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Abstract: The lateral inlet/outlet plays a critical role in the connecting tunnels of a water delivery
system in a pumped hydroelectric storage (PHES). Therefore, the shape of the inlet/outlet was
improved through computational fluid dynamics (CFD) optimization based on optimal surrogate
models. The CFD method applied in this paper was validated by a physical experiment that was
carefully designed to meet bidirectional flow requirements. To determine a good compromise between
the generation and pump mode, reasonable weights were defined to better evaluate the overall
performance. In order to find suitable surrogate models to improve the optimization process, the
best suited surrogate models were identified by an optimal model selection method. The optimal
configurations of the surrogate model for the head loss and the velocity distribution coefficient
were the Kriging model with a Gaussian kernel and the Kriging model with an Exponential kernel,
respectively. Finally, a multi-objective surrogate-based optimization method was used to determine
the optimum design. The overall head loss coefficient and velocity distribution coefficients were
0.248 and 1.416. Compared with the original shape, the coefficients decrease by 6.42% and 40.28%,
respectively. The methods and findings of this work may provide practical guidelines for designers
and researchers.

Keywords: pumped hydroelectric storage; inlet/outlet; surrogate model selection; multi-objective
optimization process

1. Introduction

In recent decades, many electricity generation problems have been caused by their high production
cost and environmental impact [1]. It is generally accepted that renewable energy can provide promising
solutions for the problems, and much research has been focused on numerous techniques, such as
hydropower [2–4], fuel cells [5], biofuels [6], wind power [7–9], and solar power generation [10].
Pumped hydroelectric storage (PHES) has attracted widespread interest because of its great flexibility
and storage capacity in improving grid stability of other renewable energy sources [11,12]. The lateral
inlet/outlet plays a critical role in the connecting tunnels of the water delivery system in a PHES,
and its flow conditions can affect the economic benefit and operation stability of the PHES to a great
extent. The PHES operates under pumped or generation conditions according to the command, and the
water flows between the upper and lower reservoir through the inlet/outlet. Compared with ordinary
hydropower stations, the hydraulic requirements for the inlet/outlet structure of the PHES require
more attention.
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Much research in recent years has focused on the hydraulic performances of the inlet/outlet
experimentally and numerically. Müller et al. [13] carried out prototype measurements by Acoustic
Doppler Current Profiler (ADCP) to study flow velocities in the reservoir; subsequently a numerical
model was built to further understand the flow development near the inlet/outlet. In order to
ensure satisfactory hydraulic performances, Bermúdez et al. [14] conducted numerical and physical
model studies on the inlet/outlet of the Belesar-III power station in Northwest Spain. The initial
design was optimized by numerical method, and the new design presented a more homogenous
flow distribution and a reduced head loss. Cai et al. [15] performed an experimental study on the
effects of the shape and position of separation piers on the flow characteristics with two operations.
Gao et al. [16] tried to improve the velocity distribution at the intake-outlet orifices through 20 types
of shape optimization experiments. Sun et al. [17] found the incorrect arrangement of separation
piers probably contributes to disadvantageous velocity distribution for the trash rack. Ye et al. [18]
simulated turbulent flow in a lateral inlet/outlet to explore the diffusion segment shape that can obtain
better velocity and discharge distributions. Based on the validation of the experiment, flows in the
lateral inlet/outlet were numerically simulated focusing on the variations in discharge distributions
over different orifices; the results showed that the flow non-uniformity was improved successfully
by adjusting the diffusion segment and width between the separation piers [19]. The investigations
indicate that computational fluid dynamics (CFD) has been used frequently to optimize the structure
parameters of the inlet/outlet that can easily influence the hydraulic objectives. However, the process
mentioned above is a trial-and-error approach requiring intensive work and a lot of time [20], and the
results may be subjective to some extent.

