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Abstract: This research developed and tested a filter algorithm that serves to reduce the feature space
in healthcare datasets. The algorithm binarizes the dataset, and then separately evaluates the risk
ratio of each predictor with the response, and outputs ratios that represent the association between a
predictor and the class attribute. The value of the association translates to the importance rank of the
corresponding predictor in determining the outcome. Using Random Forest and Logistic regression
classification, the performance of the developed algorithm was compared against the regsubsets
and varImp functions, which are unsupervised methods of variable selection. Equally, the proposed
algorithm was compared with the supervised Fisher score and Pearson’s correlation feature selection
methods. Different datasets were used for the experiment, and, in the majority of the cases, the
predictors selected by the new algorithm outperformed those selected by the existing algorithms.
The proposed filter algorithm is therefore a reliable alternative for variable ranking in data mining
classification tasks with a dichotomous response.

Keywords: data mining; classification; variable importance; filter algorithm; risk ratio; healthcare;
balanced classification accuracy

1. Introduction

The focus of this article is to design and test a filter algorithm that uses risk ratios (RR), otherwise
known as relative risk, to rank the importance of predictor variables in data mining classification
problems, with special attention to healthcare data. Variable importance ranking is the process that
assigns numeric values, or some other form of quantifiers, to individual predictors in a dataset,
indicating the level of their importance in predicting the outcome. After such a ranking has been
established, variables that rank low can be expunged from a predictive model without compromising
goodness of fit or predictive accuracy. Variable selection is necessary in the era of big data where
voluminous data is generated from healthcare activities, including diagnosis, epidemiology analysis,
and patient medical history. These data often consist of many attributes, some of which are not needed
in data mining classification, and thus the need to select only the relevant ones is imperative.

Consider a dataset D =
{
(X1, Y1), . . . , (Xm, Ym)

}
consisting of m observations, where

X = (X1, . . . , Xn) are predictor variables having dimension X ∈ Rn and Y ∈ C where C is a
class label. In data mining, classification is defined as a mapping of the form t : Rn

→ C where t
is a classifier [1]. One of the ways of measuring the performance of a classifier is by evaluating its
classification accuracy. That is, how accurately it can predict the classes of a set of vectors whose classes
are unknown. The predictive accuracy of classification models is enhanced by the choice of variables
used for model construction.
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In [2], classification accuracy evaluation methods have been divided into two categories: scalar
metrics and graphical methods. Scalar metrics compute accuracy by taking the ratio of correctly
classified observations versus total number of observations in the validation set. For binary classification
problems, scalar values representing accuracy are obtained from a confusion matrix, which is a
tabulation of wrong and correct classification for each class [2,3]. In graphical methods, such as a
receiver operating characteristics curve, accuracy is plotted on a x, y-axis to represent the tradeoffs
between the cost of correct or wrong classification into class 0 or 1 [3].

The RR, just like odds ratios (OR), is a statistical measure of the association between binary
variables across two different groups, where one group is referred to as the independent group while
the other as the dependent group [4,5]. While odds ratios are known to overestimate the strength of
association, the RR technique does not exhibit this demerit [6]. Additionally, odds ratios have the
property of reciprocity, which allows for the direction of an association to be changed by taking the
inverse of the OR estimate [6]. It turns out that RR does not exhibit this property. For the purposes
of variable importance ranking, the direction of association is usually from independent variable to
dependent variable and not vice versa; therefore, the lack of reciprocity in RR is a good property.
Cashing in on the usefulness of the RR measure, this study will construct an algorithm that first
binarizes data values of predictors in a dataset with a dichotomous response. Next, the algorithm
evaluates the RR of each predictor with the response, and then outputs a value that signifies the relative
importance of that predictor in determining the response. Computed values of RR will indicate the
strength of the association, with larger values meaning strong association and, thus, high importance.

