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Abstract: Gas diffusivities of coal are not measured directly but are normally regressed by fitting
mathematical diffusion models to fractional sorption data measured in sorption experiments. This
paper firstly measured three fractional adsorption curves at various equilibrium pressures with
the manometric method. The measured fractional adsorption curves were then modeled with
one single-fitting-parameter (SFP) model and three triple-fitting-parameter (TFP) models. The
modeling results showed that the TFP models were phenomenologically over-parameterized due to
the usage of three fitting parameters, which may be excessive for curve fitting. The phenomenological
over-parameterization resulted in multiple pressure-dependences of gas diffusivity for the TFP
models. The TFP models should thus be carefully used. On the other hand, the dual-fitting-parameter
(DFP) models also have excellent performance in curve fitting and can produce interpretable modeling
results. The DFP models can be used as an alternative to the TFP model in the future.

Keywords: phenomenological over-parameterization; triple-fitting-parameters; coal diffusivity; gas
diffusion; model

1. Introduction

Coalbed methane (CBM) recovery and carbon dioxide (CO2)-enhanced CBM production have
flourished in many countries [1]. The development of these projects requires detailed and reliable
information on gas sorption and flow [2]. Gas sorption determines methane (CH4) reserves [3,4] and
CO2 sorption capacity in coal [2,5]. Since gas sorption is normally assumed instantaneous [6–8], CBM
production and CO2 injection rates are mainly determined by gas flow processes. Gas flow in coal is
often considered as a two-stage process: laminar flow in cleats and diffusion in coal matrices [9–11].
This paper focuses on gas diffusion and does not include the laminar flow in cleats.

Gas diffusivities of coal are not measured directly but are normally regressed by fitting
mathematical diffusion models to fractional sorption data measured in sorption experiments [2,12,13].
The diffusion models can be classified into three categories in terms of the number of fitting parameters:
single-fitting-parameter model (SFP model), double-fitting-parameter model (DFP model), and
triple-fitting-parameter model (TFP model), as shown in Table 1. Normally, the DFP and TFP
models have better performance in curve fitting than the SFP models do [13,14]. The SFP and DFP
models normally predict monotonic dependences of diffusivity on gas and coal properties such
as gas pressure [15,16], gas type [14,17,18], temperature [19,20], particle size [15,21], and moisture

Processes 2019, 7, 241; doi:10.3390/pr7040241 www.mdpi.com/journal/processes

http://www.mdpi.com/journal/processes
http://www.mdpi.com
http://dx.doi.org/10.3390/pr7040241
http://www.mdpi.com/journal/processes
https://www.mdpi.com/2227-9717/7/4/241?type=check_update&version=2


Processes 2019, 7, 241 2 of 15

content [13,14,22]. However, the TFP models can predict non-monotonic dependences of diffusivity on
gas and coal properties [13,22–24].

Table 1. Representative mathematical diffusion models.

Model Classification Model Name Authors

Single-fitting-parameter model
Unipore model Crank [25]

Numerical unipore model Clarkson and Bustin [14]
Linear driving force model Charrière et al. [19]

Double-fitting-parameter model Stretched exponential model Staib et al. [17], Staib et al. [18]
Numerical bidisperse model Clarkson and Bustin [14]

Triple-fitting-parameter model
Ruckenstein bidisperse model Ruckenstein et al. [26]

Fickian diffusion-relaxation model Berens and Hopfenberg [27]
Double exponential model Busch et al. [28]

Although the single-fitting-parameter models predict opposite dependences of diffusivity on
gas and coal properties, both dependences can be physically interpreted. For example, Nandi and
Walker [15] predicted a positive gas pressure dependence of diffusivity while Pillalamarry et al. [16]
predicted a negative gas pressure dependence with the unipore model. The positive gas pressure
dependence is normally attributed to the increase in surface diffusion, which becomes pronounced with
increasing surface loading [29]. The negative gas pressure dependence may be due to two causes: one is
the intensive collisions between gas molecules and the other is gas sorption-induced coal swelling [30].
However, the non-monotonic dependences predicted by the TFP have not been well-interpreted yet.

This paper presents the experimental measurements of three fractional adsorption curves at various
equilibrium pressures. The measured fractional adsorption curves are then modeled with the TFP
models. The modeling results will be compared and discussed to obtain insights into the TFP models and
to illustrate why the TFP models can predict non-monotonous dependences of diffusivity on gas and coal
properties. The results will show that this kind of models is phenomenologically over-parameterized.

2. Summary of the TFP Models

Physical meanings of all model parameters are shown in Nomenclature.