CFD coupled with optimization techniques has been used to determine the best design scheme for
wind turbine devices [21–23], and the adopted methods provide a reference for inlet/outlet optimization.
For complex optimization problems, two methods have been generally applied to achieve optimization.
When there are many individual objective functions, the functions can be combined into a single
composite one; nonetheless it can be difficult to determine the proper and typical selection of the
weights. In addition, the combination method would provide only a single result that cannot be
chosen to make a trade-off. Therefore, multi-objective evolutionary algorithms (MOEAs) are more
desired by decision makers. For MOEAs, it is common to use the concept of Pareto solutions. Pareto
solutions consist of many non-dominated solutions where some gain in objectives always causes some
sacrifice to others. MOEAs, such as Non-dominated Sorting Genetic Algorithm II (NSGA-II) [24,25],
can offer many Pareto results in one single simulation process and have been extensively applied in
engineering optimization.

Although MOEAs can obtain many solutions, these algorithms also require an even larger number
of simulations and an unacceptable computation time in practice. Thus, multi-objective optimization
based on the surrogate methods is receiving increasingly more support and attention. These approaches
present objective functions by surrogate models, replacing expensive high-fidelity design simulations.
The model is an effective engineering technique that can considerably save computing expense
while still providing reasonably accuracy. Therefore, the multi-objective surrogate-based optimization
method makes it more feasible to perform exhaustive global searches in the design space for complicated
shape optimization. The optimization result will be more satisfactory because the exploration is
not subjected to a limited number of simulating data and computing resources. General surrogate
models contain Response Surface Methodology (RSM) [26,27], Radial Basis Function (RBF) [28–32],
and Kriging [33–35]. However, owing to the diverse functional characteristics of the popular models,
it is important to choose the most appropriate models for the responses of hydraulic objectives to
diffusion segment parameters. For that reason, a recently surrogated model selection method proposed
by Mehmani et al. [36], called the Concurrent Surrogate Model Selection (COSMOS), was adopted to
construct suitable models in this paper.

Although a multi-objective CFD optimization process for the inlet/outlet was developed in
previous works [37,38], there are some drawbacks in the original process: (1) The CFD method was
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indirectly validated only by comparing the result with that of a published reference [18], which
weakened the reliability of the optimization process. (2) Only a single surrogated model (RSM) was
considered to accelerate the optimization procedure. However, there is no universal surrogate model
for every practical problem, and suitable model selection is critical for accuracy. (3) The objectives for
the pump and generation mode were simply added up to estimate the total performance. Nevertheless,
the significance of the pump mode and generation mode is probably not equal in many cases. Therefore,
in this study a physical model experiment was well-designed to meet the requirement of bi-directional
flow, and a more extensive validation of the CFD model was performed. Based on the validated CFD
model, the COSMOS method was applied to select suitable surrogate models for the objectives of the
inlet/outlet, to further improve the accuracy of the original optimization process. In addition, in order to
better evaluate the overall hydraulic performance, the selection of objective functions was reconsidered
and weight coefficients of different operation modes were introduced. In the present article, the shape
of an inlet/outlet was improved through CFD optimization based on optimal surrogate models. The
aim of this work was to apply the optimal surrogate optimization process to determine the optimum
shape of the inlet/outlet, to simultaneously obtain better hydraulic performances under bidirectional
flow conditions.

2. Problem Description

The typical shape of the lateral intake is shown in Figure 1. When the PHES is in the generation
mode, water flows into the lower reservoir through the tunnel and the inlet/outlet structure. Because
water flows out from the inlet/outlet in this mode, the phenomenon is also called “outflow”. Along the
outflow direction, the structure generally contains a transition part (a structure connecting a circular
cross-section tunnel and a diffusion part), a diffusion part, a rectification part, and an anti-swirl part.
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Figure 1. General structure of the lateral intake-outlet.

The diffusion part is very sensitive to the performance of the intake, and it is generally improved
for the structure design. Figure 2 present flow passages and basic parameters in the diffusion part. This
parameters include the length of the diffusion part (LDS),height of the inlet/outlet orifices (HI/O),wide
of the separation pier in the middle orifices (WDSM),width of the separation pier in the side orifices
(WDSS),horizontal diffusion angle (η), and vertical angle (θ). The left side displays the 3D model for the
flow passage. On the right side, plane sections of the model are demonstrated, and the flow passage
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and separation piers are marked out with light grey and dark grey, respectively. It should be noted that
the tunnel diameter D in the PHES is generally decided beforehand by the difference of the water head
between the upper and lower reservoir, the installed capacity of turbines, topographic and geological
conditions etc. For the inlet/outlet optimization, the value of D is fixed (D = 7.2 m in the current
study) because a change may need adjustment of the whole layout of the water conveyance system
resulting in excessive costs. Besides, the number of orifices (4) is also fixed in view of it being the most
commonly used form of the lateral inlet/outlet in the PHES of China. For more information about the
shape parameters, readers can refer to the previous work [38].
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The lateral inlet/outlet hydraulic performance is characterized by three parameters: the head loss,
the velocity, and the flowrate distribution [37–39]. According to the Bernoulli equation, the head loss is
computed as:

h0-1 = ∇0 −∇1 −
αv2

2g
(1)

h1-0 = ∇1 −∇0 +
αv2

2g
(2)

ξ =
2gh f

αv2 (3)

where the head loss h f = h0-1 and h f = h1-0 are used for the inflow and outflow mode, respectively; ξ
is the coefficient of the head loss; ∇0 and ∇1 are the piezometric head in the reservoir and tunnel; v is
the bulk velocity at the boundary of the tunnel; α is the kinetic energy correction coefficient.

Numerous vibration-caused trash rack failures have occurred because the trash rack may be
exposed to high velocities at the orifice cross-section [40]. Hence CV is proposed as a typical index
evaluating the uniformity of the flow velocity at orifices [39,41], and a lower CV implies a better velocity
distribution in the inlet/outlet. Considering there are four orifices divided by the separation pier, CV

could change with different orifices due to the influence of horizontal diffusion. In order to represent
the overall performance of the velocity distribution, the worst case i.e., the maximum value of CV

among the four orifices, is selected. Thus CV is defined as:

CV = max(
vmax,i

vi
) (4)

where vmax is the maximum value among the velocities at the orifice cross-section; i indicates the index
of orifices; v indicates the average velocity at the orifice cross-section.
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In order to further improve the discharge distribution in the horizontal direction, the separation
piers are designed to divide the flow passage into sub-tunnels. Then CQ is used to estimate the degree
of flux uniformity by comparing the discharge between adjacent orifices, which can be defined as:

CQ =
max(Qi,i+1) −min(Qi,i+1)

min(Qi,i+1)
× 100% (5)

where Qi indicates the rate of flow at the different orifices (i = 1, 2, 3).
For the purpose of determining a good compromise between the two modes of operation, these

parameters under inflow and outflow conditions should be carefully combined. In a recent study,
Gao et al. [38] simply added up the parameters for the pump mode and the generation mode to estimate
the total performance. However, the performance of the generation mode is probably more significant
than that of the pump mode in many cases. The pumped water can be stored in the upper reservoir
under the pump mode during the low load period of the power grid, while under the generation
mode the water will flow into the lower reservoir to generate electricity during the peak load period.
Designers tend to pay more attention to the head loss under the generation mode in order to achieve
higher economic benefits. Therefore, a more reasonable approach is to use weights to deal with the
combinations of the two modes. For that reason, the new combined objectives to evaluate the overall
performance of the inlet/outlet are defined as follows:

ξtotal = ω1ξin +ω2ξout (6)

CV,total = ω1CV,in +ω2CV,out (7)

where ξtotal and CV,total are the overall head loss coefficient and velocity distribution coefficient,
respectively; ω1 and ω2 are the weight coefficients of the objective function under the conditions of
inflow and outflow, and ω1 + ω2= 1. In this article, the values of ω1 and ω2 are taken as 0.33 and
0.67 based on the specific engineering designer’s suggestion. However, they can be flexibly selected
according to different projects.

Another drawback of their study [37,38] is the definition for the overall CQ, which is expressed as
the difference of CQ between the pump and generation mode. CQ,in is the discharge uneven distribution
coefficient under inflow condition, CQ,out is the discharge uneven distribution coefficient under outflow
condition. When it is regarded as an objective function, it seeks to minimize the difference between
CQ,in and CQ,out, rather than CQ,in and CQ,out themselves. If there are some bad points in the design
space, on which the values of both CQ,in and CQ,out may be large, the difference (i.e., the overall CQ)
may be small. Besides, according to the guideline the discharge distribution is sufficiently uniform
when CQ is less than 10% [39]. As a result it is more appropriate to choose CQ as the constraint, and
the head loss and velocity distribution (ξtotal, CV,total) can be optimized more flexibly.

