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Abstract: Replacing petro-based materials with renewably sourced ones has clearly been applied
to polymers, such as those derived from itaconic acid (IA) and its derivatives. Di-n-butyl itaconate
(DBI) was (co)polymerized via nitroxide mediated polymerization (NMP) to impart elastomeric
(rubber) properties. Homopolymerization of DBI by NMP was not possible, due to a stable adduct
being formed. However, DBI/styrene (S) copolymerization by NMP at various initial molar feed
compositions fDBI,0 was polymerizable at different reaction temperatures (70–110 ◦C) in 1,4 dioxane
solution. DBI/S copolymerizations largely obeyed first order kinetics for initial DBI compositions
of 10% to 80%. Number-average molecular weight (Mn) versus conversion for various DBI/S
copolymerizations however showed significant deviations from the theoretical Mn as a result of chain
transfer reactions (that are more likely to occur at high temperatures) and/or the poor reactivity of
DBI via an NMP mechanism. In order to suppress possible intramolecular chain transfer reactions,
the copolymerization was performed at 70 ◦C and for a longer time (72 h) with fDBI,0 = 50%–80%,
and some slight improvements regarding the dispersity (Ð = 1.3–1.5), chain activity and conversion
(~50%) were observed for the less DBI-rich compositions. The statistical copolymers produced showed
a depression in Tg relative to poly(styrene) homopolymer, indicating the effect of DBI incorporation.

Keywords: nitroxide mediated polymerization; itaconate esters; copolymerization

1. Introduction

The limited supply of fossil resources has forced the exploration of renewable feedstocks as an
alternative route to materials such as polymers [1]. One such feedstock for polymers is itaconic acid
(IA), which was first isolated from the pyrolysis of citric acid [2,3] and is now made by fermentation
from fungi [3,4]. IA has been used historically in coatings, adhesives, binders and thickeners [1,5–8].
Itaconic acid’s high availability, low cost, structural similarity with acrylates and methacrylates, and its
dicarboxylic acid functionality have motivated research on the development of polymeric materials
from IA and derivatives like dialkyl itaconates or β monoalkyl itaconates [9,10]. Itaconic acid is indeed
listed as one of the most promising bio-based feedstocks according to a report from the Biomass
Program of the US Department of Energy [9]. The dual functionality of IA is particularly appealing as it
makes it possible to polymerize it via free radical mechanisms (Marvel and Shepherd first described it in
1959 [11]), step-wise polymerization mechanisms (such as using ring-opening step-wise polymerization
of itaconic anhydride [12–14]), ring-opening metathesis polymerizations (ROMP) [15,16] and acyclic
diene metathesis (ADMET) [17].

To impart a wider array of properties, itaconic acid derivatives such as poly(dialkyl itaconate)s
have provided flexibility in blends or in statistical or block copolymers. For example, di-n-butyl
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itaconate (DBI) can impart lower glass transition temperatures in copolymers and consequently
similar related dialkyl itaconates have been polymerized via conventional free radical polymerization
(FRP) [2,11,18–31] and more recently via reversible de-activation radical polymerization (RDRP),
also known as controlled radical polymerization (CRP), specifically reversible addition fragmentation
chain transfer polymerization (RAFT) [32,33] and atom transfer radical polymerization (ATRP) [34,35].
In one case, NMP has been reported using TEMPO-based initiators but no molecular weight
distributions were provided, ascribed to the styrene/DBI copolymers adsorbing onto the gel permeation
chromatography (GPC) columns [36]. Itaconate esters with stiffer substituents like itaconic anhydride
have been similarly polymerized by conventional radical polymerization [37–39] and controlled radical
polymerizations like RAFT [40] and would be expected to behave similarly to copolymerizations of
styrene with maleic anhydride to provide alternating monomer sequences in the chain.

In this report, we present the nitroxide-mediated polymerization (NMP) of DBI/S using
the BlocBuilder family of unimolecular initiators to obtain statistical copolymers with enhanced
elastomeric properties. These initiators improved upon TEMPO-based initiators in permitting
the homopolymerization of acrylates, acrylamides and methacrylates (with a small concentration of
controlling co-monomer ~ 1mol%–10 mol%), which was not possible with first-generation nitroxides [41].
NMP has often been overlooked compared to RAFT and ATRP as an RDRP process, as witnessed by
the case with the itaconate esters. Unlike the RAFT and ATRP systems, very little post-polymerization
work-up is required without removal of transition metal ligands or odorous chain transfer agents [41],
although these issues have been enormously reduced recently [42–44]. The advantages associated
with NMP thus make it worthwhile to evaluate its ability to polymerize itaconate-based monomers,
which should be challenging due to the secondary vinylic bond in its structure. Thus, our goal here
is to apply NMP to obtain (co)polymers with active chain ends and controllable molecular weight
(Scheme 1). We thus studied the polymerizations as a function of temperature, initial compositions
and effect of solvent.
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Scheme 1. Reaction scheme to copolymerize DBI with S via NMP using NHS-BlocBuilder as initiator.