Literature evidence indicates that risk ratios have been deployed previously for different purposes
within the healthcare domain. For example, [7] used RR to evaluate the extent to which red blood cells
transfusion strategies are associated with the risk of infection among patients. The study, conducted
on 7456 patient records, concluded that irrespective of the strategy used, blood transfusion was not
associated with reduced risk of infection, generally. However, transfusion strategies were found to be
associated with a minimized risk of specifically dangerous infections. In a related study, [8] used RR to
investigate the relationship between caregiving and risk of hypertension incidence among American
older adults. The research, conducted on 5708 Americans aged 50 years and above, held that caregiving
for a spouse is associated with the possibility of becoming hypertensive by the caregiver in the long
run. The association between diabetes and the possibility of prostate cancer incidence was investigated
by [9] using RR. The research reported risk ratios representing the extent of this association as 5.83,
2.09, and 1.35 for ages 40–64, 65–70, and 75 years and above, respectively, on a sample of 1 million
Taiwanese patients.

The aforementioned applications of RR in the healthcare domain give evidence that this technique
holds good prospects for further deployment in this area. To our knowledge, risk ratios have so far
been applied only in cohort and specific studies, with results limited in scope and generalization
potentials. Against this backdrop, this research will explore the possibility of using the RR as the basis
for developing a generic variable importance ranking algorithm. The algorithm will facilitate reduction
of the dimension space of any healthcare dataset in order to enhance predictive accuracy and efficiency.

There are basically three categories of variable selection methods: filter, embedded, and
wrapper [10]. The filter methods do not depend on any machine learning algorithm [11]. Filters are
executed on raw datasets as a form of preprocessing in order to determine the appropriate predictor
subset that will produce the most accurate classification results. On their own, filter algorithms
cannot tell how effective a selected subset can be for model construction, unless a particular learning
algorithm is deployed. Embedded methods are dependent on particular machine learning models.
They incorporate variable selection mechanisms into the model construction algorithms such that
learning and variable selection work hand-in-hand [10]. Wrapper methods scan through the variable
space, evaluating different subsets using the machine learning algorithm itself to determine the subset
that produced the best-performing model [12]. Three commonly used techniques of wrapper methods
are forward selection, backward elimination, and recursive elimination.
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2. Literature Review

This section covers the review of existing variable selection techniques relevant to this research.
The materials to be used in the design of the proposed algorithm and for testing its effectiveness are
also presented in this section.

2.1. Filter Methods of Variable Selection

According to [12], filter methods of variable selection use statistical techniques to evaluate the
correlation of each predictor with the outcome variable. Filtering attempts to find a subset of attributes
that are highly correlated with the class variable but at the same time exhibits low inter-correlation
among each other [13]. This process of variable selection does not work in conjunction with any
classification algorithm. It is after the best attributes have been filtered out that a machine learning
algorithm can be deployed to perform classification on the best variables. Some commonly used filter
methods are the Fisher score and Pearson’s correlation. These algorithms achieve variable selection in
a supervised manner.

Fisher Score. For a dataset with binary class (0/1), the Fisher score (Fi) evaluates the importance
of the i-th predictor by using Equation (1):

Fi = |
X1(i) −X0(i)
d2

1(i) − d2
0(i)
| (1)

where X1(i) and d1(i) are the mean and standard deviation of the i-th predictor in class 1, respectively;
while X0(i) and d0(i) are the same parameters in class 0 [14]. Higher Fisher scores indicate that a
variable is strongly associated with the outcome variable.

Pearson’s Correlation. One of the correlation-based filter techniques is the Pearson correlation,
given in Equation (2) [15].

Pi =
Cov(Xi, Y)√

Var(Xi) ×Var(Y)
(2)

where Xi is the i-th feature, Y is the class label, and Cov() and Var() are the covariance and variance,
respectively. This measure ranks predictor variables according to their individual linear dependence
with the output variable.

2.2. Unsupervised Variable Selection

Automatic Variable Selection. The R programming language, developed by R Core Team, [16],
has a package called leaps that consists of a function, regsubsets, used for automatic selection of
best variables [17]. The function can be used to achieve variable selection in either of three ways: by
specifying the maximum number of best variables to return, by forward selection, and by backward
elimination. In order to select the best subset of a particular size, the number of desired variables is
specified in the nvmax argument.

