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Abstract: Global Sensitivity Analysis (GSA) is a technique that numerically evaluates the significance
of model parameters with the aim of reducing the number of parameters that need to be estimated
accurately from experimental data. In the work presented herein, we explore different methods and
criteria in the sensitivity analysis of a recently developed mathematical model to describe Chinese
hamster ovary (CHO) cell metabolism in order to establish a strategic, transferable framework for
parameterizing mechanistic cell culture models. For that reason, several types of GSA employing
different sampling methods (Sobol’, Pseudo-random and Scrambled-Sobol’), parameter deviations
(10%, 30% and 50%) and sensitivity index significance thresholds (0.05, 0.1 and 0.2) were examined.
The results were evaluated according to the goodness of fit between the simulation results and
experimental data from fed-batch CHO cell cultures. Then, the predictive capability of the model was
tested against four different feeding experiments. Parameter value deviation levels proved not to
have a significant effect on the results of the sensitivity analysis, while the Sobol’ and Scrambled-Sobol’
sampling methods and a 0.1 significance threshold were found to be the optimum settings. The
resulting framework was finally used to calibrate the model for another CHO cell line, resulting in a
good overall fit. The results of this work set the basis for the use of a single mechanistic metabolic
model that can be easily adapted through the proposed sensitivity analysis method to the behavior of
different cell lines and therefore minimize the experimental cost of model development.

Keywords: cell culture modeling; Chinese hamster ovary cells; global sensitivity analysis; parameter
estimation; model validation

1. Introduction

Mathematical models have been extensively used to describe mammalian cell metabolism and
the production of therapeutic recombinant proteins, like monoclonal antibodies (mAbs) [1–3]. Both
genome scale and time-dependent metabolic mathematical models have been proposed to study
the metabolic fluxes of mammalian cells. Genome scale models account for the whole metabolic
network of a cell type, like Chinese hamster ovary (CHO) cells, and are therefore independent of
the different cell lines [4,5]. On the other hand, the time-dependent kinetic mechanistic models
usually describe a significantly reduced metabolic network, but offer insight on the mechanisms
and interactions in cell metabolism and have been successfully coupled with protein glycosylation
models [6–9]. However, mathematical models describing animal cell cultures usually demand an
intensive parameter estimation step that results in models of limited-applicability as they are typically
fitted solely to the training dataset used for estimation.

Sensitivity analysis quantifies how the variance of model inputs (parameters) affects the
uncertainty of the model outputs (variables) [10]. It can be further categorized into local sensitivity
analysis (LSA) and global sensitivity analysis (GSA). Local sensitivity analysis describes the effect that
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small perturbations of input values have on the output and is mathematically expressed by the partial
derivative of the output with respect to the examined parameter [11]. On the other hand, GSA expresses
the variance of model outputs with respect to input variance and has been successfully utilized to
reduce the size of the parameter estimation problem by calculating the impact of model parameters
and applying a significance threshold [12–17]. The Sobol’ method [18] is the most common method of
sampling the input parameter space for GSA, while Scrambled-Sobol’ and Pseudo-random methods are
alterations of the original method where a randomized sampling sequence is utilized, yielding higher
accuracy but also increased analysis times [19]. In the Sobol’ method, ANOVA-decomposition is used
to describe the examined function f (x) as the sum of the orthogonal functions [20]. The orthogonal
functions quantitate the effect that both one-at-a-time changes in a single input’s value and also the
simultaneous perturbation in values of different combinations of inputs have on the output. The total
variance (D) describing the variance of output due to the variation of all parameters is calculated by
the sum of all individual variances or the integral of the

∫
f 2(x)dx− f0 over the domain that the x is

defined. Each variance (Di1,...,is ) is calculated by the integral of the squared orthogonal function [21].
The total sensitivity index of the i parameter is therefore estimated by the division of the sum of the
first and higher order variances by the total variance.

The calculation of the separate and the step-by-step higher order cooperative variances of the
inputs and their impact on the output’s value is described as High Dimensional Model Representation
(HDMR) [22]. When the examined input values are randomly selected over the defined sampling
input space, then the method is called Random Sampling-HDMR(RS-HDMR) [23]. Li and co-workers
have substantially contributed to the understanding and application of methods belonging to the
HDMR family [22–26]. The RS-HDMR metamodeling method has also been utilized to calculate the
Sobol’ sensitivity indices in order to describe the effect of model parameters in non-linear and complex
systems [27].

