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Abstract: The prediction of mold level is a basic and key problem of continuous casting production
control. Many current techniques fail to predict the mold level because of mold level is non-linear,
non-stationary and does not have a normal distribution. A hybrid model, based on empirical mode
decomposition (EMD) and support vector regression (SVR), is proposed to solve the mold level in this
paper. Firstly, the EMD algorithm, with adaptive decomposition, is used to decompose the original
mold level signal to many intrinsic mode functions (IMFs). Then, the SVR model optimized by
genetic algorithm (GA) is used to predict the IMFs and residual sequences. Finally, the equalization
of the predict results is reconstructed to obtain the predict result. Several hybrid predicting methods
such as EMD and autoregressive moving average model (ARMA), EMD and SVR, wavelet transform
(WT) and ARMA, WT and SVR are discussed and compared in this paper. These methods are applied
to mold level prediction, the experimental results show that the proposed hybrid method based on
EMD and SVR is a powerful tool for solving complex time series prediction. In view of the excellent
generalization ability of the EMD, it is believed that the hybrid algorithm of EMD and SVR is the best
model for mold level predict among the six methods, providing a new idea for guiding continuous
casting process improvement.

Keywords: empirical mode decomposition; support vector regression; genetic algorithm; mold level;
continuous cast

1. Introduction

In the modern steel industry, high efficiency continuous casting technology has become the
most internationally competitive core technology. The continuous casting process is a complex
and continuous phase change process. There are many factors that affect the quality of slabs [1].
The research of the key technologies and cores in the high quality steel continuous casting process is
mainly focused on mold level precision, the segment, and secondary cooling dynamic control [2].

Mold level is non-linear and non-stationary in terms of the time scale and does not satisfy Gaussian
normal distribution. Therefore, the development and adoption of an effective signal processing method
to predict the Mold level is hugely challenging. This brings great difficulties for the prediction of Mold
level. The prediction of Mold level is crucial for improving the adaptive control of the continuous
casting process. Therefore, an accurate prediction of mold level cannot only guarantee the quality of
slab products, but also improve the automation level of the continuous casting manufacturing industry.

Precise mold level monitoring is regarded as the key to improving continuous casting production
quality [3,4]. The mold level is an important reference for casting speed control, segment roll gap
control, mold cooling water control, and stopper rod opening control. In the continuous casting
production process, the fluctuation of mold levels will cause large amounts of slag in the mold to be
involved in the molten steel, which will seriously affect the quality of the slab and may even lead
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to accidents in the casting process, such as slab breakout and steel overflow at the top of the mold.
Continuous high mold level operation will lead to overflow accidents, where the impurities float
on the liquid surface, resulting in surface defects of strand and internal defect of the cast product,
which in turn affects the surface and internal quality of the slab. Lowering the casting speed results
in excessive fluctuations in the mold level, which affects the productivity and production rhythm.
This impacts the quality of the slab and causes unplanned shutdown because of the stick and damage
of the tundish slide-gate.

The mold level predict model can control and maintain the mold level according to the mold
level historical data when the casting speed is disordered. As shown in Figure 1, after the transition of
tundish, hot metal enters into mold through slide-gate, and the lower end of slide-gate is under the
surface of mold. Hot metal transforms into solidified shell in mold and enters the root roll segment
through the narrow surface of mold. When the casting speed is over-low, the hot metal level in mold is
over-high, will cause overflow accident; when the casting speed is over-high, the hot metal level in
mold is over-low, which leads to the bulging of root roll segments and cause results in a break-out
accident. The stopper rod can control the flow rate of the hot metal when it flows into the mold.
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Some researchers have adopted many methods for the prediction of time series. Numerical weather
predict model is used for predicting future wind speed using mathematical models [5], multiple regression,
exponential smoothing, autoregressive moving average model (ARMA), and many others for wind speed
predict, power predict, and stock trend predict. Weron et al. [6] explained the complexities, strengths,
and weaknesses of the available solutions for electricity price predicting, the opportunities and threats
that predicting tools provide. However, the traditional time series predict methods, such as regression
analysis and grey predict [7], have some shortcomings, where the prediction accuracy of signals with large
fluctuations need to be improved [8].