Another alternative is to utilize the regsubsets function to perform forward selection or backward
elimination in selecting subsets according to their importance. When this is executed, the function
selects and returns the most important variables for modeling. Apart from selecting the best subsets,
regsubsets ranks select variables according to importance. This is done by indicating against each
variable one or more asterisks. The number of asterisks assigned to a variable is proportional to
its importance.

Variable Importance Measure. The R language consists of another package, known as caret for
Classification And REgression Training [18]. One of the functions within the caret package is the varImp
(variable importance), which implements variable importance ranking for different machine learning
algorithms, such as Logistic regression and Random Forest. To evaluate the importance of variables
in a Random Forest model using varImp, the importance of a predictor variable X j, j = 1, . . . , n is
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calculated on the out-of-bag (OOB) data sample for each tree that was not used for tree construction.
Initially, the predictive accuracy of the OOB sample is evaluated. Then, the values of X j in the OOB are
permuted; keeping all other predictor variables unchanged. The predictive accuracy of the shuffled
data values is also measured and the mean predictive accuracy across all trees is reported. By doing so,
the importance of a variable in predicting the response is quantified by evaluating the difference of
how much including or excluding that variable decreases or increases accuracy [18–20]. This difference
is referred to as the Mean Decrease Accuracy (MDA), and is computed by the formula shown in
Equation (3) [21,22].

I(X j) = MDA(X j) =
1
n

n∑
t = 1

∑
i∈OOB

I(yi = b(Xi)) −
∑

i∈OOB
I(yi = a(X j

i ))

|OOB|
(3)

where n is the total number of trees and t is a particular tree, t = 1, . . . , n. In Equation (3), yi = b(Xi)

is the predictive accuracy for OOB instance Xi before permuting X j and yi = a(X j
i ) is the predictive

accuracy for OOB instance Xi after permuting X j, while |OOB| is the number of data samples not used
in tree construction.

In the case of Logistic regression models, the varImp function evaluates the importance of a
predictor variable using the absolute value of the t-statistic for that predictor.

2.3. Relative Risk (RR)

The formal definition of Relative Risk to be used in the algorithm design is given as: Let t11= total
data points where X = 1 and Y = 1, t10 = total data points where X = 1 and Y = 0, t01 = total data
points where X = 0 and Y = 1, and t00 = total data points where X = 0 and Y = 0 for a binary
independent variable X and a binary dependent variable Y. Then, the relative risk is given by

RR =
t11/(t11 + t10)

t01/(t01 + t00)
=

(
t11

t11 + t10

)
·

(
t01 + t00

t01

)
. (4)

The relative risk in Equation (4) is represented in tabular form as shown in Table 1 [4,5,23].

Table 1. Tabular definition of relative risk (RR).

Y = 1 Y = 0 Total

X = 1 t11 t10 t11 + t10
X = 0 t01 t00 t01 + t00

The independent variable,X, is referred to as the exposure, with 0 and 1 as the unexposed and
exposed, respectively. On the other hand, the dependent variable, Y, is referred to as the incidence or
risk of an event among the various exposure groups, with 0 and 1 representing event failure and success,
respectively [4]. Relative risk measures the ratio of the incidence of an event among data points within
the exposed group compared with the incidence of that same event in the unexposed group [5,23].
Exposure in this context could be any criterion of measurement by which data is generated. The RR
values range from 0 to infinity, where RR = 1 signifies that no association exists between X and Y,
RR < 1 indicates a negative association between X and Y, and RR > 1 shows that X and Y are positively
associated [23–25].

2.4. Classification Tools

Logistic regression is a modeling tool used in examining the association between a categorical
dependent variable and one or more independent variables of a set of observations [26]. This regression
type is anchored on the logistic function where values must lie between 0 and 1, corresponding to class
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labels. The probabilities indicating the possibility of an observation belonging to a certain class are
modeled using the logistic equation, log

(
P

1−P

)
= b0 + b1X1 + . . .+ bnXn, where P is the probability of

success, P/(1− P) is the odds, b0 is the intercept, b1, . . . , bn are parameter estimates, and X1, . . . , Xn are
data values corresponding to each independent variable [27,28].