The criteria used in the majority of sensitivity analysis applications are arbitrary and based on the
preferences or assumptions of the authors [17]. Specifically, different sampling methods and parameter
deviation ranges used to perform sensitivity analysis and, importantly, significance index thresholds
(SIT) can affect the outcome of the sensitivity analysis and therefore the parameter estimation and
modeling performance. In this work, we aim to develop a consistent analysis framework where
different sensitivity analysis’ methods and parameters are examined. The results of each analysis are
then compared to experimental data and a decision for the optimum method is taken against model
fitting results and the value of the 95% confidence intervals (CI) of the estimated model parameters.

The analysis framework is initially applied to a CHO-T cell line and later used to transfer and
adapt the model to another CHO cell line (GS46) data set, indicating that way that a common model
can be used to describe both cell lines. The use of this analysis framework can result in speeding up
the mathematical description and monitoring of mammalian cell cultures by closing the gap between
the different process conditions and cell line performance and sets the basis for the development of a
common modeling framework that can be easily adapted to new cell lines and process conditions.

2. Materials and Methods

2.1. Cell Culture Maintenance

A CHO cell line (kindly donated by MedImmune, Cambridge, UK), named CHO-T, producing
an IgG antibody was used for the initial sensitivity analysis studies. The cells were maintained in
suspension cultures in CD CHO medium (Life Technologies, Paisley, UK) at the following operating
conditions: 36.5 ◦C± 0.5 ◦C, 150 rpm and 5% CO2 and were passaged every 3 days at a seeding density
of 3 × 105 cells·mL−1. 50 µM Methionine Sulfoximine (MSX) was added in the cell culture for the first
two passages.
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2.2. Fed-Batch Cell Cultures

Experiments were conducted as presented in reference [28]. Briefly, fed-batch experiments with
a working volume of 100 mL of cell culture were conducted in 500 mL Erlenmeyer flasks after 3 cell
passages including cell revival. The seeding density of the fed-batch experiments was set at 3 ×
105 cells·mL−1. All the cell cultures were supplemented with 1 µM manganese (II) chloride solution
(Sigma-Aldrich, Dorset, UK) at seeding and with CD EfficientFeedTM C AGTTM Nutrient Supplement
(Life Technologies, Paisley, UK) at 10% of the working volume on day 2 and every other day. For
the galactose and uridine feeding experiments, the cell cultures were supplemented with varying
concentrations of D-(+)-galactose and uridine (both Sigma-Aldrich, Dorset, UK) on day 4 and every
other day until day 10 at 10% of the working volume, according to Table 1. Experiments were carried
out in biological duplicates and the cell cultures were terminated at day 14.

Table 1. Concentrations of galactose and uridine fed to the cell culture on different days for all
the experiments.

Feeding Strategy
Galactose (mM) Uridine (mM)

Day 4 Day 6 Day 8 Day 10 Day 4 Day 6 Day 8 Day 10

FS1 79.35 15.38 10.99 248.29 15.87 3.08 2.20 49.66
FS2 4.27 168.34 37.72 11.35 0.85 33.67 7.54 2.27
FS3 5.19 3.11 235.29 249.94 1.04 0.62 47.06 49.99
FS4 21.91 6.41 233.46 3.97 4.38 1.28 46.69 0.79

FS5 (control) - - - - - - - -

2.3. Analytical Assays

Viable cell density and viability were determined using the Viability and Cell Count assay on
NucleoCounter NC-250TM (ChemoMetec A/S, Allerod, Denmark) using Solution 18 (ChemoMetec
A/S, Allerod, Denmark). Extracellular antibody concentration was quantified daily for all cell cultures.
For that reason, 4 µL of the supernatant were measured using the BLItz system (Pall ForteBio Europe,
Portsmouth, UK) and the Dip and Read™ Protein A (ProA) Biosensors (Pall ForteBio, Portsmouth, UK).