2.1. Ruckenstein Bidisperse Model

Ruckenstein et al. [26] used Equation (1) to represent sorbate diffusion and sorption in a spherical
macroporous sphere consisting of small spherical microporous particles with a uniform radius. They
solved Equation (1) by assuming constant macropore and micropore diffusivities, invariant surface
sorbate concentration, and linear isotherm. The solution is shown in Equation (2):
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Ruckenstein et al. [26] subsequently reduced Equation (2) into two limiting cases. One case is
that the total sorption is a two-stage diffusion process: a faster diffusion in macropores and a slower
diffusion in micropores. This case is applicable when 0 < α < 10−3 and Equation (2) reduces to [13,22,26]:

Mt
M∞ = θa

[
1− 6

π2
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n=1

1
n2 exp

[
−n2π2D′at

]]
+ {1− θa

[
1− 6

π2
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n=1

1
n2 exp

[
−n2π2αD′at

]]
θa =

Ma∞
M∞ = 1 + 1

3 (β/α)
(3)

The other case is that the sorbate concentration in micropores is considered to equilibrate with the
corresponding local concentration in macropores. This case is applicable when α > 102 and Equation (2)
reduces to [26]:

Mt

M∞
= 1−

6
π2
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n=1

1
n2 exp

(
−θan2π2D′at

)
(4)

When 10−3 < α < 102, both macropore sorption and micropore sorption are important and
Equation (2) should be used.

When evaluating gas diffusion in coal, Equation (3) is used commonly while the usage of
Equations (2) and (4) is rare. Therefore, Equation (3) is referred to as the Ruckenstein bidisperse model
(RB model) in this paper.

2.2. Fickian Diffusion-Relaxation Model

Berens and Hopfenberg [27] assumed that the sorption process in glassy polymers is a linear
superposition of Fickian diffusion and polymeric relaxation. The total sorption can thus be calculated by:

Mt = MFt + MRt (5)

where MFt and MRt are the contributions of Fickian diffusion and polymeric relaxation, respectively [27]:

MFt = MF∞

1− 6
π2

∞∑
n=1

1
n2 exp

(
−n2π2D′Ft

) (6)

MRt = MR∞[1− exp(−kRt)] (7)

where MF∞ and MR∞ are the contributions of Fickian diffusion and polymeric relaxation at
equilibrium, respectively.

Substituting Equations (6) and (7) into Equation (5) leads to [27,31]:
Mt
M∞ = θF

[
1− 6

π2
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n=1

1
n2 exp

(
−n2π2D′Ft

)]
+ (1− θF)[1− exp(−kRt)]

θF = MF∞
M∞

(8)

Equation (8) is referred to as the Fickian diffusion-relaxation model (FDR model) in this paper.
When D′F � kR, the sorption process is Fickian diffusion-controlled. When kR � D′F, the sorption
process is relaxation-controlled. When D′F and kR are comparable, the sorption process is controlled by
both diffusion and relaxation.

2.3. Double Exponential Model

Busch et al. [28] proposed a double exponential function to describe gas diffusion in coal:

Qres = θf exp(−kft) + (1− θf) exp(−kst) (9)
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Qres can be calculated by:

Qres =
Pt − P∞
P0 − P∞

(10)

Equation (9) is proposed for practical purposes. It is thus empirical and lacks scientific foundations.
Because this equation calculates unoccupied capacity, it cannot fit fractional sorption data directly.
Several steps are needed to convert it to a proper form.

Fractional sorption can be represented by [5]:

Mt

M∞
=

M0 −Mt

M0 −M∞
(11)

Equation (11) can be written into the following equation with the isothermal assumption:
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−
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−
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(12)

When the pressure step is small or the gas pressure is much lower or greater than the critical
pressure, the compressibility factor can be assumed to remain constant with pressure. Equation (11)
can then be simplified to:

Mt

M∞
≈

P0 − Pt

P0 − P∞
=

P0 − P∞ − (Pt − P∞)
P0 − P∞

= 1−
Pt − P∞
P0 − P∞

= 1−Qres (13)

Substituting Equation (9) into Equation (13) leads to:

Mt

M∞
= 1− [θf exp(−kft) + [1− θf] exp(−kst)] (14)

Equation (14) is an alternate form of Equation (9) and can fit fractional sorption data directly. In
this paper. Equation (14) is referred to as the double exponential model (DE model).