Meanwhile, Random forest is a machine learning tool that combines many tree predictors{
h(X, vk), k = 1, . . . , n

}
, where X is an input vector and {vk} are independent random vectors within

the same distribution across all trees in the forest [1,29]. In order to determine the class of an input
vector X, each tree casts a single vote and the class with more votes is selected [1].

Predictive Accuracy. The predictive accuracy and the balanced classification accuracy (BCA) are
defined by

Accuracy =
T+ + T−

T+ + T− + F+ + F−
(5)

and

BCA = 0.5×
[

T+

T+ + F−
+

T−

T− + F+

]
(6)

respectively, where, T+ is the number of correctly classified observations in class 1, T− is the number of
correctly classified observations in class 0, F+ is the number of observations in class 0 but wrongly
classified in class 1, and F− is the number of observations in class 1 but wrongly classified in class 0 [30].

3. Methodology

3.1. Experimental Datasets

A number of datasets, mostly from the healthcare domain, were deployed to demonstrate the
effectiveness of the proposed algorithm in feature selection. Since the proposed algorithm places
emphasis on a dichotomous response, each experimental dataset considered in this experiment has a
binary outcome. The considered datasets are listed below:

• Psychological Capital (PsyCap). This dataset carries psychological capital (PsyCap) information
of some workers in the hospitality industry. Psychological capital measures the capabilities of an
individual that enable them to excel in the work environment [31]. Each worker’s PsyCap was
assessed on the four components of psychological capital (hope, efficacy, resilience, and optimism),
using the questionnaire presented in [32]. The workers willingly completed the questionnaires
and returned the same, and there were no requirements for prior ethics approval. The dataset has
a binary class variable, where 0 and 1 represent low and high PsyCap, respectively.

• Diabetes in Pima Indian Women (Diabetes). The dataset consists of 332 observations about diabetes
test results of Indian women of Pima indigene. The population sample was those from 21 years
and above, residing in Arizona. This dataset, accessible through the R language “MASS” package,
reported in [33], is named Pimat.te within the package, and was originally sourced from [34]. The
dataset has a binary response variable named “type”, where 0 and 1 signify non-diabetic and
diabetic, respectively.

• Survival from Malignant Melanoma (Melanoma). This dataset, available in the R package “boot”,
records information on the survival of patients from malignant melanoma [35]. The patients
had surgery at the Department of Plastic Surgery of the University Hospital, Odense, Denmark,
between 1962 and 1977. Several measurements were taken and reported as predictor variables,
with a binary class “ulcer”, where 1 indicates an ulcerated tumor and 0, non-ulcerated.

• Spam E-mail Data (Spam). The dataset consists of e-mail items with measurements relating to
total length of words written in capital letters, numbers of times the “$” and “!” symbols occur
within the e-mail, etc.; and a binary class variable, “yes”, with 1 classifying an e-mail as spam and
0 otherwise. The dataset, titled spam7, can be accessed in the R package “DAAG” [36].
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• Biopsy Data of Breast Cancer Patients (Cancer). Named biopsy in the R package, “MASS” in [33],
the dataset measures the biopsies of breast tumors on a number of patients. The dataset was
obtained from the University of Wisconsin Hospital, Madison, with known binary outcome named
“class”, where 0 = benign and 1 = malignant.

Some characteristics of the experimental datasets are presented in Table 2.

Table 2. Properties of the experimental datasets.

Dataset Predictors Records Class 0 Class 1

PsyCap 20 329 68 261
Diabetes 7 332 223 109

Melanoma 6 205 115 90
Spam 6 4601 2788 1813

Cancer 9 683 444 239

3.2. Design of Proposed Algorithm

In this section, we will consider X j, j = 1, . . . , n as a set of predictors in a high dimensional space
Rn. In most cases, especially with big data, some of these predictors are irrelevant, duplicative, and,
thus, not needed in machine learning tasks [37]. Usually, the objective is to reduce the number of
predictors to k where k < n, such that k consists of the most relevant explanatory variables needed in
classification. This is the objective the proposed algorithm seeks to achieve.

Let RawData denote a dataset consisting m observations, n predictors, and the outcome variable yi.
Let RawDat[i, j] denote a data point at row i, column j where i = 1, . . . , m and j = 1, . . . , n.

