normalized data set to train and test the SVM classifier with a
combined kernel function by means of cross-validation. In the optimization process, the DA algorithm
is employed to search for the best solution of the parameters set (C, gamma, d, λ). When the maximum
number of iterations is reached, the algorithm is terminated and the final SVM classifier with the
optimal parameters is achieved.
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6.2. Fitness Function

The fitness function is applied to evaluate the performance of the parameter searching. The fitness
function in this paper is defined as the classification error rate on test sets, as shown in Equation (29):

Fitness(It
i ) = 100−

1
K

K∑
k=1

1
N

N∑
j=1

δ
(
c
(
x j

)
, y j

)
(29)

The performance of the individual at the iteration t is evaluated by above equation. K and N
denote the number of folds of cross-validation and the number of samples in the test set, respectively.
c
(
x j

)
represents the classification result of the j-th sample in the test set, y j indicates the label of each

sample, and δ shows the relationship between c
(
x j

)
and y j, as shown in the following formula:

δ
(
c
(
x j

)
, y j

)
=

 1 i f c
(
x j

)
= y j

0 otherwise
(30)

7. Experimental Results and Discussion

7.1. Data Sets and Experimental Platform

In order to validate the proposed DA-CKSVM algorithm’s performance in cancer classification,
experiments were carried out on six cancer data sets from University of California, Irvine (UCI) machine
learning repository and two cancer data sets from Cancer Program Legacy Publication Resources.
Breast Cancer Coimbra (BCC), Haberman’s Survival (HS), Hepatocellular Carcinoma (HCC), Thoracic
Surgery (TS), Breast Cancer Wisconsin Diagnostic (BCWD), and Breast Cancer Wisconsin Prognostic
(BCWP) are from UCI machine learning repository; Diffuse Large B-cell Lymphoma (DLBCL_D) and
Breast_A (B_A) come from Cancer Program Legacy Publication Resources. Table 1 lists the descriptions
of all data sets.

Table 1. Data sets descriptions.

Data Sets Instances Features Classes

Breast Cancer Coimbra (BCC) 116 10 2
Haberman’s Survival (HS) 306 3 2
Hepatocellular Carcinoma (HCC) 165 49 2
Thoracic Surgery (TS) 470 17 2
Breast Cancer Wisconsin Diagnostic (BCWD) 569 30 2
Breast Cancer Wisconsin Prognostic (BCWP) 198 33 2
Diffuse Large B-cell Lymphoma (DLBCL_D) 129 3795 4
Breast_A (B_A) 98 1213 3

All the experiments in this paper were implemented on Matlab 2014(a) and SVM classifier was
trained with a library for support vector machines (LIBSVM) [40]. The details of the experimental
platform are given in Table 2.
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Table 2. Experimental Platform.

NAME Detailed Settings

Hardware

Central Processing Unit (CPU) Advanced Micro Devices (AMD)
Ryzen 7 2700X

Frequency 3.70GHz
Random Access Memory (RAM) 16G

Hard Drive 250G

Software

Operating System Windows 10
Programming Language MATLAB R2014a

Tool for support vector machine (SVM) LIBSVM

7.2. Data Preprocessing

Given that the characteristics in larger numerical ranges may dominate those in smaller numerical
ranges [27], each feature is normalized and scaled in the range of [0, 1] in this paper:

f ′ =
f −min

max−min
(31)

where f is the original value, f ′ is the scaled value, “min” represents the minimum value of the
characteristic, “max” represents the maximum value of the characteristic.

7.3. Cross-Validation

All experiments used a k-fold cross-validation in which the original data set was randomly divided
into k subsets of (approximately) equal size. Each time, k-1 subsets were selected as the training set and
the remaining subset was used as the test set. This process was repeated k times. Finally, the average
of the classification accuracy on the testing set was used as the evaluation value. In this paper, k was
set to 10.

7.4. Experimental Results

To validate the performance of the proposed DA-CKSVM algorithm, experiments in this section
were carried out to compare the DA-CKSVM algorithm with dragonfly algorithm-SVM (DA-SVM) [14],
particle swarm optimization-SVM (PSO-SVM) [15], bat algorithm-SVM (BA-SVM) [16], and genetic
algorithm-SVM (GA-SVM) [19]. According to the literature, all the algorithms for comparison employed
a single RBF kernel to implement SVM classifier. Table 3 shows the initial parameters of each algorithm.
The parameters of the proposed algorithm were consistent with those of DA algorithm. The iteration
times and the population size in all algorithms were respectively set to 300 and 30 to obtain fair and
reliable experiment results. Furthermore, 10 experiment trials were carried out in each algorithm
to evaluate the final results by average classification accuracy and standard deviation, which may
minimize the influence of randomness.
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Table 3. Initial parameters of algorithms.

