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Abstract: Plants produce a diverse portfolio of sesquiterpenes that are important in their response
to herbivores and the interaction with other plants. Their biosynthesis from farnesyl diphosphate
depends on the sesquiterpene synthases that admit different cyclizations and rearrangements to
yield a blend of sesquiterpenes. Here, we investigate to what extent sesquiterpene biosynthesis
metabolic pathways can be reconstructed just from the knowledge of the final product and the reaction
mechanisms catalyzed by sesquiterpene synthases. We use the software package MedØlDatschgerl
(MØD) to generate chemical networks and to elucidate pathways contained in them. As examples,
we successfully consider the reachability of the important plant sesquiterpenes β-caryophyllene,
α-humulene, and β-farnesene. We also introduce a graph database to integrate the simulation results
with experimental biological evidence for the selected predicted sesquiterpenes biosynthesis.

Keywords: plant; sesquiterpenes; biosynthesis; graph grammars; graph database

1. Introduction

Terpenes form a large and diverse class of natural products appearing particularly in the essential
oils of many plants. They have commercial uses in medicine and as fragrances in perfumery.
Synthetic derivatives of natural terpenes are also used as aromas and foodadditives [1]. Ecologically,
they perform key functions both in direct plant defense and in indirect mechanisms involving
herbivores and their natural enemies [2].

Terpenes are produced throughout the tree of life from the C5 compounds isopentenyl
pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP). Leopold Ružička [3] formulated the
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“biogenetic isoprene rule” according to which terpenes are the result of concatenating isoprene units in
a “head-to-tail” fashion to form chains, from which then rings are formed. Prenyltransferases condense
IPP and DMAPP to geranyl pyrophosphate (GPP), farnesyl pyrophosphate (FPP), and geranylgeranyl
pyrophosphate (GGPP) as the entry points to the world of monoterpenes (C10), sesquiterpenes (C15),
and diterpenes(C20) [4]. FPP and GGPP can then be condensed further to form squalene (C30) and
even largermolecules [5].

These intermediates are substrates for a class of enzymes known collectively as terpene synthases
(TPSs) to produce a wide variety of compounds. There are two major classes of TPS, which
are distinguished by essential amino acid motifs [6,7]. Class I TPS, which are of interest in this
contribution, convert linear, all-trans, isoprenoids, geranyl (C10)-, farnesyl (C15)-, or geranylgeranyl
(C20)-diphosphate into numerous monoterpenes, sesquiterpenes, and diterpenes. They bind their
substrates by the coordination of a divalent metal ion catalytic site consisting of a central cavity formed
by mostly antiparallel α-helices. This catalytic site has an aspartate-rich DDxxD/E motif and often
another NSE/DTE motif in the C-terminal portion [8–10].

The mechanisms of sesquiterpenes synthesis involve the formation of C–C bonds, cationic
intermediates, Wagner-Meerwein rearrangements, carbocation capture by water and hydride, as well
as methyl- and allyl-shifts caused by conformational changes of intermediate cations [11–13].
A combinatorial reaction cascade inside the TPS combining different cyclization/rearrangement
reactions yields a highly diverse set of sesquiterpenes from just a handful of simple acyclic precursors
molecules. Nevertheless, there are only four dominating types of cyclization reactions initiating the
complex reaction cascade: C1–C10, C1–C11, C1–C6, and C1–C7 [14]. Even though the electrophilic
chemical reaction mechanisms primarily determine the diversity of the products [11], many other
factors influence multiproduct sesquiterpene enzymes and their cyclization cascades, such as pH,
the metal cofactor [4], evolutionary forces for the functional divergence [15], plant tissue [16],
and plant-plant interactions [17]. Throughout this contribution, we will refer to such a collection of
factors as a Scenario.

The complexity of the portfolio of sesquiterpenes and their synthesis pathways calls for
computational models that explain the observed diversity and can be used to predict biosynthetic
pathways for particular terpene compounds. Within the field of systems biology, the reconstruction
and exploration of metabolic networks is grounded in determining the metabolic capabilities from
the enzymes encoded in the genome and the extensive knowledge on enzymes themselves collected,
e.g., in the BRENDA database [18].