Therefore, the objective functions were set to find the minimum values for ξ and CV, while CQ,
η, and θ were treated as constraint conditions. Table 1 lists the design parameters and constraints in
this study.

Table 1. Design parameters and constraints.

Item Symbol Range

Design parameters
LDS 34–46 m
HI/O 8–11 m

WDSM 1.5–1.7 m

Constraints
η 25–45◦

θ 1–5◦

CQ,in, CQ,out <10%
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3. Numerical Model and Validation

3.1. Numerical Model

Figure 3 shows a detailed view of the structured grids in the research area. To increase the accuracy
of the simulation, boundary layer grids were added to ensure that the dimensionless wall distance
y+ of the first points near the walls was between 30 and 300. The distribution of y+ values for the
inlet/outlet is shown in Figure 4.
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Considering the accuracy and efficiency of the CFD simulations, it is important to work out a
reasonable number of mesh elements [42–44]. Based on a previous grid independence study [38], a
grid amount of 1.4 × 106 was sufficient for CFD simulation, and similar grid sizes were thus adopted
in this article.

As presented in Figure 1, a three-dimensional computational domain far larger than the inlet/outlet
structure was developed to accurately simulate the flow pattern in the inlet/outlet. As to the boundary
conditions, a uniform velocity was prescribed at the tunnel boundary, and a pressure condition was
imposed at the reservoir boundary. The flow discharge changed slightly according to the operating
conditions of the reversible turbines. A summary of boundary conditions for the Computational Fluid
Dynamics (CFD) case under the generation and pump mode is listed in Table 2.
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Table 2. Boundary conditions applied in the inlet/outlet CFD simulation.

Operation Modes Parameters Notes Values

Outflow
Inlet The inlet of the pipe was defined as

the velocity inlet. vd = 3.738 m/s

Outlet The reservoir boundary was defined
as the pressure outlet. Relative pressure: 0 Pa

Inflow
Inlet The reservoir boundary was defined

as the pressure inlet. Relative pressure: 0 Pa

Outlet The inlet of the pipe was defined as
the velocity outlet. vd = 4.376 m/s

In the present study, the Reynolds Averaged Navier Stokes (RANS) equations were solved using
ANSYS Fluent 17.0 [45]. The simulation was performed in a segregated manner adopting the realizable
k-ε model combined with the wall function. The Navier–Stokes equations were solved by means of
pressure implicit with splitting of the operator’s algorithm, and a second-order upwind method was
employed to realize the discretization. The converged solution was obtained after the residual levels
became less than 1 × 10−4. For detailed information about the governing equation and numerical
settings, the reader can refer to references [38,45,46].

3.2. Experimental Setup

The CFD method in the original study [38] was validated by comparing the result with that of a
published reference [18]. Although the results were found to be in good agreement, there were obvious
differences in the velocity distribution between the case in the reference [18] and the case in this study,
which weakened the reliability of the validation in the original study. Therefore, the CFD method still
needs to be validated further, and a physical model experiment adopting a scale of 1/60 was conducted
in this paper. As shown in Figure 5, an experimental setup was established which was 5.2 m long,
1.2 m wide, and 0.6 m high.
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In order to show the experiment more clearly, the side view of the layout plan is illustrated in
Figure 6. Control valves and electromagnetic flowmeters with an accuracy of 0.5% for the measured
ranges were used to control the flow discharge. By switching the different control valves, bidirectional
flow conditions could be realized in the experiment. In the inflow condition, the inflow control valves
were open, while the outflow control valves were closed. Water from the high constant-head tower
flowed into the reservoir channel through the pipe. Before the water entered the channel, a device was
set up to align the flow pattern. Finally water flowed into a lower collecting tank, from which it was
pumped back to the constant-head tank using a centrifugal pump. While in the outflow condition, the
inflow control valves were closed, and the outflow control valves were open. Water was conveyed to
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the reservoir tank through a horizontal pipe with a length 50D that was long enough to guarantee full
development of the flow in the pipe. The discharge in the inflow condition was 4.359 L/s, corresponding
to a Reynolds number Re = 46,277 in the tunnel; while in the outflow condition, the discharge was
5.795 L/s and the Reynolds number was 61,519.
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A Vectrino ADV instrument, developed by Nortek AS, was used to instantaneously measure
stream-wise velocity of the diversion orifices at various depths. Based on the Doppler shift principle,
the ADV instrument can measure velocities with ±1% accuracy in a measurement range of 1 mm/s.
Each measurement point with a sampling volume of 7 mm worked at a sampling frequency of 50 Hz
for 60 s of sampling time.