2.4. Computational Tools

A CHO cell growth, metabolism and death model previously presented in reference [28] was used
for parameter estimation and sensitivity analysis. Model simulations and parameter estimation were
conducted in gPROMS v.5.1.1 (Process System Enterprise Ltd., London, UK, www.psenterprise.com/
gproms). A maximum likelihood optimization method was used for parameter estimation where the
unknown parameters (θ) in a mathematical model (g) that contains differential and algebraic equations
(DAEs) as described in Equation (1), are estimated.

g
(

d(t),
.
d(t), a(t), c(t), p, θ

)
(1)

where, t is the time, d(t) are the differential variables,
.
d(t) are the time derivatives of d(t), a(t) are the

algebraic variables, c(t) are the time-controlled variables that are assigned by the user (i.e., feeding
inlet and sampling outlet) and p are the known and assigned to their nominal values parameters of the
model.

The utilized maximum likelihood optimization method maximises the probability of the model
simulation to accurately describe the experimental data by varying the parameter values (θ) as
described in Equation (2). The variance of the examined variables is fixed and equal to the standard
deviation of the experimental measurements.

www.psenterprise.com/gproms
www.psenterprise.com/gproms
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Φ =
N
2

ln(2π) +
1
2

min
θ
{

NE

∑
i=1

NVi

∑
j=1

NMij

∑
k=1

[ln
(

σ2
ijk

)
+

(
z̃ijk − zijk

)2

σ2
ijk

]} (2)

where, Φ is the objective function, N is the number of measurements for all the experiments, NE is the
number of experiments, NVi is the number of variables measured in the ith experiment, NMij is the
number of measurements for the jth variable in the ith experiment, σ2

ijk is the user-defined variance of
the kth measurement for the jth variable in the ith experiment, z̃ijk is the kth experimentally measured
value of the jth variable in the ith experiment and zijk is the respective model predicted value [29].
SobolGSA software was used for Global Sensitivity Analysis [30]. The Random Sampling-High
Dimensional Model Representation (RS-HDMR) method was used for metamodel construction [31],
while three different sampling strategies for input generation and sensitivity analysis were examined:
Sobol’, Pseudo-random and Scrambled-Sobol’. The number of generated inputs was set to 16384
(214). The number of samples to build HDMR and for testing was set at 4096 (212), the maximum that
the software could utilize for such a complicated model, while the maximum number of alphas (α)
and betas (β) was set to 4 and 2, respectively. Three different thresholds of significance were used to
evaluate the sensitivity indexes of the parameters, 0.05, 0.1 and 0.2.

The feeding experiments were selected using a constrained global sensitivity analysis (cGSA)
method [32]. We utilized the capabilities of cGSA in order to construct a Design Space (DS) describing
the process conditions to meet the desired constraints on product yield and quality. The feeding
experiments were chosen such as to maximise the spread of these feeding strategies within the
proposed DS.

2.5. Workflow and Strategic Framework

The strategic framework (Figure 1) consists of four main steps:

Step 1: GSA is performed for the model in use. GSA parameters that can vary are: sampling strategy
for the parameter space and metamodel building (Sobol’, Pseudo-random, Scrambled-Sobol’)
and range of parameter deviation (10%, 30% and 50%).

Step 2: The resulting metamodels that exhibit high agreement (R2 > 0.9) are used to progress to
post-sensitivity analysis where different SITs were applied (0.05, 0.1 and 0.2) in order to
indicate the significant parameters.

Step 3: Each set of significant parameters indicated by Step 2 is then included in parameter estimation
for the model in use.

Step 4: The parameter estimation results and therefore the sensitivity analysis efficiency are
subsequently evaluated in terms of goodness of fit with experimental data and the optimum
analysis method is chosen.
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Figure 1. Strategic framework for the evaluation of different sensitivity analysis. The framework
combines sensitivity analysis in the SobolGSA software and parameter estimation in gPROMS.