Algorithm Parameter Value

Dragonfly algorithm (DA) Number of dragonflies 30
Generations 300

Particle swarm optimization (PSO)

c1 2
c2 2

Inertia w 1
Number of particles 30

Generations 300

Bat algorithm (BA)

Minimum frequency 0
Maximum frequency 2

Loudness 0.5
Pulse rate 0.5

Number of bats 30
Generations 300

Genetic algorithm (GA)

Crossover ratio 0.6
Mutation ratio 0.1

Selection mechanism Roulette wheel
Population size 30

Generations 300

Table 4 lists each algorithm’s final classification accuracy over 10 trials in the form of average ±
standard deviation. It is shown in Table 4 that in comparison with the PSO-SVM algorithm and GA-SVM
algorithm, the DA-CKSVM algorithm achieves the highest classification accuracy on all datasets. The
DA-CKSVM algorithm outperforms the BA-SVM algorithm and obtains the best performance on seven
data sets out of eight data sets. The DA-CKSVM algorithm achieves better accuracy than the DA-SVM
algorithm on six data sets out of eight data sets. The best accuracy over 10 trials for each algorithm is
shown in Table 5. As shown, the DA-CKSVM algorithm achieves the best result on seven data sets out
of eight data sets. Tables 4 and 5 reveal that better overall classification accuracy on cancer data sets
can be obtained by means of constructing a combined kernel function for SVM classifier and searching
for optimal kernel parameters.

Table 4. Classification accuracy and standard deviation for all data sets.

Data Set
Average Classification Accuracy and Standard Deviation (%)

DA-CKSVM DA-SVM PSO-SVM BA-SVM GA-SVM

BCC 84.00 ± 1.21 82.80 ± 0.00 82.81 ± 0.02 80.47 ± 3.44 75.67 ± 2.94
HS 77.94 ± 0.56 76.95 ± 0.28 75.05 ± 2.76 76.78 ± 1.01 73.70 ± 2.91

HCC 75.88 ± 1.15 77.43 ± 0.00 75.26 ± 5.07 76.47 ± 3.02 67.82 ± 6.59
TS 85.19 ± 0.15 85.11 ± 0.00 82.04 ± 0.11 85.11 ± 0.00 81.83 ± 0.11

BCWD 98.07 ± 0.00 98.30 ± 0.08 97.89 ± 0.18 96.71 ± 0.78 97.15 ± 0.07
BCWP 82.06 ± 0.71 81.39 ± 0.16 81.34 ± 0.00 78.13 ± 0.87 77.46 ± 0.35

DLBCL_D 80.53 ± 0.03 75.77 ± 0.00 75.77 ± 0.00 75.77 ± 0.00 40.01 ± 6.10
B_A 95.00 ± 0.00 92.00 ± 0.00 92.00 ± 0.00 92.00 ± 0.00 56.61 ± 11.91

The bold values with underline represent that the corresponding algorithm obtains the highest results.

One noteworthy problem can be found by analyzing Tables 4 and 5. The DA-CKSVM algorithm
shows excellent performance on most cancer datasets. But for two datasets, namely HCC and BCWD,
the DA-CKSVM algorithm has no advantage over the comparison algorithms. In particular, Table 5
indicates the best result in the DA-CKSVM algorithm on dataset HCC equals to that in the comparison
algorithms, but the DA-CKSVM algorithm does not perform better than others when comparing the
average results over 10 trials. This implies that though the complementary characteristics of two
different kernels in the combined kernel function may improve the SVM classifier’s classification ability
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on most of data sets, for certain data sets, the best result can be obtained only when optimizing the
SVM classifier with a single RBF kernel. Even if the optimal weight coefficient λ is very close to 1,
the existence of the polynomial kernel in the combined kernel function may reduce the classification
accuracy slightly in several trials.

Table 5. The highest result of each algorithm.

Data Set
The Best Results (%)

DA-CKSVM DA-SVM PSO-SVM BA-SVM GA-SVM

BCC 86.21 82.80 82.88 82.88 81.97
HS 78.77 77.47 77.16 77.47 76.83

HCC 77.43 77.43 77.43 77.43 77.43
TS 85.53 85.11 82.13 85.11 81.91

BCWD 98.07 98.42 98.24 97.19 97.18
BCWP 83.37 81.84 81.34 79.39 77.82

DLBCL_D 80.58 75.77 75.77 75.77 57.37
B_A 95.00 92.00 92.00 92.00 89.89

The bold values with underline represent that the corresponding algorithm obtains the highest results.

Figure 2a–h shows the fitness curves for each algorithm. The curves are drawn from the average
fitness values over 10 trials.
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Figure 2a displays the fitness values of the BCC data set. As shown, the DA-CKSVM algorithm
achieves the best result and the result of the GA-SVM algorithm was the worst.

Figure 2b shows the optimization process of the HS data set, where the DA-CKSVM algorithm
achieves the best result and the similar result is obtained by the DA-SVM algorithm and the BA-SVM
algorithm. As can be seen from the figure, the DA-CKSVM algorithm gains advantages in early
iterations and further improved classification accuracy in the subsequent optimization process.

The fitness curves of HCC are displayed in Figure 2c. The DA-SVM algorithm is the best of all the
algorithms, followed by the BA-SVM algorithm, and the DA-CKSVM algorithm achieves the third
best result.