Several software tools have been developed to predict pathways from annotated genome
sequences and to analyze and explore them. Pathway Tools [19], for instance, is a system designed
for the BioCyc database collection [20]. Complementarily, versatile tools have become available to
predict the metabolism of xenobiotics, in particular, aiming at drugs. Pattern recognition, machine
learning techniques, and knowledge-based rules are used to identify a “site of metabolism” for a set
of chemical products from biotransformation starting with a known parent molecule. Many of these
tools are restricted to specific metabolic processes, although recently much more generally applicable
tools such as Biotransformer [21] have become available. RetroRules [22] is a database of >400,000
highly specific reaction rules intended for metabolic engineering and, in particular, the prediction of
novel and alternative products from de novo reactions of promiscuous enzymes. Possible reactions
can, in principle, also be obtained with methods such as AFIR (Artificial Force Induced Reaction) [23]
from Potential Energy Surfaces, however, the computational cost makes it difficult to use them for
exploring large chemical spaces.

Here, we take a somewhat different approach in that we do not start from an extensive base of
detailed chemical and biological knowledge but from a very generic representation of the reaction
mechanisms underlying sesquiterpene synthesis. The molecules are represented as labeled graphs,
abstracting away details of the spatial embedding of the molecules. The reactions are considered at
the level of graph transformations and only use local context information to determine whether they
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are applicable to a given molecule or not. The representation of molecules as graphs and of reactions
as graph transformations enables the efficient expansion of large networks of logically possible
reactions. The integer flows in these networks correspond to feasible synthesis pathways, which can
be identified efficiently as solutions of Integer Linear Programs (ILP). In Section 4, we describe in
detail this approach and its computational efficiency as a key advantage, as well as adhering to FAIR
Guiding Principles [24]. The software package MØD [25,26] makes it possible to explore the diversity of
potential sesquiterpene synthesis pathways leading up to a user-defined set of reaction mechanisms
(here, the types of rearrangements catalyzed by TPSs). Along with this, using a database of Scenarios
taken from the literature, it is possible to filter from the universe of generated potential pathways those
that are most plausibly expected in a given scenario on the basis of the available evidence. We have
shown that such an explorative approach is indeed feasible and yields reasonable results without the
need first to mine an extensive knowledge base. As examples, we consider the biosynthesis common
plant sesquiterpenes as β-caryophyllene, α-humulene, and β-farnesene.

2. Results

In order to propose a potential biosynthesis pathway, we have solved the corresponding
formal reachability problem: Given known starting material(s), a target molecule of which the
biosynthesis is unknown, and a set of reaction rules modeling the class(es) of enzymes suspected to be
involved in the potential pathway, we ask whether the target is reachable from the starting material.
The graph grammar rules implemented here accurately emulate the natural chemical mechanisms for
multiproduct sesquiterpene enzymes and their cyclization cascades.

It has been shown by a reduction to the word problem for (semi) groups [27] that this type of
reachability question for chemical transformation systems is Turing undecidable. Hence, in practice,
we only solve a restricted problem: Is the target reachable from the starting material within a bounded
number of steps. This question can be solved efficiently within the MØD framework by expanding
a network of potential reactions. Within this network, the reachability question reduces to the existence
of a hyperpath connecting prescribed sources and targets — a problem that is solved efficiently by
ILP. The reachability question for molecules of interest can be investigated under varying conditions
by modulating the sets of reactions and/or additional molecules, e.g., nucleophiles, present during
a reaction networks expansion and pathway search.

Terpene cyclization involves highly reactive cationic intermediates vulnerable to a nucleophilic
attack or elimination reactions. This characteristic allows us to tie the changing mixture of reachable
sesquiterpene products to variations in the external constraints which can, in many cases, be mapped to
changes in the environmental conditions. A particular set of external conditions previously described
in the literature, will, in the following, be called a Scenario. We also consider how some selected
generated pathways fit into a Scenario, acknowledging their advantages and limitations.