As described in Figure 1, Step 1 includes the experimentation with different parameters of the
sensitivity analysis. Figure 2 describes the strategy for examining the effect of sampling method for
input generation, of parameter deviation range and of the chosen SIT. As a first step, any of the three
sampling methods can be chosen and the different parameter deviation values can be examined. The
sampling method is used to generate 16384 (214) different groups of parameter values within the
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constrained—by the chosen parameters’ deviation—values space, as shown in Equation (3). Therefore,
the model is simulated 16384 (214) times with the different input (parameters) sets as indicated by the
chosen sampling method. Then, the different sets of sensitivity analyses—that include the construction
of RS-HDMR metamodels—are performed utilizing the different sampling methods, this time for the
construction of the metamodel. The sensitivity analyses that result in high metamodeling fitting are
then used to perform parameter estimation using the indicated as significant parameters for each SIT.

x ∈ [(100%− PD)Pvnominal , (100% + PD)Pvnominal ] (3)

where, x is the parameter value, PD is the parameters’ deviation and Pvnominal is the nominal value of
the parameter, as indicated in Table 2.
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Post-analysis, the parameters that resulted in a sensitivity index higher than the SIT were regarded
as significant parameters and were included in the parameter estimation. Sensitivity analysis was
performed for every day of the cell culture. Due to large discrepancies of the total sensitivity index
(TSI) of numerous parameters during the cell culture period and in order to evaluate the significance
of the parameters for the whole time period the TSI was considered against the whole culturing period
using Equation (4):

288h∫
0h

f (t)dt ≥
288h∫
0h

SIT dt (4)

where, f(t) is the function that describes the TSI of the parameter P1 as a function of cell culture time
period and SIT is the chosen threshold. If Equation (4) is satisfied, then the examined parameter
is considered significant for the chosen SIT. However, the outputs considered and evaluated in
the sensitivity analysis are an important factor that can substantially affect the results. For model
calibration to the CHO-T cell line, the viable cell density and the extracellular antibody concentration
were chosen as the outputs of interest and were considered independently. Viable cell density and
antibody concentration are, to a certain extent, affected by all the other variables in the model
(extracellular concentrations of metabolites and amino acids). On the other hand, during the model
calibration to the GS46 cell-line, all measured variables were considered as outputs of the sensitivity
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analysis to additionally identify which measurements were likely to yield better estimates for each
important parameter.

Table 2. Model parameters that were used in the GSA and their nominal values a.

Parameter Value Unit

µmax 6.50 × 10−2 h−1

µdeath,max 1.50 × 10−2 h−1

KGlc 14.04 mM
KAsn 2.62 mM

KIAmm 3.17 mM
KILac 1 × 103 mM
KIUrd 41.09 mM

Kd,Amm 14.28 mM
Kd,Urd 27.86 mM
YmAb,X 3.39 pg·cell−1

mmAb 4.10 × 10−1 pg·cell−1·h−1

YXGlc 1.01 × 109 cell·mmol−1

ΥXLac 5.46 × 107 cell·mmol−1

YXGln 4.64 × 109 cell·mmol−1

YXGlu 1.46 × 1010 cell·mmol−1

YXAsn 7.68 × 108 cell·mmol−1

YXAmm 2.36 × 109 cell·mmol−1

YXGal 1.38 × 108 cell·mmol−1

YXUrd 1.61 × 109 cell·mmol−1

YXAsp 3.59 × 109 cell·mmol−1

YGln/Amm 0.10 mmol·mmol−1

YLac/Glc 1.56 mmol·mmol−1

YAsn/Asp 0.10 mmol·mmol−1

YAsp/Asn 0.13 mmol·mmol−1

YAmm/Urd 2 mmol·mmol−1

mGlc 3.43 × 10−11 mmol·cell−1·h−1

mlac 1.87 × 10−10 mmol·cell−1·h−1

KcGal 5.27 mM
fGal 0.35 -

Lacmax1 21.20 mM
Lacmax2 16 mM

KGal 18.23 mM
KUrd 7 mM

a Data taken from [28].