Preprocessing. This algorithm will require a normalized dataset on the interval [0,1], also referred
to as min-max normalization [38,39]. The proposed algorithm, presented in Appendix A, will take the
following steps:

• The first step of the proposed algorithm, as presented in Listing 1, is to binarize the dataset. It is a
requirement that both independent and dependent variables carry only binary values for the risk
ratio measure to be deployed. On purpose, we did not design the algorithm to print the output of
the binary dataset. This is to guard against users inadvertently using the binary dataset for model
construction. The binary data is only useful for RR computation, after which classification models
are fit on the original dataset.

• In the second step, listed in Listing 2, the algorithm counts, for each predictor X and the class Y,
all occurrences where (X, Y) = (1, 1), (1, 0), (0, 1) and (0, 0). Just as in step 1, these computations
are kept behind the scene, without printing any output visible to the user.

• The third step, listed in Listing 3, applies the risk ratio formula of Equation (4) on the values
computed in Listing 2 to produce the variable importance rankings. This algorithm outputs the
importance rankings of the variables in the order the predictors appear in the dataset. For a better
view of the results, the user may decide to arrange the output in ascending or descending order. It
is upon the judgment of the modeler to determine the cutoff point of those variables to include in
a model.

• The statement on line 44 of the algorithm, in Appendix A, will output the names of predictor
variables and their RR values, separated by a tab, each on a separate line. Each RR value constitutes
the importance rank of the corresponding predictor, signifying the extent to which it is associated
with the class.

The processes involved in feature ranking by the proposed algorithm are shown in the pseudo
code below:
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Algorithm 1. Pseudo code

1. START
2. Convert dataset to binary, that is, round all values < 0.5 to 0 and > = 0.5 to 1
3. FOR each input/output, DO the following:
4. IF INPUT is 1
5. AND OUTPUT is 1 THEN
6. Count t11 that is δ j = δ j + 1
7. ELSE Count t10, that is β j = β j + 1
8. END IF
9. IF INPUT is 0
10. AND OUTPUT is 1 THEN
11. Count t01 that is φ j = φ j + 1
12. ELSE Count t00, that is ϕ j = ϕ j + 1
13. END IF
14. NEXT input/output
15. IF All input/output are exhausted, compute the following:
16. FOR each variable j = 1 to n
17. lowerSum j = δ j + β j

18. upperSum j = φ j + ϕ j

19. firstRatio j =
δ j

lowerSum j

20. secondRatio j =
upperSum j

φ j

VIM j = f irstRatio j × secondRatio j

21. PRINT columnName j and space, and VIM j

22. NEXT variable
23. STOP

A higher value of VIM for a predictor signifies strong association with the class, and consequently
indicates its importance in classification. This algorithm is summarized in Equation (7).

VIM j =


m,n∑

i = 1, j = 1
δi j

m,n∑
i = 1, j = 1

δi j +
m,n∑

i = 1, j = 1
βi j

·


m,n∑
i = 1, j = 1

φi j +
m,n∑

i = 1, j = 1
ϕi j

m,n∑
i = 1, j = 1

φi j

 (7)

where VIM j is the importance ranking of the jth predictor, j = 1, . . . , n, δi j is the total number of
observations with input = 1 and output = 1, βi j is the total number of observations with input = 1 and
output = 0, φi j is the total number of observations with input = 0 and output = 1, and ϕi j is the total
number of observations with input = 0 and output = 0.

3.3. Experiment and Results

Execution of the Proposed Algorithm on the Datasets. The proposed algorithm was executed on
all the datasets in order to rank the variables according to importance. The existing varImp function
and the regsubsets methods (nvmax, forward, backward) were also deployed to rank the variables.
Equally, the Fisher score and Pearson’s correlation were deployed. This was done in order to compare
the effectiveness of the proposed algorithm against existing methods of variable selection.

Two machine learning algorithms, namely Logistic Regression and Random Forest, were used in
the experiment for model construction, evaluation of goodness of fit, and predictive accuracy. Samples
of variable ranking results on the Diabetes and Melanoma datasets are shown in Table 3.
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Table 3. Variable ranking results of Diabetes and Melanoma datasets.