3. Experimental Measurements of Fractional Sorption Curves

3.1. Sample

The coal samples used in this study were prepared from an anthracite lump that was taken from
Yuwu Coal Mine in Changzhi City, Shanxi Province. Coal fragments were pulverized into powders
and the fractions between 0.18–0.25 mm were selected and preserved in a big jar for subsequent
experimental measurements. Little samples were taken to measure coal properties and the results are
listed in Table 2. Sample density was measured following the method described in GB/T 217-2008.
Proximate analysis was conducted by using a GF-A2000 auto proximate analyzer (Huanuo Electron
Science and Technology Co., Ltd, China, 2013).

Table 2. Coal sample properties.

True Density
(g/cm3, Dry)

Apparent Density
(g/cm3, Dry)

Proximate Analysis
Mad (%) Ad (%) Vdaf (%) Fixed Carbon (%)

1.49 1.40 0.61 11.02 7.50 80.87

3.2. Experimental Setup

The experimental apparatus used in this study was a manometric sorption system, as shown in
Figure 1. The reference and sample cells were cylindrical (diameter is 50 mm and length is 100 mm).
Each cell linked a gas pressure transducer (UNIK5600, Baker Hughes, USA, 2016). The mass flowmeter
(SevenStar D07, Beijing Sevenstar Flow Co.,Ltd., China, 2016) was introduced to record the gas amount



Processes 2019, 7, 241 5 of 15

releasing into the tubes and the two cells. A data taker (DT800, Thermo Fisher Scientific Ltd., Australia,
2016) connecting the three transducers was used to transduce the recorded signals into mathematical
data. The reference and sample cells were immersed in a water bath, of which the temperature was
kept invariant (298 K ± 0.2 K). The extraction pump was used to vacuum the tubes and the two cells.
The values were used to partition the system and to control measurement procedures.

Figure 1. Schematic of the manometric sorption system.

3.3. Measurement Procedures

The void volumes without and with samples were calibrated by using helium expansion.
Air-tightness was also detected before measuring fractional adsorption data. The manometric method
uses gas pressure change in the sample cell to represent sorption rates and to compute fractional
sorptions. Measurements were conducted according to the following procedures:

(1) Implement the sample into the sample cell.
(2) Evacuate the air in the system and shut all valves.
(3) Opening V1.
(4) Open V2 slowly and inject CH4 gas from a gas cylinder into the reference cell.
(5) When the gas pressure in the reference cell increased to about 1.0 MPa, close V2 and open

V3 rapidly.
(6) Record gas pressure change in the sample cell with a time interval of one second.
(7) When the gas pressure in the sample cell kept invariant in two hours, terminate recording the gas

pressure and close V3.
(8) Repeat (3)–(6) two times.

Three gas injection runs were conducted. For each injection run, the gas pressure in the sample
cell increased at first and then decreased with time. This indicates that a maximum gas pressure existed
in the sample cell. Table 3 shows the maximum and equilibrium gas pressures of the three injection
runs. The difference between the maximum and equilibrium gas pressures decreased with continuing
gas injection.

Table 3. Maximum and equilibrium gas pressures in the sample cell for the three gas injection runs.

First Injection Second Injection Third Injection

Maximum gas
pressure (MPa)

Equilibrium
gas pressure

(MPa)

Maximum gas
pressure (MPa)

Equilibrium
gas pressure

(MPa)

Maximum gas
pressure (MPa)

Equilibrium
gas pressure

(MPa)
0.60 0.35 0.80 0.64 0.89 0.81
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3.4. Measured Fractional Adsorption Curves

Fractional adsorption curves were computed according to the method presented in literature [2].
The initiation time of diffusion was defined as the time when the gas pressure in the sample cell reached
a maximum. The three measured fractional adsorption curves are shown in Figure 2. The fractional
adsorption curves of the three injection runs reached equilibrium within about six hours. Although the
three curves nearly overlap after four hours, the adsorption rate seems to be negatively proportional to
gas pressure.

Figure 2. Measured fractional sorption curves of the three injection runs.

4. Modeling the Measured Fractional Adsorption Curves with the TFP Models

4.1. Modeling Configuration

Modeling the measured fractional adsorption curves were conducted by using the nonlinear curve
fit module within the OriginPro 9.0 Package (OriginLab Corp., MA, USA) [32]. In order to compare the
modeling results between the unipore (UP) model (Equation (15)) and the TFP models, the measured
fractional adsorption curves were also modeled with the UP model:

Mt

M∞
= 1−

6
π2

∞∑
n=1

1
n2 exp

(
−n2π2D′ut

)
(15)

The DE model was implemented into OriginPro 9.0 with an explicit function. The UP model, RB
model, and FDR model have infinite series. They were thus implemented into Origin by writing three
C functions. The infinite series were computed with iterations. Iterations were terminated when the
following inequality was established: (

Mt
M∞

)
n
−

(
Mt
M∞

)
n−1(

Mt
M∞

)
n

< 10−5 (16)

where
(

Mt
M∞

)
n

is the computed fractional sorption at the nth iteration step and
(

Mt
M∞

)
n−1

is the computed
fractional sorption at the (n − 1)th iteration step.