3.3. Validation of the CFD Model

The head loss coefficient in the inflow condition is obviously smaller than that in the outflow
condition. In the inflow condition, the coefficients obtained from numerical simulation and experiment
were 0.164 and 0.171 respectively, and their relative error was 4.09%. The coefficients of the simulation
and experiment in the outflow condition were 0.315 and 0.338, and the relative error was 6.81%.
Comparing the simulation results with the experimental data, although the numerical model slightly
underestimates the coefficients, it is still acceptable to predict the results of the head losses.

For the purpose of comprehensively comparing the velocity distribution at the orifice cross-section
(x = 10 m), there are three measured lines with equal distance at each orifice. As shown in Figure 7, the
velocity data are obtained along the measured lines (A—A, B—B and C—C) at the cross-section.
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Figures 8 and 9 compare the numerical solutions with the experimental ones for the velocity
distribution in both conditions. In the legend, M and S indicate the middle and side orifice, respectively;
A, B, and C indicate the measured lines A—A, B—B, and C—C, respectively. For example, M-A
represents the measured line A—A at the middle orifice. The y-axis indicates the relative height of the
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measured point normalized by the orifice height H, and the x-axis indicates the relative velocity also
normalized by the average velocity of the measured line.

Figure 8a demonstrates that a good matching between the two approaches is obtained in the
middle orifice. The results of both methods show that velocities among the three lines are very close
to each other, and the distribution is also uniform along the height. In the side orifice, the numerical
results are also in good agreement with the experimental ones. There are only slight differences in the
velocity distribution among the measured lines. Compared with the flow pattern in the middle orifice,
the more obvious change is that the mainstream appears at the lower part of the orifice, and the range
of y/H is about 0.13–0.52.

While in the outflow condition, differences of the velocity distribution among the measured lines
are also small in the side orifice. However, in the middle orifice the experimental results show that
there are obvious differences among the velocities of three measured lines, which is also predicted by
the simulation. In addition, the velocity distribution along the height is also not uniform, and negative
velocities are generated at the top. For the M-B line, the y/H range of the negative region obtained
from the experiment is about 0.8–1.0, and the numerical range is about 0.7–1.0. This difference is partly
due to errors caused by the limited number of measured points in the experiment, and partly due to
the slight overestimation for the strength of flow separation by the simulation. At the bottom of the
orifice, the mainstream in the experiment is located a little higher than that in the simulation. Although
there are some minor deviations in the outflow velocity distribution, the agreement is quite acceptable
considering that the more complex flow separation occurs in the outflow condition.
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4. Optimization Methodology

4.1. Surrogate Models Selection

The optimization algorithm coupled with the computationally intensive simulation requires
intensive work and a lot of time. It is necessary to adopt the surrogate model because the
CFD-optimization procedure requires too many computing resources, which weakens its application in
practice. Therefore, surrogate models are employed to engage the optimization procedure in the paper.
There are several surrogate model types as listed in Table 3, such as Response Surface Methodology
(RSM), Radial Basis Function (RBF), and Kriging, which have been extensively used in recent years
to solve engineering optimization design. Unlike other approaches, RSM applies simple algebraic
expressions to generate the function relationship, and it is very suitable for complex engineering
applications [47]. In addition, RBF has the best approach for high dimensionality optimization problems
according to a literature survey [48]. For low dimensional optimization problems, the Kriging method
can achieve good results in both accuracy and time. According to a survey of popular surrogate models
in similar situations, RSM, RBF, and Kriging are considered as surrogate candidates in the researches.

Table 3. A list of shape optimization investigated using surrogate models in recent years.

