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Abstract: As populations grow, facilities such as roads, bridges, railways lines, commercial and
residential buildings, etc., must be expanded and maintained. There are extensive networks of
underground facilities to fulfil the demand, such as water supply pipelines, sewage pipelines, metro
structures, etc. Hence, a method to regularly assesses the risk of the underground facility failures
is needed to decrease the chance of accidental loss of service or accidents that endanger people
and facilities. In the proposed work, a cohesive hierarchical fuzzy inference system (CHFIS) was
developed. A novel method is proposed for membership function (MF) determination called the
heuristic based membership functions determination (HBMFD) method to determine an appropriate
MF set for each fuzzy logic method in CHFIS. The proposed model was developed to decrease the
number of rules for the full structure fuzzy inference system with all rule implementation. Four very
crucial parameters were considered in the proposed work that are inputs to the proposed CHFIS
model in order to calculate the risk of water supply pipelines. In order to fully implement the
proposed CHFIS just 85 rules are needed while using the traditional Mamdani fuzzy inference system,
900 rules are required. The novel method greatly reduces implementation time and rule design sets
that are extremely time consuming to develop and difficult to maintain.

Keywords: fuzzy logic; water supply pipelines; leakage; risk index; rules reduction

1. Introduction

The idea of risk was first given in the field of economy in the last year of the 19th century;
nowadays its use is common nearly in all fields. The fields where the concept of risk is frequently used
are environmental sciences, natural disasters, architectural engineering and so forth. The risk is the
probability of failures; risk and uncertainty are directly correlated with each other. There are a lot of
underground facilities, which are severe threats to buildings, railways lines, bridges, roads and so
forth. The most important among them are water supply pipelines. Immense research has been carried
out by several scientists to propose an efficient risk assessment method for water supply pipelines,
in order to avoid human and economic loses. Water supply pipelines are the most essential and more
rapid growth is expected in the future, in terms of installation of underground water supply pipelines.
These pipes are severe threats to roads, railways, bridges and so forth [1,2].

Numerous factors can cause pipelines failures, such as age, bridges, leakage, depth and height,
water temperature and so forth [3–6]. In this paper, we have considered age, depth, length, and
height because these are incredibly significant factors and due to which failures may occur to water
supply pipelines. As the age of the pipeline increases the probability of failure increases, therefore
we have considered this factor in the proposed work. The leakage of the pipeline is also a critical
factor that can slowly damage the pipe as well as near buildings, roads and so forth [7]. The other two
parameters depth and length also contribute to pipeline failures [8]. Many authors have proposed
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different methods in order to assess water supply pipelines. An efficient risk assessment methodology
is fundamental to take measures in time to escape from accidents.

Recently, the fuzzy logic (FL) method has grasped the consideration of various scholars and
has been widely used in several areas for different purposes [9,10]. Fuzzy logic methods have been
extensively used for risk index analysis and assessment. Fuzzy inference system (FIS) can be used to
solve the problems related to the exact mathematical models. However, conventional fuzzy inference
systems are not suitable due to its rules-explosion with every new entry of variables. For a fuzzy
model having q input parameters, for each input parameters p MFs are defined. Then, for a full fuzzy
inference system qp fuzzy rules are required, such as in [11,12] a fuzzy inference system has been
designed where there are 12 input variables and for each variable five MFs are allocated. Hence,
the entire number of rules obligatory to completely implement the system are 512. It is particularly
difficult for an expert to incorporate that large number of rules with attention. Any abnormality in rule
designing can cause casualties of people, wastage of money or both losses. Hence, the minimization
of rules in rule-base is an issue of high concern. To overcome the issue of rule-explosion, a solution
is to divide the fuzzy inference system in sub-modules in a hierarchical form. In this hierarchical
fuzzy logic method, the low-level modules provide fractional solutions; these fractional solutions are
then combined in the high-level modules to provide a complete result for a problem. In this way,
the number of rules can be reduced significantly as compared to the conventional fuzzy logic (CFL)
model [13,14]. Exponential increment occurs in rules using CFL models, hence rules-explosion makes
designing of rules very hard, and it also increases the computational complexity. The greater number
of rules means a greater possibility of errors and also designing is not an easy task because rules need
utmost concentration. Hence to overcome the issue of rules-explosion in the CFL model, hierarchical
fuzzy logic (HFL) models were designed in the proposed work to assess the water supply pipelines
risk index. The focus of some efforts is the development of hardware boards, which are great platforms
for expressing creativity in order to make and create novel things for developers. The most famous
and initial efforts are the Raspberry Pi [15] and Arduino [16] boards. These boards have their own
programming and it very necessary for the user to code in Python and Java because a user has these
two options to write code on these boards.