3. Results and Discussion

3.1. Model Calibration to CHO-T Cell Line

The model examined herein describes the cell growth, metabolism and death for the CHO-T
cell line. Parameter estimation has been previously performed to fit the given experimental data
and examine the predictive capabilities of the model [28]. Five of the 22 replicates of galactose and
uridine feeding experiments (including the control experiment) presented significant deviation from
the average behaviour of the cell line. These experiments were chosen in order to re-calibrate the
model and adapt it to the unusual performance. Therefore, several sensitivity analyses methods were
examined to obtain the most significant parameters of the model (Figure 2). The indicated parameters
were then re-estimated and the effectiveness of the sensitivity analysis and parameter estimation was
evaluated against experimental data. The emphasis was placed to the agreement of viable cell density
(Xv) and antibody concentration (mAb) to experimental data and these variables were therefore used
as the outputs of the sensitivity analysis. The significant parameters were re-estimated according
to the feeding experiment with the lowest experimental standard deviation in terms of viable cell



Processes 2019, 7, 174 7 of 15

density and antibody concentration and their predictive capabilities were tested against the four
feeding experiments with different concentrations of galactose and uridine (as well as the control).
The effectiveness of the sensitivity analysis and parameter estimation was measured by the fitting
of the model results to the experimental data and by the obtained 95% confidence intervals for the
estimated parameters.

In order to explore the capabilities of the presented workflow, an effort to adapt the existing
modeling framework to metabolic data of another cell line, named GS46 was undertaken. The
metabolic data for this cell line can be found in Kyriakopoulos and Kontoravdi [33]. Model equations
remained unchanged—as developed previously for the CHO-T cell line. The sensitivity analysis was
performed for all 33 model parameters. Once more, the results were evaluated against the fitting of
the simulation results to the experimental data and the values of the 95% confidence intervals. The
parameters and their nominal values are listed in Table 2. The definition of each parameter can be
found in Supplementary Material (Table S1).

3.1.1. GSA Results for the Mathematical Model

As shown in Figure 2 the sampling method (Sobol’, Scrambled-Sobol’ and Pseudo-random) and
degree of parameter deviation (10%, 30% and 50%) were varied. It was not feasible to examine values
over 50%, as they resulted in multiple crashes of the model during the 16384 simulations that were
used for sampling. Crashes were caused due to combinations of parameters that lead to infeasible
output (variables) values, e.g., negative concentration of metabolites.

The Pseudo-random sampling method resulted in R2 << 0.9 (data not shown) of metamodel
fitting for all time points of the cell culture period and for both viable cell density and antibody
concentration and therefore was rejected. On the other hand, both the Sobol’ and Scrambled-Sobol’
methods resulted in very high R2 >> 0.95 (data not shown) for the Xv and mAb as well and for all
the different combinations of parameter deviation values and presented similar TSI for the respective
parameters for both the viable cell density and the antibody concentration. The different sampling
methods used for metamodel construction did not have an impact on the metamodel fit and TSI values.

TSI values varied significantly within the cell culture time period. Figure 3 shows the variation of
the TSI for the maximum specific growth rate (µmax) and the maximum specific death rate (µdeath,max)
over cell culture duration. As expected, parameters associated with cell growth and parameters
associated with cell death presented higher values during the exponential and death phase respectively.
µmax resulted in a relatively constant TSI value at 0.83–0.85 until day 4, then slightly decreased until
day 7 and finally presented a steep reduction until the final day of culture to a final value ranging
between 0.013–0.17. On the other hand, µdeath,max presented low TSI values until day 7 and then
started to steadily increase until the final day when it reached 0.40–0.47. Interestingly, the lower
values of parameters’ deviation during sensitivity analysis resulted in higher TSI values of µmax until
day 7. However, a shift occurred in the late culture period where higher TSI values of µdeath,max
were observed.

In addition, as shown in Figure 3 TSI values for different deviation ranges presented significant
differences. The TSI of model parameters with values greater than 0.05 for at least one of the examined
periods are shown in more detail for days 4, 8 and 12 in Figure 4. With respect to viable cell density,
both KdAmm and YX,Amm parameters present an increased TSI until the end of the cell culture. This
is somewhat unsurprising considering these parameters are related to µdeath,max which shows the
same trend. Meanwhile, the TSI of KAsn and KGlc decrease with time, probably due to the decreasing
net cell growth and therefore the reduced dependence of the cell density on asparagine and glucose.
Considering the impact of model parameters on antibody concentration, a significantly reduced effect
of µmax along culture time was observed, likely due to the decreasing specific growth and antibody
production rates during the final days of the cell culture.
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3.1.2. Post-Analysis of GSA Results and Model Calibration