Author Design
Parameter

Objective
Function

Sampling
Points Surrogate Model Optimization

Algorithm

Zhou et al. [49] 3 2 30 RSM NSGA-II
Jiang et al. [24] 10 2 150 RSM NSGA-II
Yang et al. [26] 3 1 20 RSM GA
Brar et al. [50] 3 3 30 RBF NSGA-II
Li et al. [51] 5 1 60 RBF GA

Zhang et al. [52] 16 2 262 Kriging NSGA-II
Liu et al. [33] 4 2 50 Kriging NSGA-II

Singh et al. [53] 7 2 71 RBF, Kriging NSGA-II
Wang et al. [54] 7 2 80 RSM, RBF, Kriging NSGA-II

Halder et al. [55] 2 1 16 RSM, RBF, Kriging GA

When employing the surrogate model in the hydraulic optimization procedure, the challenge is
how to create a model which is as accurate as possible. As mentioned above, RSM, RBF, and Kriging
can be used to generate surrogate models, and their parameters are listed in Table 4. The kernel
function and hyper-parameter also need to be chosen carefully, which requires an effective surrogate
model selection method.

As we know, existing surrogate model selection methods generally contain three levels:
selecting a model type, selecting a kernel function, and optimizing the hyper-parameters. Some
researchers have used different error measures to separately select the model type, kernel function, or
hyper-parameter [56–58]. With the intention of performing thorough selection, the Predictive Estimation
of Model Fidelity (PEMF) was suggested by Mehmani et al. [59]. Furthermore, Mehmani et al. [36]
advanced the Concurrent Surrogate Model Selection (COSMOS) on the foundation of the PEMF, and
applied it to select suitable models by minimizing the model error. The error selection criterion is
based on different situations and preferences. For the exploration of design space and parameter
analysis, the median error can be used. On the other hand, it is more appropriate to choose the
conservative maximum error for the structural safety optimization (e.g., to model vehicle crash
simulation). Therefore, these criteria might be mutually conflicting or mutually promoting [36].
Considering the optimization for the hydraulic performance of the inlet/outlet may have certain
requirements for the above two situations, the median and maximum errors of the surrogate model
are treated as two selection criteria estimated by the PEMF method. Moreover, the framework
will solve the multi-objective problem (minimizing the errors) to find the optimal models through
the One-Step technique. In the technique, a single mixed integer nonlinear programming problem
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(MINLP) can be solved by the NSGA-II. Considering different models have different numbers of
kernels and hyper-parameters, the candidates are classed as three smaller categories according to
the hyper-parameters [36]. The computation of the Kriging model is performed with the MATLAB
toolbox DACE [60], as it has been widely used in many applications concerning the Kriging model.
The problem is usually anisotropic, which is accounted for in the construction of the surrogate models.

Table 4. Parameters of surrogate model candidates.

Model Type Kernel Function Hyper-Parameter Lower/Upper Bounds

Response surface methodology - - -
Radial Basis Function Linear - -

Cubic - -
Gaussian Shape parameter, α 0.1 < α < 3

Multiquadric Shape parameter, α 0.1< α < 3
Kriging Linear Correlation parameter, β 0.1 < β < 20

Exponential Correlation parameter, β 0.1 < β < 20
Gaussian Correlation parameter, β 0.1 < β < 20
Spherical Correlation parameter, β 0.1 < β < 20

4.2. Optimization Algorithm

Extensive literature based on the NSGA-II [61] has been reported in engineering applications
(listed in Table 3), which is also chosen for this investigation. In NSGA-II, a random parent population
is initially produced, and individuals are sorted according to rank and crowding distance. Then the
optimum resolutions are chosen to generate offspring populations using genetic operators that are the
same in the standard GA. Specifically, a binary tournament selection, Simulated Binary Crossover (SBX)
and polynomial mutation are employed in NSGA-II. SBX simulates the binary crossover observed
in nature, and the crossover distribution index determines how far away the children solutions are
from their parents [62]. Deb et al. [63] suggested a polynomial mutation operator with a mutation
distribution index that can control the amount of perturbation in a variable. Table 5 lists the parameters
for the optimization process.

Table 5. The parameters for the optimization process.