In this paper, a cohesive hierarchical fuzzy inference system (CHFIS) model for water supply
pipelines (WSPLs) risk index assessment was proposed. The purpose of the CHFIS model is
dimensionality reduction because a large number of rules requires much effort from experts and
also increases the probability of errors. The proposed CHFIS model can be applied for risk assessment
where the number of input variables are larger because the proposed CHFIS takes fewer rules as
compared to the traditional FL models. For MFs determination of each fuzzy logic in the CHFIS
we suggested technique names as the heuristic based membership function determination (HBMFD)
method in order to determine appropriate MFs to sub-fuzzy logics in CHFIS model. The risk index
values of the proposed CHFIS system is represented through LED actuators using different colors.
The caretaker can take measures according to the risk index level provided by the proposed model.

The organization of the remaining paper is carried out as: Section 2 represents the related work
section, and in Section 3 the proposed work is explained in detail. The implementation, results and
discussion are given in Section 4 in detail. The paper conclusion is given in Section 5.

2. Related Work

Subjective judgments from experts are required to assess water supply pipelines (WSPL) risk.
However, experts having prospective knowledge are extremely difficult to find as well time-consuming
and expansive. Therefore, the alternative way is to develop an efficient method to assess the water
supply risk index. Many efforts have been carried out in this regard since the last few decades,
the discussion of some of which are carried out here.

The most used and efficient method for risk assessment and management is fuzzy logic which
has been extensively used in numerous fields to assess risks [17]. Li et al. [18] suggested a technique to



Processes 2019, 7, 182 3 of 15

analyze the risk of long-distance water transmission pipelines. The fuzzy concepts were used in the
suggested methodology. Tripathy et al. [19] suggested a technique to assess the safety risk index of
coal mines. The proposed method was based on the fuzzy reasoning methodology and authors have
used the fuzzy logic method despite the availability of other similar techniques. A case study was
conducted to validate the applicability of the method. According to the results, fire has a high-risk
index as compared to other risk parameters. Chen et al. [20] designed a decision-making approach
based on FL for handling supplier chain selection proposed in a supply chain system. Gul et al. [21]
applied the fuzzy logic concept in the aluminum industry. Zhao et al. [22] suggested an FL based
method to assess risk in green projects. Zhang et al. [23] proposed a fuzzy comprehensive evaluation
approach to assess underground risk index.

Different authors have developed different techniques based on hierarchical fuzzy logic (HFL)
methods to overcome the rules-explosion problem that existed in the conventional FL method. Fayaz
et al. [14] designed a model named as integrated, based on the HFL method for underground risk
calculation. The integrated HFL method significantly reduce the rules with a larger number of input
variables. Fayaz et al. [17] suggested another method for rule reduction based on HFL and Kalman
methods for underground risk index calculation and prediction. Like the integrated HFL method, this
method also decreases the number of rules. These two methods are suitable to be applied in a situation
where the input variable parameters are greater in number. Chang et al. [24] designed a simple HFL
system for rules reduction. In their proposed model, the fuzzification and defuzzification method was
removed in order to make it as simple as possible.