Figure 2d illustrates the fitness value of TS. In this data set, the DA-CKSVM algorithm gains the
best result. The DA-SVM algorithm and the BA-SVM algorithm have the same result.

Figure 2e shows the fitness curves of BCWD. As can be seen, the DA-SVM algorithm obtains the
best accuracy for this data set and the DA-CKSVM algorithm ranks the second.

Figure 2f represents the fitness values of BCWP. The DA-CKSVM algorithm gains advantages in
earlier iterations and performs the best in the end. The result of the DA-SVM algorithm is similar to
the PSO-SVM algorithm.

Figure 2g demonstrates the fitness values of DLBCL_D. The DA-CKSVM algorithm gets the best
fitness values, while other algorithms except GA-SVM obtain the same result.

Figure 2h represents the fitness values of B_A. The conclusion is consistent with that in Figure 2g.
The Wilcoxon rank sum test with 5% significance level was applied on the average accuracy

results to further evaluate the overall performance of the DA-CKSVM algorithm and comparison
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algorithms. The Wilcoxon rank sum test is a nonparametric statistical test to demonstrate that one
algorithm is significantly different from others. Table 6 lists the Wilcoxon test p-values between the
DA-CKSVM algorithm and the comparison methods. A p-value lower than 0.05 indicates a statistically
significant difference between the DA-CKSVM algorithm and other methods. A p-value higher than
0.05 (underlined) indicates no significant difference compared with comparison methods. In Table 6,
only in three cases: DA-CKSVM vs. DA-SVM on TS, DA-CKSVM vs. PSO-SVM on HCC, and
DA-CKSVM vs. BA-SVM on TS, were the p-values larger than the predicted statistical significance
level of 0.05, while the other p-values were smaller than the significance level of 0.05. Such conclusions
can be drawn from the fact that the results of the DA-CKSVM algorithm are statistically significant
with those of other methods on all eight data sets.

Table 6. The DA-CKSVM algorithm vs. four comparison algorithms in terms of p-values of the
Wilcoxon rank sum test over eight cancer data sets (p ≥ 0.05 are underlined).

BCC HS HCC TS BCWD BCWP DLBCL_D B_A

DA-CKSVM vs. DA-SVM <0.05 <0.05 <0.05 0.08 <0.05 <0.05 <0.05 <0.05
DA-CKSVM vs. PSO-SVM <0.05 <0.05 0.15 <0.05 <0.05 <0.05 <0.05 <0.05
DA-CKSVM vs. BA-SVM <0.05 <0.05 <0.05 0.08 <0.05 <0.05 <0.05 <0.05
DA-CKSVM vs. GA-SVM <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05

In summary, compared with the SVM classifiers using a single RBF kernel function, the proposed
DA-CKSVM algorithm with a combined kernel function has a better classification ability in cancer
diagnosis. Given the complementarity between RBF kernel and the polynomial kernel in the combined
kernel function, DA-CKSVM is able to map input data into high-dimensional efficiently. Moreover,
DA-CKSVM can effectively optimize the parameters of SVM along with the weight coefficient in the
combined kernel function. Due to the excellent searching performance of the dragonfly algorithm, the
local optima problem can be avoided when solving a wider range of classification problems.

8. Conclusions and Future Work

The methods to select or construct an appropriate kernel function and tune its parameters for
SVM classifier have received considerable critical attention in cancer diagnosis. A novel classification
algorithm, DA-CKSVM, based on SVM with a combined kernel function, was proposed in this paper.
The combined kernel function in DA-CKSVM was constructed with an RBF kernel function and a
polynomial kernel function. Parameters of the combined kernel SVM classifier were optimized by
DA. The performance of the proposed DA-CKSVM in cancer classification was compared with four
algorithms from the literature, which were the DA-SVM algorithm, PSO-SVM algorithm, BA-SVM
algorithm, and GA-SVM algorithm. The experimental results showed that due to its excellent learning
ability and generalization ability, the DA-CKSVM algorithm has better classification accuracy than
these algorithms with a single kernel function. This reflects the good practical value of the proposed
algorithm in the field of cancer classification.

Future research needs to be carried out in several directions. First, it should be noted that, like in
the comparison literature, the SVM classifier in this paper was not trained with independent test sets,
which may lead to over-fitting. An independent test set will be applied to evaluate the trained model
in the future. Second, DA-CKSVM did not perform better than comparison methods on two data sets,
which reveals the limitation of the proposed DA-CKSVM algorithm. In some cases, the existence of a
polynomial kernel in a combined kernel function may slightly reduce the classification accuracy even
if the polynomial kernel plays a minor role in the combined kernel function. In future, a mechanism
should be established to evaluate the advantages of a single kernel function and a combined kernel
function during the process of parameter optimization and remove the ineffective kernel if necessary.
In this way, the classification ability of the proposed algorithm can be further improved. Third, the
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proposed algorithm should be extended to more applications of medical diagnostic classification to
explore its potential.
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