Parameter Values

Population size (even value) 100
Number of Generations 100
Crossover Probability 0.9

Crossover Distribution Index 10.0
Mutation Distribution Index 20.0

To pick the optimum point from the Pareto frontier, Technique for Order Preference by Similarity
to Ideal Solution (TOPSIS) is implemented in this article. TOPSIS, proposed by Hwang et al. [64], is a
ranking method that can rank possible solutions on the Pareto frontier and select a trade-off optimum
by measuring Euclidean distances.

4.3. Optimization Process Scheme

The multi-objective optimization process is built by combining the CFD numerical simulation, the
design of experiment (DOE), the surrogate model selection based on the COSMOS, and the optimization
method NSGA-II. The flow diagram of the process is presented in Figure 10.

First, the Optimized Latin Hypercube Sampling (OLHS) algorithm is applied in the Design of
Experiment (DOE) to choose representative points. Then sample points are simulated using the CFD
method, and the results are exacted to evaluate the objectives of the hydraulic performance. Based
on the database of the DOE, a suitable surrogate model is constructed using COSMOS to improve
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the optimization efficiency and precision. The different surrogate models, such as RSM, RBF, and
Kriging, are generated until the PEMF is deemed acceptable. Finally, NSGA-II is adopted to conduct
the optimization. If the objective function does not change, or the maximum iteration number is
reached, the optimization is terminated. Otherwise, the process will continue to loop with a new set of
proposed design parameters.
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5. Results and Discussion

5.1. Optimal Surrogate Models

In the present study, COSMOS is applied to choose the appropriate surrogate models. First of all,
OLHS as an efficient sampling strategy is applied in DOE sampling, in which 60 points are randomly
selected to construct these surrogate models. The Predictive Estimation of Model Fidelity (PEMF)
method is chosen to check the accuracies of these surrogate models.

By solving the MINLP problem with NSGA-II, the final results of the models for ξ, CV, CQ,in and
CQ,out are presented in Figure 11. Φi indicates the surrogate models containing i hyper-parameter(s). βH,
βL, and βW indicate the correlation parameter of the design variable HI/O, LDS, and WDSM, respectively.
A Pareto frontier is provided in each figure, and a trade-off solution is selected under comprehensive
consideration of median and maximum errors. In Figure 11a, optimal parameters of the surrogate
model of ξ are: the Kriging with a Gaussian kernel and βH = 2.20, βL = 9.41, βW = 0.11. As shown
in Figure 11b, the optimal configuration of CV is: the Kriging model with an Exponential kernel and
βH = 1.05, βL = 0.14, βW = 0.13. Figure 11c shows the optimal configuration of CQ,in is: the Kriging
model with a Gaussian kernel and correlation parameters, βH = 0.11, βL = 0.13, βW = 0.17. Figure 11d
shows the optimal configuration for the CQ,out is: the Kriging model with a Gaussian kernel and
correlation parameters, βH = 5.52, βL = 0.10, βW = 2.50. The details are also listed in Table 6. For all
hydraulic indices, the performance of the Kriging model is better than that of the other models. The
median errors of ξ and CV are only 0.98% and 0.57% respectively, and the maximum errors are around
5%. Although the maximum error of the CQ,out is slightly higher than the others, the value is acceptable
as the complex flow separation phenomenon in the outflow condition makes the index more volatile.
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Table 6. Optimal surrogate model configurations and their Predictive Estimation of Model Fidelity
(PEMF) errors.

Index
Optimal Surrogate Model Configuration PEMF Error

Model Type Kernel Function Hyper-Parameter Median Max

ξtotal Kriging Gaussian βH = 2.20, βL = 9.41, βW = 0.11 0.0098 0.0481
CV,total Kriging Exponential βH = 1.05, βL = 0.14, βW = 0.13 0.0057 0.0443
CQ,in Kriging Gaussian βH = 0.11, βL = 0.13, βW = 0.17 0.0017 0.0054
CQ,out Kriging Gaussian βH = 5.52, βL = 0.10, βW = 2.50 0.0141 0.0695

5.2. Discussion of Optimized Results of the Inlet/Outlet

Based on the improved process, objective functions are set to find the minimum values for ξ and
CV. Figure 12 demonstrates the optimization process for finding the optimal shape, in which the red
star point indicates the final selection. For the purpose of presenting the optimal result better, the
comparisons between the optimal and the original case are listed in Table 7. In the multi-objective
optimum situation, ξtotal is reduced by 6.42%, CV,total is reduced by 40.28% compared with the
original shape.
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Table 7. The comparison of parameters between baseline case and optimum case.