In recent years, due to the rapid development of science and technology, artificial intelligence
technology has been widely used and introduced into the prediction of time series [9]. Artificial neural
networks (ANN) [10] and support vector regression (SVR) [11] methods are the main tools for dealing
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with non-linear, non-stationary time series. ANN is an artificial intelligence method developed in
the 1940s that can simulate human brain biological processes [9]. Wang et al. [12] proposed a new
back propagation neural network algorithm to apply to a semi-distributed model. Fei He et al. [13]
gives an advance artificial intelligent technology based on the genetic algorithm (GA) and the back
propagation (BP) neural networks. SVR is a small sample machine learning method, based on
statistical learning theory, Vapnik-Chervonenkis (VC) dimension theory, and minimum structural
risk principles [10]. Based on limited sample information, it seeks the best compromise between
model complexity and learning ability to achieve the best promotion effect [14,15]. Y. Liu established
a method for online predictions of the silicon content in blast furnace ironmaking processes [16].
Silvano Cincotti et al. [17] used the SVM model to forecast the electricity spot-prices of the Italian
power exchange (IPEX), which provided a better prediction accuracy, closely followed by econometric
technique. Existing studies have shown that the ANN method takes a long time to calculate and
is prone to localized minimization [3,18–20], leading to overfitting and poor predict results. SVR is
more adaptable to overfitting than ANN because the parameters of SVR can be improved by means of
global optimization.

Many studies show that ANN or SVR methods were employed for the prediction of time series
but only a few pieces of literature have combined the two methods [21]. For that reason, we apply
the combination of empirical mode decomposition (EMD) and SVR for prediction of time series.
The concept of hybrid predict appears in numerical weather prediction (NWP)-based predicts, such as
NWP-ANN/ARMA for solar radiation predict [20]. Ye and Liu [22] used EMD-SVR for short-term
wind power predict and achieved good predict results.

In this paper, we present a novel predict method for time series of mold level, based on the
combination of EMD and SVR with global optimization. The results of simulation experiments display
their effective and competitive advantages by using the proposed hybrid algorithm. First, the original
mold level signal is decomposed by EMD into several intrinsic mode functions (IMFs). Then the
improved SVR model is optimized by GA and used to predict the subsequences. Finally, the predict
sequence is reconstructed to obtain the predict result. The rest of this paper is organized as follows.
In Section 2, the basic algorithms EMD and SVR are introduced. In Section 3, we present a novel
predict method for time series of mold level based on the combination of EMD and SVR with global
optimization. Section 4 consists of experimental results and analysis. Finally, we conclude our work in
Section 5.

2. Basic Algorithm Research

2.1. EMD Algorithm

EMD is an adaptive signal processing technique suitable for non-linear and non-stationary
processes [23]. In 1998, Huang et al. [24] proposed the empirical mode decomposition technology,
which has been widely used in biomedicine [25,26], speech recognition [27], system modeling [28–30],
and process control [31,32]. Based on the time scales, EMD local features, such as local maxima, local
minima, and zero-crossings, decompose the signal into several IMFs and a residual, the IMFs are
orthogonal to each other. Modal decomposition is determined by the signal itself.

EMD satisfies the following basic assumptions:

(1) In the entire data set, the number of extreme values and the number of zero crossings must be
equal or at most have one point of difference.

(2) At any point, the average is defined by the local maximum envelope, and the minimum envelope
is zero.

EMD steps are shown in Figure 2.
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Finally, the original signal is decomposed into:

x(t) =
N

∑
i=1

ci + rN (1)

where x(t) is the original signal, ci is the IMF, N is the number of IMFs and rN is the residual. i = 1, 2, . . . N.

2.2. SVR Algorithm

SVR does not solve only the classification problem, but also solves the regression problem.
The basic model is the largest linear classifier as defined in the feature space [33]. SVR aims to achieve
a distinction between the samples by constructing a hyperplane for classification, so that the sorting
interval between the samples is maximized and the sample to the hyperplane distance is minimized.

