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Abstract: Intensified and accelerated development processes are being demanded by the market,
as innovative biopharmaceuticals such as virus-like particles, exosomes, cell and gene therapy,
as well as recombinant proteins and peptides will possess no available platform approach. Therefore,
methods that are able to accelerate this development are preferred. Especially, physicochemical
rigorous process models, based on all relevant effects of fluid dynamics, phase equilibrium, and mass
transfer, can be predictive, if the model is verified and distinctly quantitatively validated. In this
approach, a macroscopic kinetic model based on Monod kinetics for mammalian cell cultivation is
developed and verified according to a general valid model validation workflow. The macroscopic
model is verified and validated on the basis of four decision criteria (plausibility, sensitivity, accuracy
and precision as well as equality). The process model workflow is subjected to a case study,
comprising a Chinese hamster ovary fed-batch cultivation for the production of a monoclonal
antibody. By performing the workflow, it was found that, based on design of experiments and Monte
Carlo simulation, the maximum growth rate µmax exhibited the greatest influence on model variables
such as viable cell concentration XV and product concentration. In addition, partial least squares
regressions statistically evaluate the correlations between a higher µmax and a higher cell and product
concentration, as well as a higher substrate consumption.

Keywords: biologics; manufacturing; process intensification; modelling; upstream processing;
Monod kinetics

1. Introduction

The process analytical technology (PAT), which was initiated by the Food and Drug Administration
(FDA) in 2004, is a key-enabling technology for quality-by-design (QbD) process development
approaches [1–3]. The steadily increasing demand for process robustness, as well as for reducing cost
of goods (COGs) and batch variability, requires intensified processes, detailed process understanding,
and control [4]. Therefore, the PAT initiative aims at measuring, analyzing, monitoring, and ultimately
controlling all important attributes of the process [1,5–7]. Bioprocess (i.e., cultivation in batch, fed-batch,
and continuous operational mode) monitoring includes process variables such as (viable) cell, substrate,
metabolite, and product concentration, as well as product quality and impurities. These target
variables depend on state variables such as pH, dissolved oxygen (pO2), and temperature, providing
suitable cultivation conditions [8]. Furthermore, state variables are controlled via process variables
such as the addition of base, acid, substrates, and salts, as well as the adjustment of stirrer rates,
air flow, and heating/cooling temperatures [9]. The ability for measurement, analysis, monitoring,
and controlling of variables, preferably online, is strongly dependent on the state (i.e., physical,
chemical, biological), the variable itself, and available sensor techniques [2,10]. An online estimation
of difficult to measure variables can be achieved by implementing macroscopic kinetic models into

Processes 2019, 7, 166; doi:10.3390/pr7030166 www.mdpi.com/journal/processes

http://www.mdpi.com/journal/processes
http://www.mdpi.com
http://www.mdpi.com/2227-9717/7/3/166?type=check_update&version=1
http://dx.doi.org/10.3390/pr7030166
http://www.mdpi.com/journal/processes


Processes 2019, 7, 166 2 of 17

bioprocesses [11]. Furthermore, a reduction of experiments for defining process design spaces can be
accomplished by an integration of physicochemical process models [12]. For this, the physicochemical
model must be verified and distinctively and quantitatively validated, as depicted in the general model
validation workflow in Figure 1 [13].

Initially, a model task and its application must be defined, from which a conceptual model is
derived. The computerized model is verified by checking equations for syntax, dimensional analysis,
as well as mass and energy balances. Subsequently, the first decision criterion is the comparison of
characteristic numbers with literature data. Afterwards, the second decision criterion (sensitivity)
is based on sensitivity studies. One-parameter-at-a-time as well as DoE (design of experiments)
simulation studies are conducted to detect gross errors. A statistical data-driven evaluation of these
studies generates a pareto diagram of standardized effects identifying significant parameters that have
a major influence on the respective model. The third decision criterion (accuracy and precision) is
based on the comparison of model and experimental errors. For this, a model parameter determination
concept needs to be established. The determination concept consists of a separation of parameter
effects, as well as an experimental determination and assessment of the impact of parameter errors on
the process model, based on error propagation of experimental errors. The objective is to gain a process
model with a higher precision than experimental data, which are to be substituted to reduce the
experimental effort. In the end, the fourth decision criterion, which is based on simulated experimental
data to prove model accuracy and precision, supported by statistical methods (i.e., partial least squares
regression (PLS)), will result in a verified and distinctly quantitatively validated process model.