2.1. Protonation-Dependent Diphosphate Cleavage

Natural class I terpene synthases precisely pre-orient their acyclic diphosphate substrates in their
active site pockets in a reaction-ready conformation. Then, the complex reaction cascade is initiated
by cleaving off the diphosphate group from the pre-oriented substrate molecule, a pH-dependent [4]
process that requires divalent metal ions as cofactor [28,29]. It has been shown that this ionization
step of the allylic diphosphate is the rate-limiting step in a class I terpene synthetase catalysis [30].
Then, the enzyme guides the resulting highly reactive carbocation via rearrangements of the carbon
skeleton towards various polycyclic product molecules. The highly reactive carbocation intermediates
can scavenge nucleophiles, present in the enzyme’s active site, or can saturate the positive charge
by deprotonation, terminating the rearrangement cascade in an early stage. A fair example of
a rearrangement cascade is the isomerization of FPP to Nerolidyl Diphosphate (NPP) [31], where the
diphosphate anion terminates the reaction cascade by reattaching to the carbocationic intermediate
immediately after an allylic rearrangement has occurred. The reachability of NPP from FPP is trivial to
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ascertain in a constraint-independent simulation (Figure 1) using only the cleavage of the diphosphate
group and the addition of a nucleophile to a cation in the reaction set (Figure 7).
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Figure 1. The plotted result of Simulation 01 for OPP (Diphosphate) cleavage from FPP
(Farnesyl Diphosphate).

2.2. Synthesis of β-Caryophyllene, α-Humulene, β-Farnesene, and their Side Products

(E)-β-caryophyllene is produced from FPP and is emitted by different plant tissues, often in
response to a herbivore attack [16,32,33]. There is ample evidence that TPS catalysis produces a mixture
of sesquiterpenes rather than a single sesquiterpene product [2,34,35]. The same mechanism that
potentially produces β-caryophyllene, α-humulene, and β-farnesene also can produce additional
compounds. Simulation 02 shows the computational reachability of these compounds (Figure 2)
together with P0, 0 as an intermediate compound, and the predicted side compounds P0, 1 and P0, 2.
For this simulation, the applied set of rules are presented in Figure 8.

https://github.com/waldeyr/InSilicoMetabolicModelingAndEngineering/blob/master/simulation_01/processes_simulation_01.py
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Figure 2. The plotted result of Simulation 02 for β-caryophyllene, α-humulene, β-farnesene, and the
side-predicted compounds from FPP.

2.3. Large-Scale Exploration of Terpene Space

Simulation 03 uses a more explorative derivation graph strategy. In this example, a vast diversity
of the feasible compounds is generated starting with an FPP and a water molecule, an extended set of
rules (Figure 9) iteratively applied seven times (Figure 3).

2.4. 2Path-Sesquiterpenes Database

A reasonable question dealing with the predicted data is how to explain them. Another matter
is how to express them properly. Graph databases are a suitable tool for this purpose that has been
demonstrated to be an efficient and convenient way to store and explore metabolic networks [36,37].
Here, we used a proposed graph database (2Path-Sesquiterpenes) to store and enrich the simulation
data with experimental evidence related to the predicted sesquiterpenes, the Scenarios. As an example
of this use, any simulation using the provided set of rules can be stored using the complementary code
Processes_Store, also available on GitHub.

https://github.com/waldeyr/InSilicoMetabolicModelingAndEngineering/blob/master/simulation_02/processes_simulation_02.py
https://github.com/waldeyr/InSilicoMetabolicModelingAndEngineering
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Figure 3. The exploratory strategy yielded 55 predicted molecules: Stable, neutral molecules are
outlined in black, while cations and anions are outlined in red.

Once stored, the generated chemical mechanisms level metabolic network can be traversed and
handled through graph database query languages such as Cypher (https://neo4j.com/developer/
cypher-query-language) or Gremlin (https://tinkerpop.apache.org/gremlin.html) and visualized
using tools such as Cytoscape [38]. Figure 4 shows a selected example of a query result for a stored
simulation into Neo4J graph database (https://neo4j.com). This example shows how a particular
generated pathway can be retrieved using Cypher queries, as well as its integration with Scenarios.

https://neo4j.com/developer/cypher-query-language
https://neo4j.com/developer/cypher-query-language
https://tinkerpop.apache.org/gremlin.html
https://neo4j.com
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scenarioId: s14 
 

modName: alpha-humulene 
ncbiTaxon: 4579 

ncbiSpecies: Zea mays subsp. mexicana 
ncbiAccession: ABY79212 

ec: 4.2.3.104 
compound Yield: side 

condition: none 
tissue: none 

experiment: recombinant 
kegg: R08373 
rhea: 31898 

pubmedAccession: 18296628 
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Figure 4. An example of a generated pathway stored in the Neo4J graph database. In this example,
yellow nodes (label “Rules”) denote the rules “diphosphate loss” and “H+ loss”. The green nodes
(label “Compound”) denote compounds from FPP to α-humulene and other generated compounds.
The red nodes (label “Scenario”) denote the Scenarios for the α-humulene biosynthesis. The details
inside each Scenario node, as the experimental conditions, the plant tissue, EC (Enzyme Commission)
numbers for the reactions, and cross-references, can be reached using the web interface, which is native
for the Neo4J graph database. In this example, we expose these details for the particular Scenario S14.
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3. Discussion