The TFP models all have three fitting parameters. One represents the sorption fraction (θ) of
one diffusion process and the other two represent the diffusivities or rate parameters of the two
diffusion processes. The upper bounds of the three fitting parameters were unity and the lower bounds
were zero.

When conducting modelings with the RB model, an optimal fit needed a long time to achieve
convergence. In order to obtain quick convergence, the optimal fit was obtained through a three-step
procedure. The first step was dividing the whole span of θ into ten uniform parts and the size of each
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sub-span was 0.1. The second step was obtaining the optimal fit of each sub-span. The third step was
selecting the final optimal fit by comparing the optimal fits of the ten sub-spans.

Ruckenstein et al. [26] developed the RB model with the assumption of 0 < α < 10−3. However,
many studies misused this model by expanding the upper bound of α to unity. In order to evaluate this
misusage, modeling with the RB model was conducted twice, one with the assumption of 0 < α < 10−3

and the other with the assumption of 0 < α < 1.0.

4.2. Modeling Results

Table 4 lists the optimal fit parameters of the UP model and the TFP models. Note that an optimal
fit is defined as the fit obtains a R2 value higher than all the other fits. All TFP models agreed better
with the measured fractional adsorption curves than the UP model did. Similar results have also been
reported in literature that the TFP models normally had better performance in curve fitting than the
UP model did [13,14].

Table 4 shows that the correlation between diffusivity/rate parameter and gas pressure is
model-dependent. The UP-diffusivity and the RB-diffusivity with the assumption of 0 < α < 10−3

decreases with increasing gas pressure. The DE-fast rate parameter and the RB-macropore diffusivity
with the assumption of 0 < α < 1.0 are also negatively proportional to gas pressure. However, the
RB-micropore diffusivity with the assumption of 0 < α < 1.0, the FDR-diffusivity and relaxation rate,
and the DE-slow rate parameter show non-monotonic dependence on gas pressure.

Table 4. Optimal fit parameters of the UP model and the TFP models.

Model Fit Parameters
Equilibrium Pressure (MPa)

0.35 0.64 0.81

UP model
D′u (s−1) 2.59 × 10−5 2.24 × 10−5 1.75 × 10−5

R2 (%) 94.81 96.01 99.15

RB model
(0 < α < 10−3)

θa 0.962 0.956 0.986
D′a (s−1) 3.18 × 10−5 2.82 × 10−5 1.86 × 10−5

D′i (s−1) 3.18 × 10−8 2.82 × 10−8 1.86 × 10−8

R2 (%) 97.02 98.12 99.27

RB model
(0 < α < 1.0)

θa 0.416 0.527 0.250
D′a (s−1) 1.06 × 10−4 5.52 × 10−5 4.03 × 10−5

D′i (s−1) 1.48 × 10−5 1.15 × 10−5 1.42 × 10−5

R2 (%) 99.71 99.21 99.42

FDR model

θF 0.63 0.69 0.52
D′F (s−1) 6.45 × 10−4 3.74 × 10−4 3.75 × 10−4

kR (s−1) 9.36 × 10−4 7.35 × 10−4 8.99 × 10−4

R2 (%) 99.75 99.28 99.56

DE model

θf 0.58 0.62 0.48
kf (s−1) 1.28 × 10−2 7.58 × 10−3 6.87 × 10−3

ks (s−1) 1.03 × 10−3 8.43 × 10−4 9.25 × 10−4

R2 (%) 99.53 99.46 99.84

When fitting the TFP models to the measured fractional adsorption curves, several non-optimal
fits produced highly similar coefficients of determination but evidently different diffusivities/rate
parameters compared with the corresponding optimal fit. In this paper, the non-optimal fit that meets
the following inequality is defined as quasi-optimal fit:(

R2
)
qua

(R2)opt
≥ 0.99 (17)

where the subscripts ‘opt’ and ‘qua’ represent the optimal fit and quasi-optimal fit, respectively.
Tables 5–8 list the quasi-optimal fit parameters of the RB model with the assumption of

0 < α < 10−3, the RB model with the assumption of 0 < α < 1.0, the FDR model, and the DE
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model, respectively. The RB model with the assumption of 0 < α < 10−3 had only one quasi-optimal fit
at 0.81 MPa while the other three models had multiple quasi-optimal fits at each equilibrium pressure.