3. Proposed Water Supply Pipeline Risk Index Methodology

The critical issue of traditional FL is rule-explosion when more parameters are added to the
system. Two main drawbacks are associated with rules-explosion. First, it increases the computation
complexity of the system and second, it is very challenging to design a large number of rules. In this
paper, we designed an FL model based on HFL to solve the problems associated with conventional
fuzzy logic. The conventional fuzzy logic is shown in Figure 1. The proposed model, named a cohesive
model, is illustrated in Figure 2. The proposed model consisted of three layers; input layer, middle
layer, and top-level layer. In the input layer, we have four inputs namely depth, length, height and age.
The middle layer consisted of the two fuzzy inference systems (FISs) namely FIS_1 and FIS_2. Inputs
to the FIS_1 are depth (P1) and length (P2) parameters, and inputs to FIS_2 are age (P3), and leakage
(P4). The outputs of FIS_1 and FIS_2 are further inputs to the FIS_3 of the top-level layer. The proposed
model dramatically reduces the rules in FIS.Processes 2019, 7, x FOR PEER REVIEW 4 of 15 
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The pseudo code of the proposed CHFIS model is shown in algorithm_1. There are four inputs 

to the proposed CHFIS model which are presented as P1, P2, P3, and P4. The ML, RI, PR, FL, and 

WSPRI indicate the middle layer, risk index, partial risk, final layer and water supply pipeline risk 

index, respectively. 

Algorithm_1: Pseudo code for a cohesive hierarchical fuzzy inference system 

Input (P1, P2, P3, X4) 

Output: WSPRI 

Begin: 
1. RI ← ∅; 

2. ML (P1, P2, P3, X4) { 

i. FIS_1(P1, P2) { 

• µ(P1) // change the numeric input value to P1 to fuzzy value 

• µ(P2) // change the numeric input value to P2 to fuzzy value 

for j ← 1 to 30 do 

Figure 1. Conventional fuzzy inference model.
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Next, we applied the proposed cohesive model to real data supplied by the Electronics and
Telecommunications Research Institute (ETRI) organization. The data was gathered from 1989 to 2010
for WSPLs installed at different points in Seoul, South Korea. In the future, we assume that more
parameters would be entered into the system. Hence, we have designed the model a way that if more
parameters enter into the system, rule-explosion would not occur.

The pseudo code of the proposed CHFIS model is shown in algorithm_1. There are four inputs
to the proposed CHFIS model which are presented as P1, P2, P3, and P4. The ML, RI, PR, FL, and
WSPRI indicate the middle layer, risk index, partial risk, final layer and water supply pipeline risk
index, respectively.

In the proposed CHFIS model we used the triangular MFs [25]. There is no standard way
to determine MFs; hence we also proposed a heuristic based membership function determination
(HBMFD) method. In this method, some membership function sets are defined and applied to the
historical data. The best results are recorded using root mean absolute error (RMSE). The RMSE
formula is given in Equation (1).

RMSE =

√
1
N

n

∑
k=0

(A− E)2 , (1)

where N indicates the entire number of instances, A illustrates real data, and E indicates the estimation
values generated by the proposed HBMFD method.
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Algorithm_1: Pseudo code for a cohesive hierarchical fuzzy inference system

Input (P1, P2, P3, X4)
Output: WSPRI
Begin:

1. RI← ∅;
2. ML (P1, P2, P3, X4) {

i. FIS_1(P1, P2) {
• µ(P1) // change the numeric input value to P1 to fuzzy value
• µ(P2) // change the numeric input value to P2 to fuzzy value

for j← 1 to 30 do
� Rule inferencing
� µ(zj) // Rule implication
od

• µ(y1)← Aggregate (): // Apply aggregation
• b1 ← µ(y1)
• return PR1

ii. FIS_2(P3, P4) {
• µ(P3) // change the numeric input value to P3 to fuzzy value
• µ(P4) // change the numeric input value to P4 to fuzzy value

for j← 1 to 30 do
� Inferencing of rules
� µ(zj) // implication of rules

od
• µ(g2)← Aggregate (): // Aggregation
•m2 ←µ(g2)
• return PR2

} [PR1, PR2]←ML (P1, P2, P3, P4)
3. FL (PR1, PR2)
iii. FIS_3 (PR1, PR2) {

• µ(PR1) // change the numeric input value to PR1 to fuzzy value
• µ(PR2) // change the numeric input value to PR2 to fuzzy value

for j← 1 to 25 do
� Inferencing of rules
� µ(zj) // implication of rules

od
• µ(g3)← Aggregate (): // Aggregation
•m2 ←µ(g3)
• return WSPRI

WSPRI = FL (PR1, PR2)
End

The membership functions set is the value for the next data, considered having the minimum
RMSE value. The structure diagram of the proposed membership functions determination method is
presented in Figure 3. In the proposed diagram, P1 and P2 indicate the depth and length parameters of
the FIS_1. Similarly, for FIS_2 and FIS_3 the same proposed method was applied to determine the best
membership functions set.
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The number of rules in Mamdani fuzzy logic relies on input parameters, and MFs defined for input
variables. For defining all potential rules of the proposed CHFIS model and CFL model. Equations (2)
and (3) can be used respectively.