The metabolic networks have been abstracted by various data structures, including
substrate graphs, bipartite graphs, directed hypergraphs, reaction graphs, stoichiometric matrix,
and Petri-net [39–41]. Directed hypergraphs can overcome the conceptual limitations of the graph
modeling of biological processes such as multilateral relationships, which are not compatible with
graph edges [39]. These hypergraphs properties allow for multilateral relationships between the nodes
resulting in a suitable description of biological processes [39]. For example, in a metabolic reaction
such as (Compound1 + Compound2 → Compound3 + Compound4), a hypergraph allows the edges to
connect more than two nodes.

A directed hypergraph is the result of a rule-based graph grammar that transforms compounds
(abstracted as undirected graphs). Thus, the graph transformation framework MedØlDatschgerl
granted a very intuitive way to explore the sesquiterpene biosynthesis through simulations of its
cascade rearrangements. In this work, the proposed graph grammar rules emulate a set of natural
cascade rearrangements. The resulting chemical network varies depending on the combination of
rules, iteration steps, derivation strategy, and initial compounds. By exploring the possible chemical
mechanisms of these reactions, it is reasonable to establish connections with the experimental results
to draw from this universe of possibilities, those that can occur naturally or synthetically under
certain circumstances.

Constraint-based models (CBM) have enormous potential in enhancing the understanding of
reconstructed/predicted metabolic networks and predictive computational models by integrating
biological evidence [42–44]. Omics studies can address important questions, as biosynthetic pathways,
a selection of plants of interest, the environmental influence on the gene expression and the metabolome
profile, and many further questions. 2Path-Sesquiterpenes is an optional feature of this work. It helps
to address such questions focusing on plant sesquiterpene biosynthesis by aggregating the putative
biological meaning to the predicted chemical network.

There are some related works as AFIR [23]/GRRM, RetroRules [22], and Biotransformer [21].
Isegawa et al. [45] had made computational simulations predicting pathways for terpene formation
from a humulyl cation and other intermediate molecules using AFIR [23]/GRRM of which the
chemical results align with ours, which allowed for a cross-confirmation. Compared to this work, the
AFIR [23]/GRRM approach is a fundamentally distinct approach because it uses both a different
data structure to design molecules and applies artificial forces between two or more reacting
molecules. Both the Biotransformer and RetroRules [22] uses chemical reaction descriptions and
rules encoded by SMARTS [46] and SMIRKS [47], and they are quite distinct from this work regarding
the method. Different from these three related works, in 2Path-Sesquiterpenes, the geometry of
chemical bonds are indistinguishable due to the data structure (undirected graphs) that abstracts the
compound molecules.

Another matter is making the simulation results findable, accessible, interoperable, and reusable
(FAIR). For this purpose, 2Path-Sesquiterpenes offers the option of storing the simulation results
in a graph database. Metabolic network databases have been constructed since 1989 [48] through
distinct methods, and many of them have been made available over time mostly due both to advances
in metabolic network reconstruction methods and to the expansion of omic data. Despite their
extensive range, such as KEGG (Kyoto Encyclopedia of Genes and Genomes) [49], Metacyc [50],
and Reactome [51], to name a few, most of them do not provide information at the level of chemical
mechanisms and intermediate compounds of a reaction, except for MACiE [52], which still offers
rare data on biosynthetic sesquiterpene reactions. Also, graph databases can bring significant query
performance improvements for selected problems including metabolic networks [51], confirming their
suitability for this purpose. Table 1 shows an overview of some features of the 2Path-Sesquiterpenes
and its related works.

https://jakobandersen.github.io/mod/
http://iqce.jp/GRRM/index_e.shtml
http://iqce.jp/GRRM/index_e.shtml
http://iqce.jp/GRRM/index_e.shtml
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Table 1. A summary of some features of the 2Path-Sesquiterpenes and its related works.