Diabetes Dataset Melanoma Dataset

Proposed Algorithm varImp in Caret Proposed Algorithm Fisher Score

Variable Ranking Variable Ranking Variable Ranking Variable Ranking

Glu 3.8438 Glu 43.4587 thickness 2.5556 thickness 0.4200
Npreg 3.7508 Age 21.0085 sex 1.5262 time 0.1500

Bmi 3.5803 Bmi 16.4553 age 1.2159 status 0.1500
Ped 3.4098 Skin 10.4756 year 1.1561 sex 0.0580
Age 2.4550 Npreg 7.9362 status 0.6324 age 0.0320
Skin 2.0050 Pped 7.1898 time 0.5242 year 0.0022
Bp 1.2672 Bp −1.6153

Performance evaluation of the proposed algorithm in comparison with existing algorithms was
done in two steps. First, the goodness of fit of models developed using variables selected by the new
algorithm and existing ones was examined, and secondly, the predictive accuracy evaluation was
carried out.

Goodness of Fit Evaluation. The goodness of fit test was assessed on two metrics: deviance and
Mean Squared Error (MSE). In Logistic regression models, two deviance types are reported: null
deviance and residual deviance [40]. The residual deviance is calculated cumulatively as predictors
are added to the model. The difference between the final residual deviance and the null deviance
explains the goodness of fit of a model. When comparing two models, the model with the smallest
deviance is said to have better fit. The MSE is a parameter-free measure that gives information on the
difference between actual and predicted values [41]. Lower values of MSE for a model indicate better
fit. A sample result of the goodness of fit test of the various models is presented in Table 4.

Table 4. Goodness of fit evaluation according to varlmp and the proposed algorithm.

varImp Proposed Algorithm

Dataset Subset Size Deviance MSE Subset Size Deviance MSE

PsyCap 8 231.9 1.4 8 204.1 1.2
Diabetes 3 87.5 0.83 3 92.7 0.73

Melanoma 5 49 1.2 5 37.3 1.1
Spam 3 1017.7 1.3 3 929 1.4

Cancer 5 638.4 1.7 5 631.4 1.1

The goodness of fit results presented in Table 4 show that the subsets selected by the proposed
algorithm competed favorably with those selected by the existing varImp algorithm.

Predictive Accuracy Evaluation. The results of the predictive accuracy test of models constructed
with subsets selected by the proposed algorithm compared with those constructed with variables
selected by existing algorithms were examined. Before fitting the models, each dataset was split
into 80% and 20% train and test sets, respectively. The train sets were used for model construction,
while the test sets were used to evaluate the predictive power of the models. Typically, the predictive
accuracy is computed using Equation (5). However, Equation (5) assumes that classes of the dataset
are balanced. This is usually not the case in real life as could be seen in Table 2, where the number of
observations in class 0 is not same as that in class 1 across all experimental datasets. For imbalanced
datasets, the balanced classification accuracy (BCA) defined in Equation (6) is applied to calculate
predictive accuracy.

In this article, the BCA was used throughout the experiments for predictive accuracy computations.
The proposed algorithm was executed on all the datasets to obtain importance rankings of predictor
variables. After generating the rankings, the best subsets were selected for modeling using Random
Forest and Logistic regression classification. Two criteria were adopted in arriving at best subsets.
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The first option was to sequentially select all variables with ranking values close to each other until
there is an unusual decline with subsequent variables down the group. The second option was to
keep adding variables with reasonably high ranking values until further additions do not improve
model performance. Existing ranking algorithms, namely regsubstes (nvmax, forward, and backward),
varImp, Fisher score, and Pearson’s, were equally executed on the datasets. The best subsets generated
by these algorithms were selected for modeling.

The balanced classification accuracy of each model was computed on the test sets of the datasets,
yielding the results presented in Tables 5–9. The Table 5 indicates the predictive accuracy comparison of
various ranking algorithms on the PsyCap dataset, while Table 6 reports results of predictive accuracies
on the Diabetes dataset. Relatedly, Table 7 reports various predictive accuracies generated by each
ranking algorithm on the Melanoma dataset, while Table 8 presents accuracy results on the Spam
dataset. In Table 9, the predictive accuracies on the Cancer dataset for the various ranking algorithms
are reported.