2. Materials and Methods

2.1. Materials

N-(2-Methylpropyl)-N-(1-diethylphosphono-2,2-dimethylpropyl)-O-(2-carboxylprop-2-yl)
hydroxylamine (99%, BlocBuilder-MATM) was received from Arkema. N,N’-Dicyclohexylcarbodimide
(DCC, 99%) was received from Sigma-Aldrich and used in conjunction with BlocBuilder-MATM to
synthesize the succinimidyl ester terminated alkoxyamine NHS-BlocBuilder following a procedure
previously reported [45]. Tetrahydrofuran (THF, 99.9% HPLC grade), dioxane (99%), methanol (99%)
and 1,4-dioxane (99%), were purchased from Fisher Scientific. Styrene (99%, S) was purified to remove
the inhibitor by passing through a column of basic alumina mixed with 5 weight% calcium hydride
and then stored in a sealed flask under a head of nitrogen in a refrigerator until needed. Di-n-butyl
itaconate (96%, DBI), dimethyl itaconate (96%, DMI), isobutyramide (99%), calcium hydride (90–95%
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reagent) and basic alumina (Brockmann, Type 1, 150 mesh) were purchased from Sigma-Aldrich and
used as received. Chloroform-D (99.8%) was obtained from Cambridge Isotope Laboratories.

2.2. DBI/S Copolymerization

The copolymerizations were performed in a 15 mL three-neck round bottom glass flask equipped
with a vertical flux condenser, a thermal well and a magnetic Teflon stir bar. The flask was placed on a
heating mantle and the equipment was placed on a magnetic stirrer. The condenser was connected
to a chilling unit that used a glycol/water mixture (10/90 v/v %) to prevent loss of the monomers and
solvent due to evaporation. To the reactor is added the initiator (NHS-BlocBuilder, 0.10 g), 50 wt%
solvent (1,4-dioxane), and varying compositions of DBI and S. Once stirring started and the chiller is
set to 4 ◦C, an ultra-pure nitrogen flow was introduced to purge the system for 30 min. An example is
used for DBI/S-110-20. In this case, 0.10 g (2.09 × 10−4 mol) of NHS-BlocBuilder was added to 1.59 g
DBI (0.066 mol) and 2.73 g (0.0262 mol) of previously purified S along with 5.11 mL of dioxane solvent.
A thermocouple was inserted into the temperature well and connected to a controller. The reactor
was then heated to the chosen reaction temperature while maintaining the nitrogen purge and stirring
with a magnetic stir bar. Table 1 shows the different formulations that were studied. Samples were
taken periodically, and once the last sample was taken, 50 mL of methanol was added to the remaining
solution to precipitate the polymer. The precipitated polymer was dried overnight in a vacuum oven
at 45 ◦C to remove any remaining solvents or unreacted volatile monomers (styrene). The composition
of the copolymer was determined by 1H NMR using the methyl end groups of DBI and the aromatic
styrene protons (ppm, CDCl3): (t, 0.8–1.05, CH3-CH2-CH2-), (m, 1.2–1.6, backbone and CH3-CH2-CH2-,
CH3-CH2-CH2-), (s, 2.7, ≡C-CH2-COO-), (m, 4.2, COO-CH2-CH2-CH2-CH3), (ar, 6.4–7.7, -C6H5).
The molecular weight according to GPC for the specific example was Mn = 12.3 kg·mol−1, Đ = 1.37,
relative to PS standards in THF at 40 ◦C.

Table 1. Formulations for dibutyl itaconate/styrene (DBI/S) statistical copolymerizations initiated by
NHS-BlocBuilder (NHS-BB) at 70–110 ◦C in 50 wt% 1,4-dioxane solutions.

Sample ID a fDBI,0
a T (◦C) [DBI] (M) [S] (M) [NHS-BB] (M) [Dioxane] (M)

DBI/S-110-10 0.10 110 0.41 3.62 0.026 5.54
DBI/S-110-20 0.20 110 0.73 2.91 0.023 5.58
DBI/S-110-30 0.29 110 0.99 2.33 0.021 5.61
DBI/S-110-40 0.40 110 1.22 1.83 0.019 5.64
DBI/S-110-50 0.51 110 1.41 1.41 0.018 5.66
DBI/S-110-60 0.60 110 1.58 1.05 0.017 5.68
DBI/S-110-70 0.71 110 1.72 0.73 0.016 5.69
DBI/S-110-80 0.80 110 1.84 0.46 0.015 5.71
DB1/S-100-50 0.50 100 1.41 1.41 0.018 5.66
DBI/S-80-50 0.50 80 1.41 1.41 0.018 5.66
DBI/S-70-50 0.50 70 1.41 1.41 0.018 5.66
DBI/S-70-60 0.60 70 1.58 1.05 0.017 5.68
DBI/S-70-70 0.70 70 1.72 0.73 0.016 5.69
DBI/S-70-80 0.80 70 1.84 0.46 0.015 5.71
DBI/S-70-90 0.90 70 1.96 0.22 0.014 5.72

a Sample ID is defined as: DBI/S-XXX-YY = dibutyl itaconate (DBI)/styrene (S) statistical copolymerization at XXX =
temperature (◦C) and YY = % molar composition of DBI in initial mixture with molar fraction given as fDBI,0.