Set a training data set for a feature space:
D = {(x1, y1), (x2, y2) . . . , (xm, ym)},
xi ∈ χ = <n, yi ∈ y = {+1,−1}, i = 1, 2, . . . , N

where xi is the i-th feature vector, yi is the class

tag of xi.
The corresponding equation of the classification hyperplane is as follows:

h(x) = ω · x + b (2)

where x is the input vector, ω is the weight, b is the offset.
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The classification decision function is as follows:

Sign(h(x)) (3){
h(x) > 0, yi = 1

h(x) < 0, yi = −1
(4)

The support vector machine is implemented to find the ω and b when the interval between the
separation hyperplane and the nearest sample point is maximized. When the training set is linearly
separable, the sample points belonging to different classes can be separated by one or several straight
lines with the largest interval. The maximum interval is solved by the following formula:

maxγi = yi(
ω

‖ω‖ · xi +
b
‖ω‖ ) (5)

s.t.yi(
ω

‖ω‖ · xi +
b
‖ω‖ ) ≥ γ, i = 1, 2, . . . , N (6)

Thus, we can obtain the linear separable support vector machine optimization problem.

min
ω,b

1
2
‖ω‖2 (7)

s.t.yi(ω · xi + b)− 1 ≥ 0, i = 1, 2, . . . , N (8)

In the actual data set, there are many specific points, making the data set linear inseparable; in
order to solve this problem, we introduce a slack variable for each sample point. ξi ≥ 0 so that

yi(ω · xi + b) ≥ 1− ξ (9)

For each slack variable ξi, pay a price ξi, and the optimization problem becomes:

1
2
‖ω‖2 + C

N

∑
i=1

ξi (10)

where C > 0 is the penalty factor.
Most of the data in the actual data are linearly inseparable. Therefore, these data should be

mapped to a high-dimensional feature space through non-linear mapping, and the non-linear problem
is transformed into a linear problem. The linear indivisible problem is transformed into a linear
separable problem.

The kernel functions are introduced as follows:

K(xi, xj) = ϕ(xi) · ϕ(xj) (11)

where the value of the kernel equals the inner product of two vectors, xi and xj.
At this point, we obtain:

W(α) =
1
2

N

∑
i=1

N

∑
j=1

αiαjyiyjK(xi, xj)−
N

∑
i=1

αi (12)

where αi > 0, i = 1, 2, . . . , N is the lagrangian multiplier and N is the number of samples.
In this paper, the radial basis function (RBF) is chosen as the support vector machine kernel

function, and the expression is as follows:
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K(xi, x) = exp(
−‖xi − x‖2

2g2 ) (13)

where g is the kernel function coefficient.
At this point, the classification function becomes:

f (x) = sign[
N

∑
i=1

αiyi exp(
−‖xi − x‖2

2g2 ) + b] (14)

3. Hybrid Algorithm Research

The accuracy of prediction for the mold level is influenced by many factors. In order to improve
the accuracy of prediction for the mold level, a predicting model, based on a Hybrid predict algorithm
for the mold level, is proposed.

First, the original signal is subjected to data pre-processing to remove singular points. Then all
data is marked in the range of 0 to 1 to improve computational efficiency. Finally, the hybrid model is
used for data predict.

3.1. Feasibility Analyses

EMD and SVR algorithm can be hybridized into an efficient hybrid algorithm. The reasons can be
summarized as follows:

EMD is a decomposition algorithm that can decompose complex signals into simple signals.
SVR is a regression algorithm. The fusion of EMD and SVR can helpful to predict complex signals,
improve the ability of complex signal prediction, and it can obtain high-quality solutions. For this
reason, the predict accuracy of hybrid algorithm is higher.

GA is a global optimization algorithm. The best model of SVR has a strong dependence on the
kernel function parameters. GA can calculate the optimal SVR kernel function parameters faster and
lay the foundation for the establishment of the best SVR model. Consequently, the efficiency of hybrid
algorithm is higher.

EMD algorithm is an adaptive decomposition algorithm. There is no influence of human
factors. The SVR model is more robust to nonlinear signals after optimization by the GA algorithm.
Therefore, hybrid algorithm is more robust.