Case
Design Variables Objectives Variation (%)

HI/O (m) LDS (m) WDSM (m) ξtotal CV,total ∆ξtotal ∆CV,total

Baseline 9.800 36.000 1.580 0.265 2.371
−6.42 −40.28Optimum 8.432 45.875 1.513 0.248 1.416

Figure 13 compares velocity contours in the orifices under the inflow condition between the
baseline and the optimum design. The inflow velocity contours in the optimum case are found to
change little, and the flow velocities in the anti-swirl segment are slightly increased due to the decrease
of the optimized inlet height.
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As shown in Figure 14, the change between the baseline and optimum case is more obvious when
the water flows out from the tunnel. For the baseline case, the flow separation phenomenon occurs
at the upper part of the cross sections in the diffusion segment. Due to insufficient flow diffusion,
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the separation phenomenon deteriorates into a backflow at the top of the trash rack cross sections,
which should be prevented as much as possible in the design. Figure 14a shows the flow separation
arises early at x = 40 m because of the bad original design. As the flow continues to develop, the flow
separation deteriorates and induces reverse velocity at the top of the whole rectification segment and
part of the anti-vortex segment.

For the design optimized by NSGA-II, the flow separation region is very close to the walls in the
diffusion segment, and the reasonable shape brings in a more desired flow phenomenon. Figure 14b
shows the desired flow pattern after optimization. Because of the optimization for the diffusion
segment, more uniform velocity distributions are observed in the section plane. The flow separation
appears to be slight in the small areas at the junction of the diffusion and rectification segment.
Consequently, there is hardly any backflow at the top of the orifices.
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In order to further compare the velocity distribution at the orifice cross-section (x = 10), the
velocity data from the central line of the section is analyzed. As we can see from Figure 15a, there is
little change for the normalized velocity profiles between the baseline and optimum design. Figure 15b
demonstrates the velocity profiles along the height direction under the outflow condition. In the
baseline case, the main stream of the velocity locates at the lower part, and even negative values appear
at the top of the middle orifices. For the optimum design, the velocity distributes more uniformly
along the height direction, and the mainstream is in the central section of the height. The maximum
value of the normalized velocity is 1.44, which is located at the middle orifice with the corresponding
y/H value of 0.47. Compared with the original shape, the maximum value is reduced by 49.36%.
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6. Conclusions

In this article, the CFD numerical simulation and multi-objective surrogate-based optimization
strategy method (COSMOS and NSGA-II) were combined to optimize intake shape effectively. The CFD
method applied in this paper was validated by a physical experiment carefully designed to meet
bidirectional flow requirements for the inlet/outlet. For the purpose of determining a good compromise
between the two modes of operation, reasonable weights were defined to better evaluate the overall
performance. Then, suitable surrogate models based on COSMOS were utilized to build functions,
and NSGA-II was chosen to complete the optimization.

The optimum shape of the diffusion part in a PHES can be achieved automatically through
the whole process, including numerical model building, CFD simulation, optimal surrogate model
selection, and multi-objective optimization strategy. There were 60 sampling points generated by the
OLHS employed to establish suitable surrogate models based on COSMOS, while the PEMF method
was applied to estimate errors. The results indicate that the Kriging with a Gaussian kernel is best
for the overall head loss coefficient and the shape parameter βH = 2.20, βL = 9.41, βW = 0.11; the best
configuration of the overall velocity distribution coefficient is the Kriging model with an Exponential
kernel and βH = 1.05, βL = 0.14, βW = 0.13.

Finally, the NSGA-II algorithm was applied to generate Pareto optimal results, and the final optimal
point was selected from the Pareto set through the TOPSIS decision making method. The optimization
results show that compared with the original shape the overall head loss coefficient decreases by 6.42%
and the overall velocity distribution coefficient decreases by 40.28%. This study demonstrates this new
optimization process is a good choice for inlet/outlet engineering designers.
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