Table 5. Quasi-optimal fit parameters of the RB model with the assumption of 0 < α < 10−3.

Equilibrium Pressure (MPa) θa D
′

a (s−1) D
′

i (s−1) R2 (%)

0.01 1.08 × 10−1 1.08 × 10−4 99.15

Table 6. Quasi-optimal fit parameters of the RB model with the assumption of 0 < α < 1.0.

Equilibrium Pressure (MPa) θa D
′

a (s−1) D
′

i (s−1) R2 (%)

0.35

0.30 1.63 × 10−4 1.73 × 10−5 99.45
0.40 1.12 × 10−4 1.51 × 10−5 99.71
0.50 8.18 × 10−5 1.32 × 10−5 99.61
0.60 6.32 × 10−5 1.12 × 10−5 99.29
0.70 5.07 × 10−5 9.26 × 10−6 98.84

0.64

0.20 1.24 × 10−4 1.76 × 10−5 98.25
0.30 9.14 × 10−5 1.55 × 10−5 98.80
0.40 7.14 × 10−5 1.37 × 10−5 99.10
0.50 5.81 × 10−5 1.20 × 10−5 99.21
0.60 4.85 × 10−5 1.02×10−5 99.18
0.70 4.11 × 10−5 8.30 × 10−6 99.04
0.80 3.55 × 10−5 5.98 × 10−6 98.80
0.90 3.06 × 10−5 4.18 × 10−6 98.44

0.81

0.10 6.53 × 10−5 1.59 × 10−5 99.37
0.20 4.58 × 10−5 1.47 × 10−5 99.41
0.30 3.63 × 10−5 1.38 × 10−5 99.42
0.40 3.09 × 10−5 1.29 × 10−5 99.40
0.50 2.75 × 10−5 1.21 × 10−5 99.39
0.60 2.51 × 10−5 1.11 × 10−5 99.38
0.70 2.32 × 10−5 1.00 × 10−5 99.36
0.80 2.16 × 10−5 8.56 × 10−6 99.34
0.90 2.02 × 10−5 6.06 × 10−6 99.32

Table 7. Quasi-optimal fit parameters of the FDR model.

Equilibrium Pressure (MPa) θF D
′

F (s−1) kR (s−1) R2 (%)

0.35

0.50 1.14 × 10−3 1.21 × 10−3 98.96
0.60 7.26 × 10−4 9.93 × 10−4 99.71
0.70 4.84 × 10−4 7.98 × 10−4 99.57
0.80 3.36 × 10−4 6.05 × 10−4 98.90

0.64

0.50 7.28 × 10−4 1.09 × 10−3 98.34
0.60 5.08 × 10−4 9.02 × 10−4 99.08
0.70 3.68 × 10−4 7.26 × 10−4 99.28
0.80 2.74 × 10−4 5.44 × 10−4 99.10
0.90 2.07 × 10−4 3.05 × 10−4 98.65

0.81

0.30 9.97 × 10−4 1.21 × 10−3 98.63
0.40 6.06 × 10−4 1.05 × 10−3 99.36
0.50 4.01 × 10−4 9.20 × 10−4 99.56
0.60 2.85 × 10−4 8.08 × 10−4 99.52
0.70 2.15 × 10−4 7.06 × 10−4 99.43
0.80 1.70 × 10−4 6.00 × 10−4 99.36
0.90 1.39 × 10−4 4.54 × 10−4 99.32

Table 8. Quasi-optimal fit parameters of the DE model.

Equilibrium Pressure (MPa) θf kf (s−1) ks (s−1) R2 (%)

0.35
0.50 1.74 × 10−2 1.20 × 10−3 99.09
0.60 1.18 × 10−2 9.82 × 10−4 99.48

0.64
0.50 1.09 × 10−2 1.08 × 10−3 98.80
0.60 8.00 × 10−3 8.78 × 10−4 99.45
0.70 6.04 × 10−3 6.86 × 10−4 99.12