In order to evaluate the results of the GSA and obtain the significant parameters, three different
SIT values were examined: 0.05, 0.1 and 0.2. Considering the variation of TSI values with time,
Equation (4) was used to explore the effect of each parameter during the whole cell culture period.
As the TSI values between the Sobol’ and Scrambled-Sobol’ analysis methods presented comparable
results (<1% discrepancy), a common analysis was performed for both methods based on the Sobol’
method. Table 3 presents all parameters that were found to exceed the SIT for each threshold. Lack
of entry for any particular parameter indicates that it was not included in that parameter estimation
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exercise because of having been identified as not significant for that SIT. Interestingly, although the TSI
and metamodeling fitting results between the three deviation percentages examined were noticeably
different (Figure 3), they eventually resulted in the same set of parameters for all thresholds, indicating
that although the effect of parameter deviation was observable, it was not adequate to impact the
parameters that would exceed the chosen SIT in each exercise.

Table 3. Parameter estimation results for all parameter sets (A, B, C) including parameter values and
their 95% confidence intervals.

Set A (SIT = 0.05) Set B (SIT = 0.1) Set C (SIT = 0.2)

Parameter Value 95% CI Value 95% CI Value 95% CI Units

KAsn 2.66 0.24 - - - - mM
µdeath,max 1.46 × 10−2 2.92 × 10−3 1.41 × 10−2 2.46 × 10−3 - - h−1

µmax 3.89 × 10−2 1.14 × 10−3 3.89 × 10−2 1.14 × 10−3 3.41 × 10−2 7.24 × 10−4 h−1

mmAb 1.07 5.10 × 10−2 1.07 5.10 × 10−2 1.13 5.46 × 10−2 pg·cell−1·h−1

YX,Asn 3.46 × 108 2.79 × 107 3.46 × 108 2.79 × 107 - - cell·mmol−1

These reduced sets of parameters were then used to fine-tune the model to the experimental
data. The results were evaluated considering the fitting to the experimental data for the FS1 feeding
experiment (Figure 5) and the values of the 95% confidence intervals. FS1 was chosen for parameter
estimation and model calibration as it presented the lowest experimental standard deviation in both
viable cell density and antibody concentration. All estimated parameter values are presented in Table 3.
Set B presented the highest R2 values (data not shown) and the narrowest 95% CI (Table 3) for all
parameters. The absence of KAsn in the parameter estimation of Set B resulted in a slightly lower value
of µdeath, max, but showed no effect on the other parameters. The more stringent SIT of 0.2 resulted in
the estimation of only two parameters (Table 3), which were not adequate to successfully calibrate the
model to the experimental data.

3.1.3. Model Predictive Capabilities Post Re-Calibration

Set B parameter values were used to examine the predictive capabilities of the model in four
fed-batch experiments that were not included in parameter estimation. FS2-5 experiments were used
to examine the predictive capabilities of the re-calibrated model, i.e., they were not included in the
parameter estimation. In brief, FS1-4 fed-batch experiments included the addition of galactose and
uridine on day 4 and every other day, while FS5 was the control experiment where no galactose or
uridine were added. All cultures were supplemented with CD EfficientFeedTM C AGTTM Nutrient
Supplement on alternate days, starting from day 2. Model simulation (Figure 5) closely described
the viable cell density of FS1 (R2 = 0.957) and the antibody concentration (R2 = 0.930) during the cell
culture period.

Model fitting to all experimental data for both viable cell density and antibody concentration
resulted in R2 > 0.9 (Figure 5), indicating that model re-calibration was successful. Satisfactory results
were also obtained for model predictions for the remaining of the experimental feeding strategies as
indicated by the R2 values for both viable cell density and antibody concentration.
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3.2. Model Training to a Different CHO Cell Line (GS46)

The model was then trained to the experimental data for a second cell line, expressing a
different monoclonal antibody using the workflow as described in Figure 2. Specifically, we used the
experimental data for the fed-batch culture of GS46 cell line, which was grown on the same basal
medium (CD-CHO) and fed with 10% v/v CD EfficientFeedTM C AGTTM Nutrient Supplement every
other day starting from day 2 [33]. Galactose and uridine were not added to the cultures described in
this section. The availability of complete amino acid time profiles enabled us to perform the sensitivity
analysis with respect to all metabolites and certain important amino acids. Therefore, the examined
outputs apart from antibody concentration included the extracellular concentrations of glucose (Glc),
glutamine (Gln), ammonia (Amm), lactate (Lac), asparagine (Asn), aspartate (Asp) and glutamate
(Glu). Viable cell density was not examined as an additional output due to the high correlation of this
variable with the metabolite and amino acid concentrations.