3.2. The Full Procedure of EMD-SVRGA

EMD is an adaptive decomposition algorithm, based on the original signal, which can decompose
complex signals into simple signals. Obviously, the prediction of simple signals is simpler than
the prediction of complex signals, and the calculation cost is small. SVR is an excellent predictive
algorithm, especially robust to nonlinear signals. GA algorithm is used to optimize parameters of
the SVR kernel function, which further improves the SVR prediction accuracy. In order to make full
use of the above algorithms, we present a hybrid algorithm, in which the GA is incorporated into the
SVR. In EMD-SVRGA, SVR is used to predict simple signals, which is decomposed by EMD, and the
computational cost is greatly reduced. The GA algorithm optimizes the parameters of the SVR kernel
function, improves the SVR calculation efficiency, and makes the hybrid algorithm achieve faster
convergence speed. In addition, the adaptive characteristics of EMD and the robustness of SVR to
nonlinear, non-stationary, non-Gaussian distributed signals further improves the generalization ability
of the hybrid algorithm. The EMD-SVRGA algorithm can be described by the following steps as shown
in Table 1, and the corresponding flowchart is shown in Figure 3.
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Table 1. The EMD-SVRGA algorithm.

Step 1. Decompose the mold level signal data into several IMFs and one residual by the EMD.
Step 2. Global optimization of C and g in SVR is performed using GA to determine the SVR model.
Step 3. Predicted IMFs (PIMF) obtained by SVR for each IMF.
Step 4. Predicted residual sequence obtained by SVR for residual sequence.
Step 5. Sum all predicted IMFs and residual sequences to obtain the predicted signal.

The flow chart of EMD-SVR is shown in Figure 3.Processes 2019, 7, x FOR PEER REVIEW 7 of 14 
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From the above, we can see that GA gives the optimal parameters of the SVR kernel function,
improves the convergence speed of SVR, EMD decomposes the original signal of mold level, reduces
the complexity of mold level signal, and further predicted by SVR. The roles of the three algorithms are
different. In a word, EMD performs signal decomposition, and the GA performs SVR kernel function
parameter optimization to make the SVR obtain the prediction result precisely and faster.

4. Experiments Studies

4.1. Problem Prescription

In order to clearly express the applicability, superiority, and generalization capability of the model
applications, the mold level data of actual process parameters are used in this paper. These were
collected from the continuous casting machines developed by the China National Heavy Machinery
Research Institute Co., Ltd., Xi’an, China. We used an eddy current sensor to collect the mold-level
signal at a steady cast speed. The cast speed is 0.9 m/min, and the tundish temperature is 1562 ◦C.
Most of the disturbances are non-linear and non-stationary, and the long-term predict model is difficult
to establish. This paper presents mold level predict model is important for mold level control to
propose new ideas to improve the continuous casting automatic control.

A continuous casting production process data acquisition graph is presented in Figure 4. The time
interval ∆t = 1 h, and the sampling frequency is 3 Hz.
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The main technical parameters of the continuous casting machine are shown in Table 2.

Table 2. Main technical parameters of the continuous casting machine.

Project Specification

Continuous casting machine model Curved continuous caster
Secondary cooling category Aerosol cooling, dynamic water distribution

Gap control Remote adjustment, dynamic soft reduction
Basic arc radius/mm 9500

Mold length/mm 900
Metallurgical length/mm 39,200

Mold vibration frequency/time/min 25–400
Mold vibration amplitude/mm 2–10

Slab width/mm 900–2150
Slab thickness/mm 230/250

Working speed/m/min 0.8–2.03

4.2. EMD-SVR

During the continuous casting production process, the data was intercepted for one hour,
the singularity points were removed according to the Layda criteria, the data from the first 40 min was
used as the training set, and the last 20 min of data was used as the test set to verify the validity of the
model. Descriptive statistics of mold level data are also given in Table 3. Mold-level data EMD results
is shown in Figure 5, there is a trend term in Figure 5, which clearly shows that the mold level data is
non-stationary. As shown in Figure 6, C is 95.5729 and g is 0.39511, through the global optimization of
the GA. Then the SVR model was determined, each IMF and residual sequence is predicted by the
SVR model. The final predict signal, as shown in Figures 7 and 8.
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Table 3. Descriptive statistics of mold level.