0.81
0.40 9.07 × 10−3 1.04 × 10−3 99.65
0.50 6.45 × 10−3 8.96 × 10−4 99.83
0.60 4.85 × 10−3 7.58 × 10−4 99.49
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Figure 3 compares the optimal and quasi-optimal fit curves of the RB model with the assumption
of 0 < α < 1.0 at 0.81 MPa. Visual inspection cannot discern the difference between the optimal and
quasi-optimal fit curves. Similar results can be observed from the regular residual curves. The optimal
and quasi-optimal fits have nearly overlapped regular residuals, as shown in Figure 4. Although
the quasi-optimal fit curves were highly close to each other, their diffusivities were quite diverse, as
shown in Tables 6–8. For example, when fitting the RB model with the assumption of 0 < α < 1.0
to the measured fractional adsorption curve at 0.81 MPa, the macropore diffusivity decreased from
6.53 × 10−5 s−1 to 2.02 × 10−5 s−1 when θa increased from 0.10 to 0.90.

Figure 3. Optimal and quasi-optimal fit curves when fitting the RB model with the assumption of
0 < α < 1.0 to the measured fractional adsorption data at 0.81 MPa: (a) θa = 0.10; (b) θa = 0.20;
(c) θa = 0.30; (d) θa = 0.40; (e) θa = 0.50; (f) θa = 0.60; (g) θa = 0.70; (h) θa = 0.80; (i) θa = 0.90; and
(j) θa = 0.25 (optimal fit). Note that the red background color highlights the optimal fit.
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Figure 4. Regular residual curves of the optimal and quasi-optimal fits when fitting the RB model
0 < α < 1.0 to the measured fractional adsorption data at 0.81 MPa.

5. Discussion

5.1. Phenomenological Over-Parameterization of the TFP Models

When fitting the TFP models to the measured fractional adsorption curves, multiple fits had
highly similar fit curves. This indicates the TFP models may be over-parameterized when three
fitting parameters are used. When reducing the three fitting parameters to one or two parameters,
the over-parameterization may be eliminated. Since the TFP models are mathematically sound,
the over-parameterization observed in Section 4.2 may be a phenomenological issue rather than a
mathematical one. Therefore, this issue is defined as phenomenological over-parameterization in
this paper.

Phenomenological over-parameterization makes optimal fit non-unique and all quasi-optimal
fits are potentially optimal. As shown in Figure 2, the measured fractional adsorption curves are not
smooth but are fluctuant with respect to time due to temperature fluctuation, pressure transducer error,
or other system errors. Therefore, both optimal and quasi-optimal fit curves deviated slightly from the
measured curves. Although the optimal fit curves agreed slightly better with the measured fractional
adsorption curves than the quasi-optimal fit curves did, this slightly better agreement may be offset
by the system errors within the measured curves. Therefore, both optimal and quasi-optimal fits are
potentially optimal.

Phenomenological over-parameterization makes the regressed diffusivity/rate parameter fluctuate
within an upper bound and a lower bound. In order to evaluate this fluctuation, a fluctuation ratio is
introduced, as expressed in the following equation:

FR =
Dupper

Dlower
(18)

where Dupper is the upper bound of the regressed diffusivity/rate parameter for a measured fractional
adsorption curve, and Dlower denotes the lower bound.

When FR is equal to unity, phenomenological over-parameterization is absent and the optimal
diffusivity/rate parameter is a unique value. When FR is greater than unity, phenomenological
over-parameterization is evident and the optimal diffusivity/rate parameter fluctuates within a value
range rather than being a unique value. As FR increases, phenomenological over-parameterization
becomes more significant.

Table 9 lists the FR values of the TFP models. Although the RB model with the assumption
of 0 < α < 10−3 have only one quasi-optimal fit when fitting to the measured fractional adsorption
curve at 0.81 MPa, the fluctuation ratios are quite high. This high fluctuation ratio indicates that the
quasi-optimal fit at 0.81 MPa is anomalous and can be omitted artificially. However, the fluctuation
ratios of the other three TFP models are moderate and all lower than 10. The quasi-optimal fits
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of these models cannot be omitted artificially. Generally, the RB model with the assumption of
0 < α < 1.0 and FDR model produced greater fluctuation ratios than the DE model did. The RB
model with the assumption of 0 < α < 1.0 produced higher fluctuation ratios than the RB model
with the assumption of 0 < α < 10−3 when fitting to the fractional adsorption curves at 0.35 MPa
and 0.64 MPa. Therefore, expanding the upper bound of α in curve fitting makes the RB model
phenomenologically over-parameterized.

Table 9. FR values of the TFP models.