The optimal sensitivity analysis settings identified in Section 3.1 were used for model calibration:
Sobol’ sampling method, 50% parameter deviation around the nominal values presented in Table 1
and SIT equal to 0.1. The post-analysis evaluation was repeated for the three examined SITs in order to
explore the differences in the resulting sets of significant parameters (Supplementary Material Figure
S1). The sensitivity analysis, which in this case involved all measured variables as outputs, reduced
the number of estimated parameters to 10 from 33. This number is more than twice the number of
significant parameters in the first study (4), which is to be expected due to the larger number of outputs.
The non-significant parameters were assigned to their nominal values as in Table 1. The estimated
values and the 95% CI of the significant model parameters as indicated by the sensitivity analysis
are presented in Table 4. The majority of estimated parameters were the yields of cell biomass on
a metabolite or amino acid (YX,met) with the exception of the YX,Glc and YX,Lac that were not found
to significantly influence any of the examined outputs. Conversely, glucose presented a very strong
dependence on µmax and mGlc, while Lacmax1 and Lacmax2 showed the highest total sensitivity indices
for lactate. µmax was identified as a significant parameter for all the metabolites and amino acids, while
YX,Asn was found to be an important parameter for glucose, glutamate, asparagine, ammonia and
glutamine. However, KAsn and µdeath,max that resulted in high SIT with respect to viable cell density,
were not found to significantly affect any of the examined outputs.

Table 4. Estimated parameters for model adaption to GS46 cell line.

Estimated Parameter Value Units 95% Confidence Interval

mmAb 1.31 pg·cell−1·h−1 1.15 × 10−1

YX,Asp 1.06 × 109 cell·mmol−1 4.97 × 106

YX,Glu 5.68 × 109 cell·mmol−1 8.25 × 107

Lacmax1 18.55 mM 4.02
Lacmax2 7.14 mM 0.64
YX,Gln 1.85 × 1010 cell·mmol−1 3.53 × 108

mGlc 3.35 × 10−11 mmol·cell−1·h−1 3.35 × 10−12

µmax 6.96 × 10−2 h−1 6.67 × 10−4

YX,Amm 4.66 × 109 cell·mmol−1 1.67 × 108

YX,Asn 8.69 × 108 cell·mmol−1 2.75 × 107

The parameter estimation was performed in sequential steps and according to the sensitivity
analysis results, meaning that each parameter was estimated using the experimental data of the
variables for which it was found to be significant. Briefly, µmax, YX,Asn, YX,Amm and mGlc were
calculated against the experimental measurements for asparagine, ammonia and glucose. In a second
step, YX,Gln was estimated using the experimental measurements for glutamine, while Lacmax1 and
Lacmax2 were fit against the lactate concentration data. µmax, YX,Asn and YX,Glu were re-estimated
using the previous estimations as initial guesses against the experimental data for glutamate, while
aspartate measurements were used to estimate YX,Asp. The described procedure was repeated using
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the calculated values as initial guesses. However, in the repeated procedure the experimental
measurements of viable cell density were also included in the estimation of µmax, YX,Asn, YX,Amm
and mGlc. Finally, mmAb was estimated against the experimental data for antibody concentration.