2.3. Chain Extension Experiments

To determine chain end fidelity, chain extension experiments were performed using two
macroinitiators, one rich in DBI (DBI/S-110-80; Mn = 2.60 kg mol−1, Đ = 1.36) and the other rich in
S (DBI/S-110-20, Mn = 12.3 kg mol−1, Đ = 1.37). For DBI/S-110-20 as the macroinitiator, typically
1.00 g of macroinitiator was placed inside the reactor with 6.00 g of 1,4 dioxane solvent and 5.00 g
of styrene monomer previously purified and mixing started with a magnetic stir bar. The identical
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reactors conditions were applied as for the copolymerizations described in Section 2.2. After purging
with nitrogen at room temperature for 30 min, the temperature was increased to 110 ◦C to commence
the chain extension. The nitrogen purge remained during the rest of the reaction. Samples were
periodically taken to assess the molecular weight distribution. At the conclusion of the polymerization
after cooling to < 40 ◦C, the contents were precipitated into 50 mL of methanol. The precipitated
polymer was dried overnight in a vacuum oven at 45 ◦C to remove any remaining solvents or unreacted
volatile monomers (styrene). For DBI/S-110-20 product (DBI-S-110-20-b-S) the Mn = 22 100 kg mol−1,
Đ = 1.61. A similar procedure was followed using DBI/S-110-80 as the macroinitiator.

2.4. Characterization

Gel permeation chromatography (GPC) was used to obtain molecular weight distributions
(MWDs) of the different copolymer samples using HPLC grade THF as the mobile phase. The GPC was
calibrated relative to linear PS standards with THF as the eluent at 40 ◦C. A Waters Breeze GPC system
was used at a mobile phase flow rate of 0.3 mL·min−1 equipped with three Styragel HR columns (HR1
with a molecular weight measurement range of 102 to 5 × 103 g mol−1, HR2 with a molecular weight
measurement range of 5 × 102 to 2 × 104 g mol−1 and HR4 with a molecular weight measurement
range of 5 × 103 to 6 × 105 g mol−1) and a guard column. The GPC was equipped with an RI 2410
differential refractive index (RI) detector. For these experiments, the RI detector was used. DBI/S
conversion and copolymer composition were determined by 1H NMR in CDCl3. A 300 MHz Varian
Gemini 2000 spectrometer was used for the 1H NMR measurements. Samples were placed in 5 mm
up NMR tubes using CDCl3 as a solvent. After injecting and shimming, the samples were scanned
32 times. Individual conversions were calculated using the integrated areas at δ = 6.4–7.7 ppm for the
aromatic protons of styrene and δ = 0.8–1.05 ppm for DBI and taking the reference peaks at 5.3 and
6.1 ppm for the vinyl protons of styrene and DBI, respectively. Once the individual conversion of each
monomer was determined, the overall molar conversion was calculated by the following equation:
Xoverall = XS fS,0 + XDBI fDBI,0, where fS,0 and fDBI,0 are the initial molar fractions of the monomers
and Xs and XDBI are the individual monomer conversions determined from 1H NMR measurements.
Differential scanning calorimetry (DSC) was used to determine the glass transition temperature (Tg) of
the various copolymers. A cycle of heat/cool/heat with a heating rate of 10 ◦C min−1 was performed on
the samples and Tg was determined by observing the change in slope in the heat flow (W g−1) versus
temperature plot and finding the inflection point using TA Universal Analysis software.

3. Results and Discussion

We first attempted to determine the best conditions for the controlled polymerization of dialkyl
itaconates, which is defined here as linear progression of degree of polymerization with monomer
conversion, dispersity Ð (Mw/Mn) < 1.5 and ability to reinitiate a second batch of monomer. Initially,
the homopolymerization of DBI via NMP at different temperatures was examined. Interestingly,
although DBI was homopolymerized via conventional radical processes and RDRP processes such as
RAFT [32,33] and the related dimethyl itaconate (DMI) by ATRP [34], DBI did not homopolymerize via
NMP with no conversion after several hours at elevated temperatures of ~110 ◦C. We also examined
the homopolymerization of dimethyl itaconate (DMI) under the same conditions and again observed
no conversion after several hours. We suspected this was due to a stable adduct formed by reaction of
the alkoxyamine (NHS-BlocBuilder) and one unit of DBI (see Figure 1). The nature of the C-O-N bond
between the alkoxyamine and the monomer is very stable since it is centered on a quaternary carbon,
and therefore has a high activation energy barrier to produce the propagating radicals required for
subsequent polymerization. During the initiation stage of NMP, when the alkoxyamine is activated for
the first time, the initiating radical is produced and reacts with the one monomer unit prior to being
deactivated by the nitroxide moiety, rendering the adduct.
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Figure 1. Possible adduct formed during the homopolymerization of dibutyl itaconate (DBI) via NMP
with NHS-BlocBuilder.