Project Mold Level

Max-Min Values (mm) 951–1096
Mean (mm) 1026.7607

Standard Deviation (mm) 28.3495
Skewness −0.02506
Kurtosis 2.1049

4.3. Experimental Results and Analyses

We made a comparison between our proposed EMD-SVRGA method and the five kinds of
algorithms, i.e., the algorithms include WT-ARMA, WT-SVR, WT-SVRGA, and EMD-ARMA, EMD-SVRGA.
The computational results of the above methods are listed in Table 3 in detail. The parameter values of the
model are displayed in Table 4.

Table 4. Parameter values of the model. ACF is Autocorrelation coefficient, PACF is Partial
autocorrelation coefficient.

C g ACF PACF

WT-ARMA - - 2 2
WT-SVR 100 1 - -

WT-SVRGA 16.3485 0.01773 - -
EMD-ARMA - - 2 2

EMD-SVR 100 1 - -
EMD-SVRGA 95.5729 0.39511 - -



Processes 2019, 7, 177 10 of 14

The performances of the three hybrid methods models are verified by four statistical indicators in
this paper, and the best hybrid predict model that is suitable for continuous casting process parameters
is selected.

Correlations between the original data and the predict data, which is characterized by correlation
coefficients (CC)

R =
Cov(P, A)√

Var(P) ·Var(A)
(15)

CC is defined as a statistical indicator used to reflect the close relationship between variables,
the larger the CC, the better the algorithm performance.

Root-mean-square Error (RMSE)

RMSE =

√
∑n

i=1 (Pi − Ai)
2

n
(16)

RMSE is defined as reflect the degree of dispersion of a data set, measure the deviation between
the observed value and the true value, the smaller the RMSE, the better the algorithm performance.

Mean Absolute Error (MAE)

MAE =
∑n

i=1|Pi − Ai|
n

(17)

MAE is defined as average value of absolute error, reflect the actual situation of predict error
better. The smaller the MAE, the better the algorithm performance.

Mean Absolute Percentage Error (MAPE)

MAPE =
∑n

i=1

∣∣∣ Pi−Ai
Ai

∣∣∣
n

× 100 (18)

MAPE can be used to measure the outcome of a model predict. The smaller the MAPE, the better
the algorithm performance.

Where Pi and Ai are the i-th predicted and actual values, respectively, and n is the total number
of predict.

Predict model test results are shown in Table 5 and Figure 9.
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Table 5. Predict model test results.

R RMSE MAE

WT-ARMA 0.7705 0.118334 5.0878
WT-SVR 0.9733 0.390670 0.6088

WT-SVRGA 0.9993 0.155473 0.7662
EMD-ARMA 0.99689 7.0172 5.3532

EMD-SVR 0.9691 0.417956 0.5983
EMD-SVRGA 0.9992 0.063341 0.9601

As shown in Table 5 and Figure 9, among the EMD based hybrid methods, the EMD-SVR had
a better performance than EMD-ARMA, and EMD-SVRGA had better performance than EMD-SVR.
Only the MAE is 0.9601, it is larger than the other methods. The other three indicators are all the
best predictors of performance. Among the WT based hybrid methods, the WT-SVR had a better
performance than WT-ARMA, and WT-SVRGA had better performance than WT-SVR, the performance
of WT-SVRGA is the best, however, it is not stable. Only two indicators are better than the other two
methods. RMSE is worse than WT-ARMA, and MAE is worse than WT-SVR.

The SVR based hybrid methods had better performance than ARMA based hybrid methods, due to
the advantage of SVR as a non-linear data regression algorithm. The SVR based hybrid algorithm
greatly improves the prediction accuracy compared to the traditional ARMA algorithm, and shows a
strong generalization ability and robustness.

Among the SVR-based hybrid methods, R of the WT-SVRGA is close to the R of EMD-SVRGA.
Only MAE of WT-SVRGA is 0.7662, it is better than EMD-SVRGA. Although the performance
of WT-SVRGA predict is equivalent to that of EMD-SVRGA, the wavelet transform is a kind of
transcendental non-adaptive transformation. The transform effect depends on the selection of the basis
function and the order of transformation. There are many human factors. For instance, the prediction
effect is not stable, adaptability cannot be guaranteed to all data, and the generalization ability is far
less than EMD-SVRGA.