Equilibrium
Pressure (MPa)

ORB Model ERB Model FDR Model DE Model

FR
(
D
′

a

)
FR

(
D
′

i

)
FR

(
D
′

i

)
FR

(
D
′

i

)
FR

(
D
′

F

)
FR(kR) FR(kf) FR(ks)

0.35 1.00 1.00 3.21 1.87 3.39 2.00 1.47 1.22
0.64 1.00 1.00 4.04 6.75 3.52 3.58 1.81 1.57
0.81 927.80 927.80 3.25 2.62 7.18 2.67 1.87 1.37

When plotting the diffusivity/rate parameter of both optimal and quasi-optimal fits with respect
to equilibrium pressure, multiple correlations between diffusivity/rate parameter and gas pressure can
be obtained. Taking the RB-diffusivity with the assumption of 0 < α < 1.0 for example, as shown in
Figure 5, the black solid line indicates a monotonically negative gas pressure dependence, the red solid
line indicates a monotonically positive gas pressure dependence, and the green solid line indicates a
non-monotonic gas pressure dependence. Since both optimal and quasi-optimal fits are potentially
optimal, the multiple correlations are potentially reasonable. This makes the modeling results difficult
to interpret in physics.

Figure 5. Gas pressure dependence of the diffusivity regressed by the ERB model: (a) macropore
diffusivity; (b) micropore diffusivity. Note that the black solid line indicates a monotonically negative
gas pressure dependence, the red solid line indicates a monotonically positive gas pressure dependence,
and the green solid line indicates a non-monotonic gas pressure dependence.

Due to phenomenological over-parameterization, the RB model with the assumption of 0 < α < 1.0
can predict non-monotonic gas pressure dependence of diffusivity. The literature have also reported
non-monotonic dependences of the RB-diffusivity with the assumption of 0 < α < 1.0 on gas pressure
and other influencing factors. Both Pan et al. [22] and Zheng et al. [23] reported a non-monotonic
gas pressure dependence. Guo et al. [24] observed a non-monotonic particle size dependence.
Both Pan et al. [22] and Wang et al. [13] reported a non-monotonic moisture dependence. These
non-monotonic dependences are normally uninterpretable in physics. On the other hand, correct usage
of the RB model with the assumption of 0 < α < 10−3 predicted a negative gas pressure dependence
of diffusivity in this paper. This dependence can be interpretable and is normally attributed to coal
swelling and decreasing molecular diffusion rate with increasing gas pressure [30]. Therefore, the
anomalously non-monotonic dependences discussed above may be due to the misuse of the RB model
out of its boundary condition by expanding the upper bound of α to unity.
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Although correct usage of the RB model can predict interpretable gas pressure dependence of
diffusivity, an anomaly also exists within the modeling results. As shown in Table 4, the RB model
predicted anomalously high macropore adsorption fractions, which were close to unity (θa < 0.95).
This indicates that most CH4 adsorption occurred in macropores for the samples used in this study.
However, low-temperature nitrogen adsorption experiments showed that the samples used for CH4

adsorption were dominant in pores lower than 10 nm (Figure 6). No visible macropores were found in
these samples. The literature have observed that gas adsorption mainly occurs in micropores rather
than in macropores. Radliński et al. [33] scattered CO2 adsorption in coal with small angle X-ray and
the results show that smaller pores are filled prior to larger pores. Therefore, micropore adsorption
should be dominant and high macropore adsorption fractions are anomalous.

Figure 6. Experimental results of low-temperature nitrogen adsorption in the coal samples used for
fractional adsorption measurements: (a) adsorption-desorption curves; (b) pore size distribution.
The low-temperature nitrogen adsorption data were measured by using a JW-BK112 pore analyzer
(Beijing JWGB SCI & Tech Co., Ltd., China, 2016). The used samples were 0.18–0.25 mm. The pore size
distribution data were computed with the BJH theory.

5.2. Implications for Future Work

Since the UP model normally deviated evidently from experimental fractional adsorption curves,
the TFP models were introduced to substitute the UP model. However, although the TFP models have
better performance in curve fitting than the UP model does, their modeling results seem to have little
physical meanings, as discussed in Section 4.1. The excellent curve fitting performance of the TFP
models is seemingly due to the usage of three fitting parameters. John von Neumann once said that
“With four parameters I can fit an elephant, and with five I can make him wiggle his trunk.” Therefore,
three fitting parameters may be excessive and unnecessary. The correct usage of the TFP models may
be reduced the three fitting parameters to one or two parameters.

Clarkson and Bustin [14] developed a numerical bidisperse diffusion model that has only two
fitting parameters: macropore diffusivity and micropore diffusivity. Clarkson and Bustin [14] reported
that their numerical bidisperse diffusion model also has excellent performance in curve fitting and
the results can be physically interpretable. Cui et al. [30] used this model and predicted interpretable
results as well. Therefore, the numerical bidisperse diffusion model developed by Clarkson and
Bustin [14] may be a good alternative of the TFP models in future studies.