From other radical polymerizations, the stability of this particular radical is reflected in the much
lower kp of dialkyl itaconates compared to styrenic and (meth) acrylic monomers. For example,
PLP-SEC measurements revealed the kp of DBI~40 L mol−1 s−1 at 110 ◦C by extrapolation [46], which is
much lower, by comparison to styrene, which has a kp~1580 L mol−1 s−1 at the same temperature [47].
The application of group transfer polymerization (GTP) to dialkyl itaconates revealed only the ability
to cap a chain end but no further addition of more monomer units was observed [48,49]. Further, chain
transfer to monomer is prevalent in systems with sterically hindered monomers like DBI and were
argued to be related to the very low kp of dialkyl itaconates [50]. In ATRP systems, for DMI with copper
halides teamed with various ligands such as methyl 2-bromopropionate (MBrP), p-toluene 2-sulfonyl
chloride, pentamethyl diethylenetriamine (PMDETA) and 2,2’bipyridine (bpy) at temperatures of 100 ◦C
and 120 ◦C, were controlled up to about 50% conversion, with an abrupt decrease in polymerization
rates at that juncture [34]. These variations did not enhance polymerization rate or control of the
polymerization. Later, Hirano et al. employed ATRP of DBI at 60 ◦C; higher temperatures resulted in
intramolecular chain transfer [25]. This same group continued to try to increase the rate of reaction by
using hydrogen bonding and Lewis acids [26,27]. In RAFT systems, a variety of CTAs were applied,
and poly(DBI) could be homopolymerized in a controlled fashion at low temperatures of ~20 ◦C,
which likely suppressed many transfer reactions, although rate of polymerization was compromised
(e.g., 150 h to obtain 50% conversion) and generally fairly low molecular weights resulted [33]. Thus,
our experiments generally matched that observed previously, but NMP of dialkyl itaconates did not
result in polymer with appreciable molecular weight, compared to ATRP and RAFT processes. We thus
turned our attention to binary copolymerization systems with a monomer that is easily polymerizable
by NMP: styrene.

We performed copolymerizations of DBI with S (fDBI,0 = 0.1 to 0.8) at 110 ◦C, as NMP of
styrenic-based monomers is well controlled and relatively fast at such temperatures [51]. We attempted
to see if the polymerization kinetics we observed would approach those predicted for NMP of model
copolymerizations. Semi-logarithmic kinetic plots of the different copolymerizations (ln(1/(1 − X))
versus time) were used to extract the apparent rate constant,

〈
kp

〉
[P·] from the slope, where

〈
kp

〉
is the

compositionally averaged propagation rate constant and [P·] is the concentration of the active chains.
Such a plot would be expected to be linear.

ln
( 1

1−X

)
= kp[P·]t (1)

We would expect the propagation rate to vary as a function of the copolymerization feed.
The propagation rate constant that we are measuring is actually an average rate constant that is
dependent on the individual propagation rate constants and the reactivity ratios as exemplified for
a terminal kinetic model (since reactivity ratio data was available for the DBI/S pair) in Equation (2)
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where r1 and r2 are the reactivity ratios of monomers 1 and 2, f1 and f2 are the respective molar fractions
of the monomer mixture and k11 and k22 refer to the individual homopropagation rate constants [52].

〈kp〉 =
r1 f 2

1 + 2 f1 f2 + r2 f 2
2

r1 f1
k11

+
r2 f2
k22

(2)

The steady-state concentration of radical ended chains, is provided by Fischer’s expression [53]:

[P·] =
(
〈K〉[I]0
3〈kt〉

)1/3

t−1/3 (3)

where 〈K〉 is the average equilibrium constant, [I]0 is the initiator concentration, 〈kt〉 is the average
termination rate constant and time is given by t. Further, 〈K〉 assuming a terminal model, was provided
by Charleux and co-workers in Equation (4) [54].

〈K〉 =

r1 f1
k11

+
r2 f2
k22

r1 f1
k11K1

+
r2 f2

k22K2

(4)

Here, the individual reactivity ratios, monomer molar fractions and individual homopropagation
rate constants are defined as above while K1 and K2 are the individual equilibrium constants. The
termination rate constant is provided by the following [55]:

〈kt〉 =
(
p1k1/2

t,1 + p2k1/2
t,2

)2
, (5)

where:

p1 =

r1 f1
k11

r1 f1
k11

+
r2 f2
k22

and p2 = 1− p1 (6)

For the terminal model, all of the parameters are available, with the exception of the K for DBI,
to predict the apparent rate constant

〈
kp

〉
[P·], which can be compared to our experimental values. Thus,

reactivity ratios are used from DBI/S conventional radical copolymerizations at 60 ◦C in benzene (rDBI

= 0.38 ± 0.02 and rS = 0.40 ± 0.05; [19] while the propagation rate constants at 110 ◦C for DBI and S
being kp,DBI = 40 L·mol−1