It is observed from the results that the R of SVRGA-based hybrid method is improved by
0.2287 compared with the ARMA based hybrid method, RMSE is reduced by 6.9538. R of EMD
hybrid method is reduced by 0.0001, RMSE is reduced by 0.054993. The EMD-SVRGA hybrid method
greatly improves the prediction accuracy compared to the traditional ARMA algorithm, and shows a
strong generalization ability and robust.

4.4. Predicting Accuracy Significance Tests

In order to verify the significant advantages of the proposed model in terms of prediction accuracy,
some statistical tests are implemented in this section. Based on Dong et al. [34] and Fan et al. [35]
suggested the Wilcoxon signed-rank test [36] and Friedman test [37], which are simultaneously applied
in this paper.

The statistic W of the Wilcoxon signed-rank test:

W = min
{

r+, r−
}

(19)

The statistic F of the Friedman test:

F =
12N

k(k + 1)

[
k

∑
j=1

R2
j −

k(k + 1)2

4

]
(20)
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where N is the total number of predict results; k is the number of compared models; Rj is the average
rank sum obtained in each predict value for each compared model as shown in Equation (21):

Rj =
1
N

N

∑
i=1

rj
i (21)

where rj
i is the rank sum from 1 (the smallest predict error) to k (the worst predict error) for i-th predict

result, for j-th compared model.
If the associated p-value of F meets the criterion of not acceptance, the null hypothesis, equal

performance among all compared models, are also not held.
The results of Wilcoxon signed-rank test and Friedman test are listed in Table 6.

Table 6. Results of Wilcoxon signed-rank test and Friedman test.

Compared Models

Wilcoxon Signed-Rank Test Friedman Test

α = 0.025 α = 0.05
α = 0.05

h-Value p-Value h-Value p-Value

EMD-SVRGA vs. WT-ARMA 1 0 1 0
H0: The results of the six algorithms are equal

F = 35.8
p = 0 (Reject H0)

EMD-SVRGA vs. WT-SVR 1 0 1 0
EMD-SVRGA vs. WT-SVRGA 1 0 1 0

EMD-SVRGA vs. EMD-ARMA 1 0 1 0
EMD-SVRGA vs. EMD-SVR 1 0 1 0

where α is the level of significance, p returns whether the population producing the two
independent samples is the same significant probability, and h returns the result of the hypothesis
test. If the overall difference between x and y is not significant, then h is zero. If the overall difference
between x and y is significant, then h is 1. If p is close to zero, then the null hypothesis can be questioned.
H0 is the assumption of Friedman Test.

5. Conclusions

In this paper, a novel hybrid method, based on EMD-SVRGA, is proposed. The proposed method
is applied to predict the mold level. In this method, the original mold level signal decomposed to
several IMFs by the EMD algorithm. SVR is optimized by GA, predicted IMFs and predicted residual
sequences are obtained by optimized SVR. The predicted result is reconstructed by EMD. The use of
EMD-SVRGA model can achieve accurate predictions of non-linear, non-stationary data. This model
uses GA to improve the global search capability of the parameters in the SVR models and avoid falling
into local optimization, thereby optimizing SVR algorithm for better accuracy. In this paper, six predict
algorithms were calibrated by four statistical indicators. The experimental results demonstrate the
reliability and validity of the proposed EMD-SVRGA model in predict Mold level. The model has a
strong generalization, capability and robustness.

The precise prediction of mold level provides a new idea for the continuous casting process
improvement. Short-term mold level prediction can effectively avoid confusion of production rhythm
caused by crystallizer level fluctuations, and long-term predictions can effectively avoid accidents,
such as slab breakout and steel overflow at the mold top. Accurate predictions of mold levels has
important practical significance.
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Nomenclature

EMD Empirical mode decomposition
IMF Intrinsic mode function
TS Time series
ARMA Autoregressive moving average
ACF Autocorrelation function
PACF Partial autocorrelation function
SVR Support vector regression
GA Genetic Algorithm
WT Wavelet Transform
CC Correlation Coefficient
RMSE Root-mean-square error
MAE Mean Absolute Error
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