PR = ∑n
i=2 ∑m

k=1(X1 × X2 ), (2)

CR = (X1 × X2 ×. . . . . . . . . × Xn), (3)

where n indicates the number of input layers (input layer excluded), X represents the number of
membership functions in a variable and m indicates the number of fuzzy inference systems in each layer.

In the proposed CHFIS model we defined six MFs for input variable P1 and five for input variable
P2 of FIS_1. Similarly, for FIS_2, six and five MFs are defined for input variables P3 and P4 respectively.
For output of FIS_1 five MFs, and for FIS_2 five output MFs are defined. The outputs of FIS_1 and FIS_2
are further inputs to FIS_3 and for FIS_3 output, five MFs are defined. Hence by putting these values
in Equation (2) as shown below, we require 85 rules to fully implement the proposed CHFIS model.

PR = (6 × 5) + (6 × 5) + (5 × 5) = 85.

The number of rules requires to implement the CFL entirely; we require 900 rules as illustrated
below by putting the values in Equation (3).

CR = 6 × 5 × 6 × 5 = 900.

Hence, it is proved that the proposed CHFIS model brings a reduction in rules while implementing
the full structure of FL. The number of rules required to implement the proposed model is much less,
as compared to the CFL model. In Table 1 we have made a short comparison of the proposed CHFIS in
terms of the required number of rules to implement the full structure FL.
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Table 1. Fuzzy logic with the number of rules.

Model Number of Rules

Proposed Cohesive hierarchical fuzzy logic model 85

Conventional fuzzy logic model 900

Simplified hierarchical fuzzy logic model [17] 175

A total of 30 rules were defined in FIS_1, as listed in Table 2. Similarly, 30 rules were defined for
FIS_2 in the same manner as listed in Table 3. The linguistic terms NG, N, ND, D, DR and DT were
defined to MFs of variable depth which denote near to the ground, normal, near to deep, deep, deeper
and deepest. In the same way, the labels assigned to each MFs of variable length are ST, S, M, L and
LG which denote shorter, short, medium, long and longer, respectively. The linguistic terms for output
variable FIS_1 are defined as VLLR, LLR, MLR, HLR and VHLR which denotes very low-level risk,
medium level risk, high-level risk and very high-level risk respectively.

Table 2. Rule designed for fuzzy inference system (FIS)_1.

P2

P1 NG N ND D DR VT

ST VLLR VLLR LLR MLR MLR VHLR
S LLR LLR MLR MLR HLR LLR
M LLR MLR MLR HLR VHLR LLR
L MLR MLR HLR VHLR VHLR MLR

LG MLR HLR VHR VHLR VHLR HLR

Table 3. Rule design for FIS_2.

P4

P3 VLP VHL MLP HLP VHP EHP

OD VLLR VLLLR LLR MLR MLR VHLR
O VLLR LLR MLR MLR HLR VHLR

MA LLR MLR MLR HLR VHLR VHLR
N MLR MLR HLR VHLR VHLR VHLR

BN MLR HLR VHLR VHLR VHLR VHLR

Similarly, for input variable probability of leakage of the FIS_2 modules, the linguistic terms, ELP,
VLP, LP, MLP, HLP and VHP, EHP were defined. These terms are abbreviations of extremely low
probability, very low probability, low probability, medium probability, high probability and very high
probability. The labels assigned to the second input variable age of FIS_2 module are OD, O, MA, N
and BN which denote older, old, medium age, new and brand new. For the output variable of FIS_2,
the same number and linguistic terms of MFs were defined as for output variables of FIS_2. The output
of the FIS_1 and FIS_2 are further inputs to FIS_3. The linguistic terms for the output variables of FIS_3
are VLR, LR, MR, HR, and VHR which denote very low risk, low risk, medium risk, high risk and very
high risk, accordingly. The rules for FIS_3 are given in Table 4.