·s−1 [46] and kp,S = 1580 L·mol−1
·s−1 [47], respectively. The KS is estimated to

be 1.1 × 10−9 s−1 at 110 ◦C [51,56] while individual termination rate constants at 110 ◦C are estimated
to be kt,DBI = 1.4 × 106 L·mol−1

·s−1 [57] and kt,S = 1.5 × 108 L·mol−1
·s−1 [58]. As fDBI,0 is increased,

the experimental
〈
kp

〉
[P·] did not vary much. Iterating on KDBI to try to fit the data only resulted in good

agreement between the experimental and predicted relationship at high fDBI,0 (Figure 2). There are
several possible explanations for the disagreement. First, there could indeed be a strong penultimate
effect as was suggested by Yee et al. [59]. For DMI/S copolymerizations, the terminal model for the

〈
kp

〉
did not match the experimental data very well. We suspect that a similar effect was occurring in the
DBI/S system. Further, Yee et al. found that the terminal group was nearly always DMI up to very high
styrene content (~80 mol%) [59]. They found that this particular pair had a strong penultimate unit
effect on the copolymerization propagation rate constant and the measured average propagation rate
constant was about three times higher than that predicted by the terminal model. In RAFT and ATRP,
the same stability of the dialkyl itaconate was noted and further it was stated that the polymerization of
DBI or DMI was not a truly reversible deactivation polymerization process and was indeed a mixture
between conventional and controlled polymerization [60].
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One of the reasons for this behavior can be attributed to the high affinity of the itaconate monomer
to be involved in chain transfer reactions [18,25]. For a DBI conventional free radical polymerization,
the chain-transfer reaction occurs when the propagating radical abstracts a hydrogen atom from a
monomer unit, yielding an end-saturated polymer chain and a new monomeric radical [18]. Later,
Hirano and Takayoshi suggested that at temperatures higher than 60 ◦C, intramolecular chain-transfer
reactions are favored [25]. They argued that this happens due to the formation of a less stable
secondary radical from a more stable tertiary radical, which requires a higher activation energy than
the propagating reaction [25]. In an NMP process, intramolecular chain-transfer reactions might occur
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when the chains are active. Hirano and Takayoshi also suggested that chain-transfer reactions can be
suppressed by a reversible deactivation process such as ATRP [25]. However, in the NMP process,
the reactivation of the polymer chains depends on the homolysis capability of the C-O-N bond formed
between the alkoxyamine and the DBI monomer unit as previously discussed. Together with the
irreversible chain termination reactions that occur inevitably, the chain transfer/termination becomes
more prominent at higher DBI initial compositions. As illustrated in Figure 3b, when fDBI,0 > 0.5,
the Mn is almost constant at any conversion and as fDBI,0 the plateau Mn decreases (as these reactions
happen more frequently and earlier). These same trends are shown in the GPC chromatograms in
Figure 4. At fDBI,0 < 0.3, the molecular weight distributions shift steadily to higher molecular weight
while propagation is essentially stopped for fDBI,0 > 0.6 with only a few monomeric units added on as
the Mn listed in Table 2 (from GPC relative to PS standards) indicate.
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Table 2. Summary of dibutyl itaconate/styrene copolymerizations in 50 wt% dioxane solution at 110 ◦C.

Sample ID a fDBI,0 Time (min) X b FDBI
c Mn (kg mol−1) d Đ d

DBI/S-110-10 0.10 120 0.51 0.13 11.2 1.28
DBI/S-110-20 0.20 140 0.61 0.25 12.3 1.37
DBI/S-110-30 0.29 170 0.80 0.30 9.9 1.57
DBI/S-110-40 0.40 200 0.91 0.40 7.6 1.72
DBI/S-110-50 0.51 180 0.87 0.45 5.5 1.68
DBI/S-110-60 0.60 180 0.71 0.50 5.0 1.62
DBI/S-110-70 0.71 230 0.75 0.60 3.7 1.52
DBI/S-110-80 0.80 240 0.50 0.65 2.6 1.36

a Sample ID is defined as: DBI/S-XXX-YY = dibutyl itaconate (DBI)/styrene (S) statistical copolymerization at
XXX = temperature (◦C) and YY = % molar composition of DBI in initial mixture with molar fraction given as
fDBI,0. b X = overall molar conversion. c The final copolymer composition with respect to DBI is given as FDBI and
determined by 1H NMR. d Number average molecular weight Mn and dispersity Đ determined by GPC relative to
poly(styrene) standards in THF at 40 ◦C.

With the apparent loss of control with copolymerizations richer in DBI, we carried out a study of
copolymerizations of DBI/S (50/50 mol%) at lower temperatures of 100, 80 and 70 ◦C and compared the
results observed at the same composition at 110 ◦C in order to determine if lower temperature might
reduce the possible intramolecular chain transfer reactions. Figure 5 shows the Mn versus overall
conversion plots for the DBI/S copolymerizations (fDBI,0 = 0.5) done at 110, 100, 80 and 70 ◦C. Table 3
also summarizes the various properties for these equimolar copolymerizations. Indeed, temperature is
a factor that affects the overall conversion and it was therefore necessary to run reactions for longer
at lower temperatures. For example, conversion was close to 90% in only 180 min at 110 ◦C but at
70 ◦C, overall conversion was only 47% after three days. There seemed to be only slight improvement,
but the molecular weight did not plateau as early as with polymerizations done at higher temperatures.
This observation is supported by the GPC traces in Figure 6, which shows the polymerization at 70 ◦C
continually growing whereas at 110 ◦C, the polymerization was effectively stopped.
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Table 3. Summary of equimolar dibutyl itaconate/styrene copolymerizations in 50 wt% dioxane solution
at various temperatures.