Molecules Reactions Focus Storage for results Biological Evidence

2Path-Sesquiterpenes Undirected graphs Graph rewrite rules Plant sesquiterpenes Graph database Scenarios
Isegawa et al. [45] Internal AFIR/GRRM Sesquiterpenes Internal -
RetroRules [22] SMART SMIRKS General - RetroRules
BioTransformer [21] SMART SMIRKS General - MetXBioDB

4. Methods

4.1. Molecules as Undirected Graphs, Graph Transformation, Hypergraphs, and Integer Hyperflows

Labeled graphs are commonly used in the chemical literature to represent molecules. Undirected
graphs are a convenient and natural way to model chemical molecules where the vertices denote
atom types and the number of edges between the vertices denotes bond types. An undirected graph
G can be defined as an ordered pair (V, E) consisting of a nonempty set of vertices V and a set of
edges E disjoint of V [53]. Figure 5 shows an example of this abstraction for representing molecules as
undirected graphs where Figure 5a shows the set of vertices V composed of v1 and v2 and Figure 5b
shows the set of vertices V composed by v1 and v2.

e1v1 v2 

V = {v1, v2} 
E = {e1} 

e1 = (v1, v2) 

e1C H 

V = {C, H} 
E = {e1} 

e1 = (C, H) 

(a) A single edge representing a single bond.

e1

e2v1 v2 
V = {v1, v2} 
E = {e1, e2} 
e1 = (v1, v2) 
e2 = (v1, v2) 

e1 
e2C O 

V = {C, O} 
E = {e1, e2} 
e1 = (C, O) 
e2= (C, O) 

(b) Two edges representing double bonds.

Figure 5. The general concepts of undirected graphs and their abstraction for representing molecules
as undirected graphs using labels as atoms and number of edges as bonds.

Graph grammars are formal systems describing rule-based graph transformation that generalize
the much more commonly used term-rewriting systems [54]. In this context, the rules of a graph
grammar transform undirected graphs (molecules) in other undirected graphs (molecules) through
rules of a given graph grammar formalism. Thus, chemical reactions correspond to the transformations
of graphs with particular features:

(i) Reactions may change the number of molecules; hence, both input (substrate) and output
(product) graphs are not necessarily connected.

(ii) All atoms are preserved, i.e., a chemical reaction defines a bijection between the vertex sets of
input and output graphs.

(iii) Electrons are preserved as well, implying restrictive conditions on the way edges (bonds) can
change, corresponding to chemical reaction mechanisms.

We favor the so-called double pushout (DPO) formalism [55] as a model of chemistry because it
guarantees the structural reversibility of reactions [56] and it conveniently exposes the representation
of the chemical transition state as part of the rule. In DPO graph rewriting, a transformation rule

is of the form p = (L l←− K r−→ R) where L, R, and K are the left graph, right graph, and context
graph, respectively. These three graphs are connected by graph morphisms l : K → L and r : K → R,
describing the embedding of the context into the L and R. The application of the rule p to a graph G
requires that L “matches” a part of G. The existence of another graph morphism captures this, the
matching morphism m : L→ G. Together, the rule p and the matching morphism m uniquely define the

transformation G
p,m
=⇒ H of the substrate G to the product H by requiring that all morphisms in the

following commutative diagram exist:
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L K R

G D H

m

l r

(1)

In the context of modeling chemistry, we consider only injective graph morphisms, and we require
that the restrictions of r and l to the vertex sets are bijective, ensuring a preservation of the atoms.
Since each chemical reaction transforms a set of substrate molecules into a set of product molecules,
chemical networks are directed hypergraphs, with molecules as vertices and concrete reactions as
hyperedges. The iterated application of reaction rules to a set of starting molecules generates the
network (directed hypergraph) of reachable molecules, i.e., the chemical space defined by the given
starting molecules and reaction rules. Figure 6 shows a concrete example of a rule denoting the OPP
loss and its application as a matching morphism in a molecule of FPP according to Diagram (1).

Figure 6. An example of a graph grammar rule for the OPP loss applied to the FPP molecule.
The resulting pathway is a directed hypergraph with the reachable molecules.