In this approach, the general valid model validation workflow in Figure 1 is applied to
a macroscopic kinetic process model, based on a case study comprising a Chinese hamster ovary
fed-batch cultivation for the production of a monoclonal antibody.
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Figure 1. General valid model validation workflow [13]. Macroscopic kinetic models simulating the dynamic state of a cell culture can gather essential information
about cellular conditions (e.g., lag, exponential, stationary, decline phase), substrate uptake, metabolite, and productivity, as well as possible feeding adjustments [14–19].
A combination of online turbidity data resembling the cell concentration and a macroscopic kinetic model was already applied to estimate substrate and metabolite
concentrations [11]. A general overview of several working groups focusing on upstream process modelling is presented in Table 1. DoE, design of experiments;
MC, Monte Carlo.
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Table 1. General overview of working groups focusing on upstream process modelling. CHO, Chinese hamster ovary; MFA, metabolic flux analysis; TCA, tricarboxylic
acid cycle; EFM, elementary flux mode; PFA, principal factor analysis; FBA, flux balance analysis; ANN, artificial neural networks.

Year Organism Operational Mode Input-Output
Relation Kinetic Model Model Variables Reference

2016 CHO Batch Genome-scale Genome-scale
metabolic network >1700 genes [20]

2015 Hybridoma 130-8F Batch Dynamical model Monod X, Glc, Gln, Asn, Asp, Lac, Pro, Ala, mAb, Glu, Amm [21]

2014 CHO Batch, Fed-Batch MFA
Cell population

dynamics and single
cell model

Single cell model describes glucose metabolism in the
cytosol. Cell growth model connects single cell model

to extracellular environment and cell population
behaviour

[22]

2014 CHO Batch 13C MFA Monod type

Glycolysis; TCA cycle; anaplerotic reactions;
synthesis of fatty acids, proteins, and carbohydrates

for biomass production; amino acid production
and degradation

[23]

2014 CHO Batch, Fed-Batch Dynamic MFA Stoichiometric model Glc, Lac, Pyr, Amm, Ala, Asn, Asp, Glu, Gln, Gly, Ser [24]

2013 AGE1.HN Batch Expert reasoning Mechanistic Monod
type X, Amm, Lac, Gln, mAb, Glc [25]

2013 CHO, adherent Fed-Batch 13C MFA Monod type 79 reactions [26]

2013 CHO cell line
(ATCC, CRL9606) Batch MFA Michaelis-Menten

type kinetic
Glycolysis, pentose phosphate pathway, TCA cycle,

glutaminolysis, and cell respiration [27]

2013 CHO-XL99 Batch FBA + yield
coefficients Monod type

Glycolysis, TCA cycle, pentose phosphate pathway,
biomass precursors (e.g., fatty acids, steroids,

glycogen, and nucleotides)
[28]

2013 CHO Fed-Batch 13C MFA Monod type
Glycolysis, TCA cycle, pentose phosphate pathway,

multiple cataplerotic and anaplerotic reactions,
and both catabolism and anabolism of amino acids

[29]

2013 CHO-320 Batch EFMs Monod type 19 EFM in exponential phase, 18 in stationary, 17 in
death phase [30]



Processes 2019, 7, 166 5 of 17

Table 1. Cont.

Year Organism Operational Mode Input-Output
Relation Kinetic Model Model Variables Reference

2011 CHO-K1 Fed-Batch non-stationary 13C
MFA Monod type 73 reactions and 77 metabolites [31]

2011 CHO Batch, Fed-Batch MFA Logistic type 30 metabolites involved in 34 bioreactions [32]

2011 CHO-K1 Fed-Batch dynamic MFA Michaelis-Menten
type kinetic 24 metabolites and 34 reactions [33]

2010 CHO Fed-Batch Expert reasoning Monod X, Amm, Lac, Gln, mAb, Glc [34]

2009 CHO, BHK,
Hybridoma Batch, Fed-Batch Nonlinear parameter

estimation Logistic X, Amm, Lac, Gln, mAb, Glc [17]