Sample ID a fDBI,0 Time (min) X b Mn (kg mol−1) c Đ c

DBI/S-110-50 0.51 180 0.87 5.5 1.68
DBI/S-100-50 0.50 180 0.59 7.1 1.53
DBI/S-80-50 0.50 340 0.41 5.8 1.42
DBI/S-70-50 0.50 4320 0.47 8.0 1.42

a Sample ID is defined as: DBI/S-XXX-YY = dibutyl itaconate (DBI)/styrene (S) statistical copolymerization at XXX
= temperature (◦C) and YY = % molar composition of DBI in initial mixture with molar fraction given as fDBI,0.
b X = overall molar conversion. c Number average molecular weight Mn and dispersity Đ determined by GPC
relative to poly(styrene) standards in THF at 40 ◦C.
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Table S2 in the Supporting Information shows the individual conversion of DBI and S, Mn, Mw

and Ð for DBI-S copolymerizations (50–50 mol%) done at 110, 100, 80 and 70 ◦C. In every case,
the conversion of S was higher than DBI, meaning that the final composition of the copolymers is richer
in S than DBI. The GPC traces of the copolymerizations for DBI-S (50–50 mol%) done at 110, 100, 80
and 70 ◦C are shown in Figure 6. Although at 110 ◦C almost full conversion was achieved at relatively
shorter times, the GPC traces at this temperature (Figure 6a) showed little growth towards higher chain
lengths [41] and the same molecular weight distribution from the early stages of the reaction just became
broader during the course of the reaction. Although the conversion did increase linearly with time,
this might be due to the chain transfer and termination of chains with the formation of low molecular
weight chains. The GPC traces of the reactions at 100 ◦C and 80 ◦C moved towards higher molecular
weight only at the early stages of the reactions (low conversion) and low molecular weight tailing
was still observed, followed by no further increase in molecular weight after about 30% conversion.
At 70 ◦C, although the reaction took longer to reach 40% conversion ~ 2 days, it showed shifting
towards higher molecular weight and very little tailing. As noted earlier for the radical polymerization
of DBI, intramolecular chain transfer side reactions take place at high temperatures [25] which was
corroborated by our DBI/S copolymerizations at fDBI,0 = 0.50. We thus focused on copolymerizations at
the lower temperature of 70 ◦C for three days to see if the mixtures with higher DBI loadings led to
higher molecular weight polymers.
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As observed from Figure 5, with decreasing temperature, the Mn versus conversion slightly shifts
up toward the theoretical line which shows intramolecular chain transfer reactions can be mitigated to
some degree by decreasing temperature. The control of the polymerizations seems to be better at 70 ◦C.
At this temperature, as the compositions become richer in DBI, the Mn versus conversion plots do rise
but still become noticeably flatter with conversion (Table 4 summarizes the copolymerizations while
Figure 7 shows Mn versus conversion and individual conversions are listed in Table S3 of Supporting
Information). The GPC chromatograms for experiments with fDBI,0 = 0.60, 0.70 and 0.80 at 70 ◦C
show clear shifts towards higher molecular weights (Figure 8). Only in the case of fDBI,0 = 0.90 do the
GPC traces show no growth. Also, it is worth mentioning that the obtained molecular weight is still
much lower than the expected value. The main reason could be that the maximum temperature of the
reaction which is suggested by Hirano and Tayoshi is 60 ◦C, which was not tested in our experiment
due to the minimum temperature required for NHS-BlocBuilder dissociation (T ≥ 65 ◦C) [61]. Thus,
DBI/S copolymerizations can be pushed to higher initial DBI compositions > 50 mol%, provided
the polymerization temperature does not decrease < 65 ◦C. Another issue regarding the differences
between the actual and theoretical molecular weights is the difference in hydrodynamic volume from
GPC measurements. All of the GPC measurements here were measured relative to PS standard in
THF. For poly(DBI), no Mark-Houwink-Sakurada (MHS) parameters were available for THF but MHS
parameters for poly(DBI) in THF were reasonably approximated by those for poly(DBI) in toluene at
similar temperatures (K = 5.7 × 10−3 mL g−1, a = 0.70 at 25 ◦C) [62]. These MHS parameters are similar
to PS in THF at 25 ◦C (K = 14.1 × 10−3 mL g−1, a = 0.70 at 25 ◦C) [63]. The differences in hydrodynamic
volume would not be very significant between PS and poly (DBI) and would not be solely responsible
for the flattening of the Mn versus conversion plots for the copolymerizations performed.