Chemical reactions preserve mass, atom types, and charges. Chemical reaction pathways,
therefore, form flows in the reaction hypergraph that connect a set of input molecules with a set
of output molecules [39,57]. As an immediate consequence, reachability questions in chemical reaction
networks translate into the existence of integer flows [26], which is efficiently evaluated by means of
Integer Linear Programming (ILP).
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4.2. Simulations

Simulations were performed using MedØlDatschgerl (MØD) [25], a software package that combines
a DPO graph rewriting engine and an ILP solver to generate and analyze large-scale reaction networks.
MØD provides a Python interface (the Python 3 module PyMØD comprising bindings to the underlying
library libMØD) as well as a system of generic exploration strategies [58] to guide and restrict the
generation process. Graph transformation rules are specified manually in GML format [59]; substrate
molecules can be provided either in GML or SMILES [60] format.

We have designed DPO graph transformation rules representing chemical mechanisms involved
in the production of the plant sesquiterpenes β-caryophyllene, α-humulene, and β-farnesene from its
precursor FPP, exploring the generation of distinct compounds through simulations with varying sets
of rules. The presented simulations are available on GitHub. Figure 7 shows the rules employed in
Simulation 01, Figure 8 shows the rules employed in Simulation 02, and Figure 9 shows the rules that,
together with rules of Figures 7 and 8, were employed in Simulation 03.

(a) The OPP loss from FPP.

(b) The OPP gain from FPP.

Figure 7. The graphical representation of the set of graph grammar rules used in Simulation 01.

4.3. Database Storage

NoSQL Graph Databases are Database Management Systems (DBMS) that can store graphs
natively. They have been used in research with biological data, especially in cases where data
integration is a determining factor [37]. In this work, we have used the Neo4J graph database to
optionally store both the generated sesquiterpenes biosynthesis pathways and the previous data
knowledge from Scenarios. The database was named 2Path-Sesquiterpenes, and its schema was
modeled using the graphical diagram description called GRAPHED [61]. The modeled schema
showed in Figure 10 minimizes the transition from the generated hypergraph and links it to the data
from Scenarios. It makes it possible to associate the metadata to the predicted pathways to establish
a relationship between the predictions and biological evidence.

https://jakobandersen.github.io/mod/
https://github.com/waldeyr/InSilicoMetabolicModelingAndEngineering/tree/master/rules
https://github.com/waldeyr/InSilicoMetabolicModelingAndEngineering
https://github.com/waldeyr/InSilicoMetabolicModelingAndEngineering/blob/master/simulation_01/processes_simulation_01.py
https://github.com/waldeyr/InSilicoMetabolicModelingAndEngineering/blob/master/simulation_02/processes_simulation_02.py
https://github.com/waldeyr/InSilicoMetabolicModelingAndEngineering/blob/master/simulation_03/processes_simulation_03.py
https://github.com/waldeyr/InSilicoMetabolicModelingAndEngineering/blob/master/simulation_01/processes_simulation_01.py
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(a) The OPP loss from FPP.

(b) C1 to C11 cyclization.

(c) C2 to C10 cyclization.

(d) H+ loss.

Figure 8. The graphical representation of the set of graph grammar rules used in Simulation 02.

https://github.com/waldeyr/InSilicoMetabolicModelingAndEngineering/blob/master/simulation_02/processes_simulation_02.py
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(a) C1 to C10 cyclization.

(b) C1 to C2 hidrid shift.

(c) C1 to C3 hidrid shift.

(d) H2O gain.

Figure 9. The graphical representation of the set of graph grammar rules that, together with Rules of
Figures 7 and 8, were used in Simulation 03.

In the 2Path-Sesquiterpenes database, the nodes labeled as Compound represent the compounds
generated during the simulation. The nodes labeled as Reaction represent the directed hyperedges,
i.e., a chemical mechanism meant by an application of a graph grammar rule. All relationships between
a Compound and a Reaction are directed and labeled as TO. Figure 10 shows all data inside each Node.