Table 5. Ranking methods performance comparison on the PsyCap dataset using Random forest.

Ranking Method F B N V F.S. P P.A.

Subset size 8 8 5 5 6 8 5
BCA (%) 83 83 88 82 88 87 89

F: Forward selection; B: Backward elimination; N: Nvmax; V: varlmp; F.S.: Fisher score; P: Pearson’s correlation;
P.A.: Proposed Algorithm.

Table 6. Ranking methods performance comparison on the Diabetes dataset using Logistic regression.

Ranking Method F B N V F.S. P P.A.

Subset size 3 3 3 5 4 2 3
BCA (%) 74 80 81 82 77 77 83

F: Forward selection; B: Backward elimination; N: Nvmax; V: varlmp; F.S.: Fisher score; P: Pearson’s correlation;
P.A.: Proposed Algorithm.

Table 7. Ranking methods performance comparison on the Melanoma dataset using Logistic regression.

Ranking Method F B N V F.S. P P.A.

Subset size 4 4 4 5 3 3 5
BCA (%) 71 71 70 66 66 72 73

F: Forward selection; B: Backward elimination; N: Nvmax; V: varlmp; F.S.: Fisher score; P: Pearson’s correlation;
P.A.: Proposed Algorithm.

Table 8. Ranking methods performance comparison on the Spam dataset using Logistic regression.

Ranking Method F B N V F.S. P P.A.

Subset size 4 4 5 3 2 2 3
BCA (%) 68 68 72 72 71 71 71

F: Forward selection; B: Backward elimination; N: Nvmax; V: varlmp; F.S.: Fisher score; P: Pearson’s correlation;
P.A.: Proposed Algorithm.

As could be observed in Tables 5–9, the variable subsets selected by the proposed algorithm
performed competitively with the selection by existing algorithms.
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Table 9. Ranking methods performance comparison on the Cancer dataset using Logistic regression.

Ranking Method F B N V F.S. P P.A.

Subset size 5 5 4 4 3 3 5
BCA (%) 97 97 92 91 97 97 98

F: Forward selection; B: Backward elimination; N: Nvmax; V: varlmp; F.S.: Fisher score; P: Pearson’s correlation;
P.A.: Proposed Algorithm.

4. Discussion

A predictive accuracy test was conducted in order to determine how well the variables selected
by both existing algorithms and the proposed algorithm can predict the outcome variable Y on the
validation set. Output was determined as probabilities of the form P(Y = 1

∣∣∣Xi), where Xi is the
data value for each predictor, i = 1, . . . , n. The boundary used in making a decision was 0.5. What
the program typically did was that, if P(Y = 1

∣∣∣Xi) > 0.5 then Y = 1, otherwise Y = 0. When this
test was run on the different models generated by the various ranking algorithms, their respective
predictive accuracies were obtained using Equation (6).

Figures 1 and 2 represent graphically that variables selected by the proposed algorithm in all
datasets produced higher predictive accuracies, except in one instance, compared with the selections by
the existing algorithms. Therefore, the new algorithm can be said to be a good choice of filter variable
ranking in machine learning classification.
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Figure 2. BCA results of the ranking algorithms, where F: Forward selection; B: Backward elimination;
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Apart from selecting variable subsets that resulted in good model performance, another plus
for the proposed algorithm over the existing algorithms is the way ranking values are presented
to the user. As could be observed in Table 3, one of the ranking values in the diabetes dataset is a
negative number. For quick insights into how much one predictor is more or less important than
another, it would be better for all values to carry the same sign across the board. The Pearson’s is a
correlation-based method, which means all ranking values produced will fall within the interval [−1,1].
In big data, where some datasets consist of a high number of features, say 100 and above, ranking
the entire feature space within this interval may not give quick visual insights. The RR deployed in
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the proposed algorithm produces values within the range of 0 to infinity. This range seems more
appropriate for representing ranking values when the feature space is large.