Table 4. Summary of dibutyl itaconate/styrene copolymerizations in 50 wt% dioxane solution at 70 ◦C
at different initial compositions.

Sample ID a fDBI,0 Time (min) X b Mn (kg mol−1)
c Đ c

DBI/S-70-60 0.60 4320 0.56 6.9 1.63
DBI/S-70-70 0.70 4320 0.58 7.2 1.41
DBI/S-70-80 0.80 4320 0.66 5.9 1.33
DBI/S-70-90 0.90 4320 0.38 3.2 1.38

a Sample ID is defined as: DBI/S-XXX-YY = dibutyl itaconate (DBI)/styrene (S) statistical copolymerization at XXX =
temperature (◦C) and YY = % molar composition of DBI in initial mixture with molar fraction given as fDBI,0. b X =
overall molar conversion. c Number average molecular weight Mn and dispersity Đ determined by GPC relative to
poly(styrene) standards in THF at 40 ◦C.

Processes 2019, 7, 254 11 of 17 

 

70 °C. At this temperature, as the compositions become richer in DBI, the Mn versus conversion plots 
do rise but still become noticeably flatter with conversion (Table 4 summarizes the copolymerizations 
while Figure 7 shows Mn versus conversion and individual conversions are listed in Table S3 of 
Supporting Information). The GPC chromatograms for experiments with fDBI,0 = 0.60, 0.70 and 0.80 at 
70 °C show clear shifts towards higher molecular weights (Figure 8). Only in the case of fDBI,0 = 0.90 
do the GPC traces show no growth. Also, it is worth mentioning that the obtained molecular weight 
is still much lower than the expected value. The main reason could be that the maximum temperature 
of the reaction which is suggested by Hirano and Tayoshi is 60 °C, which was not tested in our 
experiment due to the minimum temperature required for NHS-BlocBuilder dissociation (T ≥ 65 °C) 
[61]. Thus, DBI/S copolymerizations can be pushed to higher initial DBI compositions > 50 mol%, 
provided the polymerization temperature does not decrease < 65 °C. Another issue regarding the 
differences between the actual and theoretical molecular weights is the difference in hydrodynamic 
volume from GPC measurements. All of the GPC measurements here were measured relative to PS 
standard in THF. For poly(DBI), no Mark-Houwink-Sakurada (MHS) parameters were available for 
THF but MHS parameters for poly(DBI) in THF were reasonably approximated by those for 
poly(DBI) in toluene at similar temperatures (K = 5.7 × 10−3 mL g−1, a = 0.70 at 25 °C) [62]. These MHS 
parameters are similar to PS in THF at 25 °C (K = 14.1 × 10−3 mL g−1, a = 0.70 at 25 °C) [63]. The 
differences in hydrodynamic volume would not be very significant between PS and poly (DBI) and 
would not be solely responsible for the flattening of the Mn versus conversion plots for the 
copolymerizations performed. 

It should be stated that we attempted further DBI copolymerizations with methyl methacrylate 
(MMA) using NHS-BlocBuilder with little avail at temperatures between 90 and 110 °C. It is likely 
that the nitroxide adduct with DBI is too stable even when using a monomer like MMA that has a 
higher kp compared to S at similar temperatures. 

 
Figure 7. Number average molecular weight Mn versus overall conversion (X) for DBI/S 
copolymerization with initial DBI feed compositions fDBI,0 = 0.60–0.90 done at 70 °C: fDBI,0 = 0.6 (filled 
circles, ); fDBI,0 = 0.7 (open circles, ); fDBI,0 = 0.8 (filled squares, ), fDBI,0 = 0.9 (open squares, ). 

Figure 7. Number average molecular weight Mn versus overall conversion (X) for DBI/S copolymerization
with initial DBI feed compositions fDBI,0 = 0.60–0.90 done at 70 ◦C: fDBI,0 = 0.6 (filled circles,�); fDBI,0 = 0.7
(open circles, #); fDBI,0 = 0.8 (filled squares, �), fDBI,0 = 0.9 (open squares, �).
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It should be stated that we attempted further DBI copolymerizations with methyl methacrylate
(MMA) using NHS-BlocBuilder with little avail at temperatures between 90 and 110 ◦C. It is likely that
the nitroxide adduct with DBI is too stable even when using a monomer like MMA that has a higher kp

compared to S at similar temperatures.
Finally, chain extension experiments with S using a P(DBI/S) macroinitiator were done: S-rich

(fDBI,0 = 0.2) or DBI-rich (fDBI,0 = 0.8) macroinitiators were used from the copolymerizations done at
110 ◦C (Table 5 summarizes the chain extensions). In a typical NMP system, it is well-established
that <10% of the polymer chains are irreversibly terminated, which means than >90% of the chains
are end-functionalized with nitroxide moieties capable of reactivation to allow extension of the
polymer chains [41]. The main objective of these experiments was to confirm our previous discussions,
specifically if the DBI-rich macroinitiator could be re-activated and add the second batch of monomer.
Figure 9a shows the GPC traces of the chain extension experiment using a macroinitiator with
fDBI,0 = 0.2.