The 2Path-Sesquiterpenes database nodes labeled as Scenarios provide a kernel of manually
curated biological experimental evidence about constraints under which the compound are produced.
The Scenarios provide an NCBI accession number for the enzymes; a PUBMED accession number for
the associated publication with the experimental results; the experimental conditions; the plant tissue
using EMBL-EBI Plant Ontology (https://www.ebi.ac.uk/ols/ontologies/po); the compound yield;
the EC numbers for the reactions; and the cross references to KEGG [49], Rhea [62] and ExploEnz
(IUBMB) [63] in a taxonomic range of species. A relationship labeled as OCCURS is created between
a node Scenarios and a node Compound when there is a biological scenario supporting the biosynthesis
of this predicted compound.

https://github.com/waldeyr/InSilicoMetabolicModelingAndEngineering/blob/master/simulation_03/processes_simulation_03.py
https://www.ebi.ac.uk/ols/ontologies/po
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TO

OCCURS

Compound: 
 

* id: String 
modId: String 

modName: String 
pubchem: String 

chemspider: String 
commonName: String 

molecularFormula: String 
molecularWeight: String 

monoisotopicMass: String 
averageMass: String 
nominalMass: String 

simles: String 
imageUrl: String 

TO

Rule: 
 

*id: String 
modName: String 

Scenario: 
 

* id: String 
scenarioID: String 
ncbiTaxon: String 

ncbiSpecies: String 
ncbiAccession: String 

pubmedAccession: String 
modName: String 
experiment: String 

tissue: String 
condition: String 

compoundYield: String 
ec: String 

kegg: String 
rhea: String 

iubmb: String 
 

1..n

1..n 0..n

1..n

1..n0..n

Figure 10. A 2Path-Sesquiterpenes database scheme: Each Compound can be related to zero or more
Rules. Each Rule needs to be related to one or more Compound. Each Compound can be related to
zero or more Scenarios.

5. Conclusions

Rule-based generative transformation systems, such as the graph grammars used here,
provide a mathematically sound way to answer reachability questions in combinatorial, potentially
infinite, search spaces. Here, we have used DPO graph transformations, as implemented
by MedØlDatschgerl [25] to model the specific combination of cyclizations reactions catalyzed by
plant sesquiterpene synthases (STPS) using a small number of transformation rules. The results
help to explain the diversity of sesquiterpenes, including common plant sesquiterpenes as
β-caryophyllene,α-humulene, and β-farnesene, through combinations of specific cyclization reactions.
The generative approach produces a local view of the metabolic or chemical network that is naturally
represented as a hypergraph. Reachability then translates to the existence of pathways, which can be
decided by integer linear programming. The networks and pathways are exported to a PDF report and
optionally can be stored and traversed in a graph database adhering to FAIR Guiding Principles [24].
This makes it possible to integrate into the database the predicted results by simulations with Scenarios,
which are experimental evidence on the biosynthesis reactions from the literature. Computational de
novo pathway discovery is of particular interest for reactions catalyzed by multi-product enzymes
as in the case of STPS because the combinatorial complexity of products in a multistep synthesis
quickly exceeds the limits of manual analysis. It also enables a systematic analysis of the synthetic and
heterologous biology with potential applications, e.g., in sustainable bioeconomy. The work presented
here is intended as a proof of concept. In future work, it will be expanded in several directions.
Additional graph grammar rules can be included to extend the space of reachable sesquiterpenes
and/or to include other classes of terpenes. Functionalization to a broad array of terpenoids can also
be modeled by the generative approach discussed here. On the other hand, we plan to expand the
collection of experimental scenarios and to develop a user-friendly interface to facilitate the integration
of experimental knowledge and computational predictions.
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Abbreviations

The following abbreviations are used in this manuscript:

AAM Atom to Atom Mapping
AFIR Artificial Force-Induced Reaction
CBM Constraint-based models
DBMS Database Management Systems
DMAPP Dimethylallyl Pyrophosphate
DPO Double pushout graph rewriting
FAIR Findability, Accessibility, Interoperability, and Reuse of digital assets
FBA Flux Balanced Analysis
FPP Farnesyl Diphosphate
GGPP Geranylgeranyl Diphosphate
GML Graph Modeling Language
GRRM Global Reaction Route Mapping
GPP Geranyl Diphosphate
ILP Integer Linear Programming
IPP Isopentenyl Pyrophosphate
IUBMB International Union of Biochemistry and Molecular Biology
MEP Methylerythritol phosphate pathway
MVA Mevalonate pathway
NPP Nerolidyl Diphosphate
NoSQL Not Only Structured Query Language
OPP Diphosphate
PDF Portable Document Format
PGDB Pathway/Genome database
STPS Sesquiterpene Synthases
TPS Terpene Synthase
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