5. Conclusions

In the era of big data, where voluminous, high-dimensional data are constantly being generated
from healthcare delivery activities, it is necessary to pay more attention to the problem of variable
selection. The majority of the attributes that come with historical or daily data are usually not necessary
in modeling. When such unimportant attributes are not eliminated before model construction, many
metrics of model diagnostics, such as variance, deviance, degrees of freedom, and predictive accuracy,
are negatively affected. Furthermore, machine learning algorithms train slower, and constructed
models are over-fitted and more complex to interpret if irrelevant predictors are included. The ranking
algorithm developed in this research, which performs competitively with some existing algorithms,
will be a useful tool for dimensionality reduction in healthcare data to guard against these unwanted
results in classification.

As could be observed in Figures 1 and 2, this algorithm demonstrates that it is more appropriate
for healthcare datasets than other domains. Better performance was recorded in the cancer, PsyCap,
diabetes, and melanoma datasets compared with the spam e-mail dataset. The algorithm achieves
a variable importance ranking by employing the statistical measure of risk ratio to evaluate the
association between a predictor and the response. Predictors exhibiting a strong association with
the class will be selected for classification, while those with a weak association will be excluded.
The algorithm does not include a means of determining a threshold of which variables to include
in a model. It is left to the discretion of the modeler to apply trial and error in adding or removing
variables based on the ranking and performance of previous models. In future research, the algorithm
should be extended to be able to determine a cut-off point of important variables algorithmically. Also,
the possibility of implementing this algorithm in a way that makes it compatible with open-source
languages, such as R, should be explored. As a candidate filter method, the algorithm is independent
of any machine learning tool. It is meant to effect variable selection as a preprocessing activity, after
which any modeling tool can be applied for model fitting proper. The algorithm is generic; thus, it can
execute on any healthcare dataset, provided it is numeric with a dichotomous response.
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Appendix A

Algorithm A1. Proposed Algorithm

• Step 1. Binarizing the Dataset

1. //Listing 1. This step converts all input values to binary
2. For j = 1 to n //counts columns
3. For i = 1 to m //counts rows
4. IF RawData [i, j] < 0.5 Then
5. RawData [i, j] = 0 //round down values to 0
6. ELSE RawData [i, j] = 1 //round up values to 1
7. END IF
8. Next i
9. Next j

• Step 2. Counts Occurrences of t11, t10, t01, t00

10. //Listing 2. This step counts t11, t10, t01, t00 for each predictor
11. RawData = Array [1 . . .m][1 . . . n] As Integer //2-dim array of rows/columns
12. Class = Array [1 . . .m] As Integer //1-dim array for class
13. δ j = 0 : β j = 0 : θ j = 0 : ϕ j = 0 As Integer //initialize sums of t11, t10, t01, t00

14. For j = 1 to n// holds column index position for predictors
15. For i = 1 to m //holds row index position for predictors
16. For y = 1 to m //holds row index position for class
17. IF i = y THEN //compares input and output index
18. IF RawData [i, j] = 1 AND Class [i, j] = 1 THEN
19. δ j = δ j + 1 //counts t11

20. ENDIF
21. IF RawData [i, j] = 1 AND Class [i, j] = 0 THEN
22. β j = β j + 1 //counts t10

23. ENDIF
24. IF RawData [i, j] = 0 AND Class [i, j] = 1 THEN
25. φ j = φ j + 1 //counts t01

26. ENDIF
27. IF RawData [i, j] = 0 AND Class [i, j] = 0 THEN
28. ϕ j = ϕ j + 1 //counts t00

29. ENDIF
30. ENDIF
31. Next y
32. Next i
33. Next j

• Step 3. Computes RR for each Column

34. //Listing 3. This step computes Risk Ratios for each column
35. //temporary variables
36. lowerSum j, upperSum j As Intger

37. firstRatio j, secondRatio j, RR j As Real
38. For j = 1 to n
39. lowerSum j = δ j + β j
40. upperSum j = φ j + ϕ j

41. firstRatio j =
δ j

lowerSum j

42. secondRatio j =
upperSum j

φ j

43. RR j = firstRatio j × secondRatio j //computes RR
44. Print columnName j+ \tab RR j+\ enter
45. Next j
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