Table 5. Summary of chain extension reactions of dibutyl itaconate/styrene (DBI/S) macroinitiators
with styrene at 110 ◦C in 50 wt% dioxane solution.

Experiment
Macroinitiator Product

Mn (kg mol−1) Đ Mn (kg mol−1) Đ

DBI/S-110-20-b-S 12.3 1.37 22.1 2.99
DBI/S-110-80-b-S 2.6 1.36 19.2 1.61
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As expected, shifts towards higher molecular weights were observed with time, but also some
tailing, meaning that most of the polymer chains end-capped with SG1 did extend. When the
macroinitiator from a feed of fDBI,0 = 0.8 was used, the GPC traces (Figure 9b) exhibited some shifting
to higher molecular weight with time, but each trace had a very pronounced shoulder, confirming that
most of the polymer chains are either terminated or are not capable to be reactivated again.

One of the potential applications of poly (dialkyl itaconates) is as a component in thermoplastic
elastomers. They can be copolymerized in much the same way as dienes are with monomers like styrene
to afford tough but flexible materials. The reactivity ratios for the DBI/S system by conventional radical
polymerization were reported previously in benzene at 60 ◦C (rDBI = 0.38± 0.02 and rS = 0.40 ± 0.05 [19].
In the same study, reactivity ratios were similar for other di-n-alkyl itaconates (DXI where X = methyl,
n-ethyl, n-propyl, n-amyl and n-octyl) (rDXI = 0.25–0.60, rS = 0.25–0.40). More recently, others have
extended the analysis to higher di-n-alkyl itaconates (n = 12, 14, 16, 18 and 22) in bulk conventional
free radical polymerization at 60 ◦C using AIBN initiator [28]. For n = 12, 14, 16, reactivity ratios for
di-n-alkyl itaconate ranged from 0.22–0.28 and rS = 0.19–0.39 while for n = 18 and 22, rDXI = 0.42–0.50
and rS = 0.37–0.47. Similar ranges in reactivity ratios were observed for DMI/S copolymerizations
although there was considerable spread in the data (Davis and co-workers found that DMI was
contaminated with poly (DMI) [59]. Our data, after fitting with Fineman-Ross and Kelen-Tudos
methods, revealed rDBI = 0.29 and rS = 0.59 and rDBI = 0.32 and rS = 0.77, respectively. A non-linear
least square fitting to the Mayo-Lewis equation provided rDBI = 0.31 and rS = 0.61.

Given that conditions for obtaining higher loadings of DBI are accessible, it would be possible
now to tune the desired glass transition temperature (Tg) of the copolymers, which was measured
using differential scanning calorimetry (DSC). The variation in Tg with composition is bracketed by the
Tgs of the homopolymers (Tg,PS are 100 ◦C [64] while the Tg,PDBI has been reported to vary between
5–17 ◦C [22,30,65,66]). Figure 10 shows the Tg of the various statistical copolymers as function of final
copolymer composition as well as the Fox equation prediction, which is given in Equation (7) where
wDBI and wS are the weight fractions of DBI and S and Tg,PDBI and Tg,PS are the experimental Tgs of
PDBI and PS homopolymers.

1/Tg,th = wDBI/Tg,PDBI + wS/Tg,PS (7)

Although the fit to the Flory-Fox equation is not particularly good, it is still clear that even having a
low fraction of DBI in the copolymer was able to dramatically reduce the Tg. For example, a copolymer
with composition FDBI = 18 mol% had a Tg of 45 ◦C, much lower than the Tg of the PS homopolymer
(~100 ◦C). This is due to the flexibility that DBI provided to the polymer chains, giving additional free
volume and thus a dramatic decrease in the Tg. The copolymers were noticeably more flexible with
increasing DBI composition.
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4. Conclusions

In this study, nitroxide-mediated copolymerization of DBI with S was studied using the
succcinimdyl functionalized NHS-BlocBuilder at different temperatures. It was not possible to
obtain homopolymers of PDBI by NMP, likely due to the formation of a stable adduct, effectively
blocking further propagation. When DBI was copolymerized with styrene-rich initial compositions
(fDBI,0 < 0.2) at 110 ◦C, Mn versus conversion plots were relatively linear up to fairly high conversion
~ 0.6 with relatively narrow molecular weight distributions (Đ = 1.3–1.4). At fDBI,0 > 0.2, Mn versus
conversion plots flattened with increasing conversion and Mn was much lower than theoretical
predictions, indicating the high tendency of itaconate monomers to generate intramolecular chain
transfer side reactions and the increased probability for formation of stable adducts. A change in
reaction temperature to 70 ◦C indicated a slight improvement in terms of control (narrowed molecular
weight distributions and Mn versus conversion remained linear up to higher conversions). This however
was accompanied by excessively long polymerization times of around three days. DSC was used to
measure the Tg of the copolymers. As expected, Tg decreased as composition of DBI in the copolymer
increased, leading the material to become less rigid than the PS homopolymer.
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