Table 4. Rule design for FIS_3.

PR2

PR1 VLLR LLR MLR HLR VHLR

VLLR VLR VLR LR MR MR
LLR VLR LR MR MR HR
MLR LR MR MR HR VHR
HLR MR MR HR VHR VHR

VHLR MR HR VHR VHR VHR
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4. Implementation and Experimental Results

4.1. Implementation

The implementation of the CHFIS model was carried out in C#, but for visual graphical MFs
and rules, we used MATLAB version 7.10.0.499 installed on an Intel (R) Core (TM) i5-3570 CPU@3.40
GHz computer system. In this work, we developed a CHFIS model for WSPL risk assessment.
The determined MFs for FIS_1 are shown in Figure 4.
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The rule viewer using the above input and output MFS is illustrated in Figure 9 in order to
demonstrate the operation of FIS_3.
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Table 5 overviews the implementation stack of the embedded hardware being used in the
experiments. Raspberry PI 3 model B was utilized as a gateway on which Raspbian OS was installed.
Furthermore, LEDs with different colors were connected with different general-purpose input/output
(GPIO) ports of Raspberry PI to trigger one of them based on the risk index. Vim was used as a
terminal editor whereas a full-fledged IDE named as PyCharm was used to access the Raspberry PI
terminal remotely. For communication, CoAP protocol was used, and the CoAP server was installed
on Raspberry PI to listen to the requests.

Table 5. Components description of the Raspberry PI.

Component Description

Hardware Raspberry PI 3 Model B
Operating System Raspbian

Memory 1GB
Actuators LEDs

IDE Vim, PyCharm (Remote Access)
Programming Language Python 3

Libraries CoAP Server, GPIO

4.2. Results of CHFIS Model

In this paper, we applied the CHFIS model on four input parameters namely depth, length, age
and leakage probability. Only four parameters were considered for WSPRI because we have real data
for these parameters supplied by the Electronics and Telecommunications Research Institute (ETRI)
organization. The data was gathered from 1989 to 2010 of WSPLs located at different locations of Seoul,
Republic of Korea. The input data for depth, length, age and leakage is given in Figure 10.
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Figure 10. Input data of parameters: (a) depth; (b) length; (c) age; and (d) leakage.

The risk index values calculated by the proposed CHFIS method based on the given four
parameters is illustrated in Figure 11. The red color lines represent the actual risk index values,
and the blue color represents the estimated risk index values.
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Figure 11. The real risk index values and the estimated risk index values calculated by the CHFIS
method for water supply pipelines (WSPL).

Figure 12 shows the experimental setup for the proposed work. In this setup, Raspberry PI was
used as an IoT gateway. It also hosts an IoT server which listens to the requests, processes them and
takes action accordingly. For visualization of risk, six LED actuators were used; each of them represents
a category of risk. For instance, in Figure 12, the red color LED is turned on which indicates the risk
factor is high. The LED light indication can be useful in assessing risk index while deploying it in a
real environment where actual lights represent the risk index in some locations. Six LEDs were used
for different risk categories.
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5. Conclusions and Future Work

In this paper, we proposed a new model based on the hierarchical structure for water supply
pipeline risk index called the cohesive hierarchical fuzzy inference system (CHFIS). In the proposed
CHFIS for MFs determination, we used a new method called the heuristic based MFs determination
scheme in order to determinate accurate MFs for fuzzy logic modules. We used real data to calculate
the risk index values for water supply pipelines risk index assessment. The risk indexes of WSPLs
was categorized in different levels. Next, the risk index values calculated by CHF were shown by
different LED light colors in order to assist the caretaker in taking measures accordingly. In the future,
we would like to design different hierarchical fuzzy logic models and carry out their implementation
in order to cover a different aspect of the data and different caretaker demands for the water supply
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risk index. We will also add more parameters in order to improve the accuracy of the system and cover
different reasons of failures of the water supply pipelines.
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