Model fitting to experimental data for viable cell density, antibody concentration, glucose,
ammonia and asparagine is presented in Figure 6. Model fitting for all the variables apart from
ammonia resulted in R2 > 0.95 indicating a successful tuning to the experimental data of GS46 cell line.
Moreover, the R2 for ammonia was slightly lower than 0.9 (R2 = 0.891) due to the underprediction of the
ammonia concentration for the biggest part of the cell culture period. Interestingly, the model was able
to successfully adapt to the viable cell density and antibody concentration profile that was noticeably
different than the respective profile of CHO-T. The latter achieved a peak cell density of 6× 109 cells·L−1

and 500 mg·L−1 for antibody concentration. On the other hand, GS46 significantly outperformed
these numbers with the highest values reaching 1.3 × 1010 cells·L−1 and 2500 mg·L−1, respectively.
The specific antibody production rates (qmAb) for CHO-T and GS46 were 17.4 pg·cell−1·day−1 and
27.7 pg·cell−1·day−1, respectively. As a result, the estimated value of µmax for the CHO-T cell line was
~44% lower that for GS46. However, the calculated mmAb presented a modest (18%) discrepancy from
the respective value for the CHO-T cell line, despite the antibody concentration achieving a 5-fold
higher concentration at harvest. This is due to the difference in viable cell density, which significantly
enhanced the total antibody production.Processes 2019, 7, x FOR PEER REVIEW 13 of 15 
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Figure 6. Model fitting (red line) to experimental data (black dots) for the calibrated model to GS46
cell line. The fitting of the model is also evaluated by the R2 values that included in the graphs. The
arrows indicate the days that the cell culture was supplemented with CD EfficientFeedTM C AGTTM

Nutrient Supplement.

4. Conclusions

The current work attempted to develop a sensitivity analysis framework that reduces the
parameter estimation workload to (a) tackle problems caused in model calibration from high deviations
in cell culture variables and (b) enable the calibration of a model to new datasets for different cell
lines, products or culture conditions. The metabolic model used in this study was developed to
describe the CHO-T fed-batch cell culture. Specifically, global sensitivity analysis was utilized to
evaluate the importance of parameters (inputs) with respect to the measured variables (outputs).
The impact of Sobol’, Scrambled-Sobol’ and Pseudo-random sampling methods and the deviation in
parameter values by 10%, 30% or 50% on the results was evaluated. Additionally, three possible values
for sensitivity index thresholds, which determine the cut-off between important and non-important
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parameters, namely 0.05, 0.1 and 0.2, were investigated. The Sobol’ and Scrambled-Sobol’ methods
resulted in almost identical (<1% difference) metamodeling fitting and total significance indices for the
examined parameters and outputs. The range of parameter value deviation was found to considerably
affect the value of the significance indices, without, however, affecting the resulting sets of important
parameters estimated for each SIT. The evaluation of each set of parameters was performed against
experimental data for 5 different feeding strategies of galactose and uridine in fed-batch cultures and
the values of the 95% confidence intervals for important parameters. The results show that estimation
of parameters with a SI greater than or equal to 0.1, which in this case was four out of a total of 33
parameters, resulted in the highest R2 model fitting with experiment data, which were all above 0.916.

The optimal settings for GSA were then applied to calibrate the model to the experimental data
for GS46 (presented in reference [33]). This second dataset included all amino acids as outputs of
interest in the analysis of the modeling framework. The GSA indicated that ten parameters should be
re-estimated in order to adapt the model to the GS46 cell line. Following a simple sequential parameter
estimation strategy that was indicated by the sensitivity analysis, successful model tuning for the new
cell line was achieved, acquiring also acceptable 95% confidence intervals. Model fitting resulted in
R2 > 0.95 for the majority of variables. The estimated parameter values were comparable to those for
the CHO-T cell line. Interestingly, the model managed to successfully describe (R2 equal to 0.952 and
0.978 respectively) both the viable cell density and antibody concentration, which showed significant
discrepancies between the two cell lines. The proposed analysis and parameter estimation framework
was therefore successful in systematizing the parameter estimation process for adapting the model
to different conditions and for a different cell line. A considerable number of mathematical models
have been proposed for different cell lines to date. Our approach demonstrates that a single modeling
framework can be adopted and re-calibrated, employing the holistic framework proposed herein at a
reduced workload.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9717/7/3/174/s1,
Figure S1: Correlations between the outputs (metabolites/amino acids) and the inputs (model parameters) for
sensitivity index threshold set at (A) 0.05, (B) 0.1 and (C) 0.2, Table S1: Nomenclature of parameters used in the
mathematical model.
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