6. Conclusions

This paper measured three fractional adsorption curves at various equilibrium pressures by using
the manometric method. The measured fractional adsorption curves were modeled with the TFP
models. The modeling results were compared and discussed to obtain insights into the TFP models.
Based on this study, the following major conclusions are made:
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(1) The measured adsorption rate was negatively proportional to gas pressure. This correlation can be
attributed to coal swelling and decreasing molecular diffusion rate with increasing gas pressure.

(2) The TFP models had better performance in curve fitting than the UP model did. The gas pressure
dependence of diffusivity/rate parameter was dependent on the chosen model. The UP-diffusivity
and the RB-diffusivity with the assumption of 0 < α < 10−3 decreased with increasing gas pressure.
The RB-macropore diffusivity with the assumption of 0 < α < 1.0 and the DE-fast rate parameter
were also negatively proportional to gas pressure. However, the RB-micropore diffusivity with
the assumption of 0 < α < 1.0, the FDR-diffusivity and relaxation rate, and the DE-slow rate
parameter showed non-monotonic dependence on gas pressure.

(3) In addition to optimal fits, the TFP model produced multiple quasi-optimal fits that were highly
close to the corresponding optimal fit in fit curves. This issue was defined as phenomenological
over-parameterization in this paper. Phenomenological over-parameterization makes optimal
fit non-unique and all optimal and quasi-optimal fits re potentially optimal. Phenomenological
over-parameterization also makes the modeling results of the TFP models uninterpretable
in physics.

(4) Expanding the upper bound of α made the RB model phenomenologically over-parameterized
in curve fitting. This misusage induced the literature-reported anomalous non-monotonic
dependence of diffusivity on gas and coal properties such as gas pressure, moisture content, and
particle size. Although the correct usage of RB model with the assumption of 0 < α < 10−3 is
absent of phenomenological over-parameterization, anomalously high macropore adsorption
fraction was regressed when fitting to the fractional adsorption curves measured in this study.

(5) Although the TFP models have better performance in curve fitting than the UP model does,
their modeling results are seemingly uninterpretable in physics. Their excellent curve fitting
performance may be due to the usage of three fitting parameters. Clarkson and Bustin [14]
developed a numerical bidisperse diffusion model that has only two fitting parameters. This
also has excellent performance in curve fitting and the results can be physically interpretable.
Therefore, this numerical bidisperse diffusion model may be a good alternative to the TFP models
in future studies.
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Nomenclature

Ca Sorbate concentration in macropores mol·m−3

Ci Sorbate concentration in micropores, mol·m−3

Csa Sorbate concentration on macropore surfaces, mol·m−2

Csi Sorbate concentration on micropore surfaces, mol·m−2

Da Macropore diffusion coefficient, m2
·s−1

D′a Equivalent macropore diffusivity, s−1

D′F Equivalent Fickian diffusivity in the FDR model, s−1

Di Micropore diffusion coefficient, m2
·s−1

D′i Equivalent micropore diffusivity, s−1

D′u Equivalent unipore diffusivity, s−1

Ha Henry constant, m3
·m−2

kf Fast sorption rate parameter in the DE model, s−1
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kR Relaxation rate parameter in the FDR model, s−1

ks Slow sorption rate parameter in the DE model, s−1

M0 Initial sorption amount, mol
Mt Sorption amount at time t, mol
M∞ Sorption amount at infinite time, mol
P0 Initial gas pressure, MPa
Pt Gas pressure at time t, MPa
P∞ Final gas pressure, MPa
Qres Residual (unoccupied) sorption capacity in the DE model, mol
R Universal gas constant, J·mol−1

·K−1

Ra Macropore radius, m
Ri Microsphere radius, m
Sa Macropore surface area, m2

T Temperature, K
V Void volume of the experimental system, m3

z0 Compressibility factors at P0, dimensionless
zt Compressibility factors at Pt, dimensionless
z∞ Compressibility factors at P∞, dimensionless
α Ratio of equivalent micropore diffusivity to equivalent macropore diffusivity, fraction
θa Macropore sorption fraction in the RB model, fraction
θf Sorption fraction of the fast sorption stage in the DE model, fraction
θF Sorption fraction due to Fickian diffusion in the FDR model, fraction
φa Macroporosity, fraction
φi Microporosity, fraction
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