2008 CHO Fed-Batch PFA Monod X, Amm, Lac, Gln, Glc, CO2, mAb [35]

2007 Hybridoma 130-8F Batch MFA + EFM Monod X, Glc, Glu, Ala, Pro, CO2, Asp, Asn, Amm, Lac, Gln,
Pro, mAb [36]

2007 Hybridoma 14-4-4S Fed-Batch Expert reasoning Monod X, Amm, Lac, Gln, Glc, mAb, Glycosylation [37]

2007 BHK-21A Fed-Batch Metabolic network
+ EFM Hybrid X, Ala, Amm, Lac, Gln, Glc, mAb [38]

2006 CHO Batch MFA Michaelis-Menten
type kinetic

10 reactions for growth, 4 reactions for transition,
3 reactions for death [39]

2004 Baker’s yeast Fed-Batch First principle + ANN Hybrid X, EtOH, Glc, Amm, O2, CO2 [40]

2004 CHO Batch Neural network Hybrid X, Glc, Lac, Gln [41]

2003 Yeast Batch Metabolic network Monod type X, EtOH, Glc, Glycerol, Amm [42]

2001 CHO TF 70R Continuous MFA Monod type 48 metabolites and 43 reactions [43]

1999 CHO Continuous MFA Biochemical reaction
network 33 reactions [44]
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2. Materials and Methods

Chinese hamster ovary cells (CHO DG44) were used to produce an immunoglobulin (IgG1).
The culture conditions were 36.8 ◦C, pH 7.1, 60% pO2, and 433 rpm (three-blade segment impeller
with a diameter of 54 mm and blades at an angle of 30◦, bbi-biotech GmbH, Berlin, Germany).
The cultivations were carried out in serum-free, commercial medium (CellcaCHO Expression Platform,
Sartorius Stedim Biotech GmbH, Göttingen, Germany) in 2 L glass bioreactors (Biostat® B, Sartorius
Stedim Biotech GmbH, Göttingen, Germany) controlled via a digital control unit (DCU, Biostat® B,
Sartorius Stedim Biotech GmbH, Göttingen, Germany). Pre-cultures were grown in shake flasks in
serum-free medium. In terms of fed-batch bioreactor cultivations, feed medium (based on CellcaCHO
Expression Platform) was provided every 24 h starting at 72 h. Cell concentration was repeatedly
quantified using a hemocytometer (Neubauer improved, BRAND GmbH + CO KG, Wertheim,
Germany) and trypan blue solution (0.4%, Sigma-Aldrich, St. Louis, MO, USA) as dye for the detection
of dead cells. An in situ turbidity probe (transmission, 880 nm, HiTec Zang GmbH, Herzogenrath,
Germany) was used for quantifying the cell concentration during bioreactor cultivations.

The product was quantified by Protein A chromatography (PA ID Sensor Cartridge, Applied
Biosystems, Bedford, MA, USA). Dulbecco’s PBS buffer was used as a loading buffer at pH 7.4
and as an elution buffer at pH 2.6. The absorbance was monitored at 280 nm. Glucose and lactate
concentrations were quantified using a LaboTrace compact (TRACE Analytics GmbH, Braunschweig,
Germany). Glutamine and ammonium concentrations were determined by a Bioprofile 100 plus
(nova® biomedical, Waltham, MA, USA).

The macroscopic kinetic model was developed in Aspen Custom Modeler V8.4 (Aspen Technology,
Inc., Bedford, MA, USA). As bioreactor cell cultures were performed in fed-batch mode with daily
bolus feed additions, the model equations were extended by feeding terms. Consequently, volumetric
changes were considered as well.

3. Results and Discussion

In this approach, a Monod-type process model was used for the simulation of dynamic
cellular states (i.e., lag, exponential, stationary, decline phase), as well as the uptake of substrates
(i.e., glucose (GLC), glutamine (GLN)), production of metabolites (i.e., lactate (LAC), ammonium
(AMM)), and product (i.e., monoclonal antibody (mAb)). Model equations are given in the following
section and are mostly adopted from Xing et al. [34]. Model parameters employed in the macroscopic
model are given in the example of the lag phase in Table 2.

dXV

dt
= (µ− µd)× XV, (1)

µ = µmax ×
[GLC]

Kglc + [GLC]
× [GLN]

Kgln + [GLN]
× KIlac

KIlac + [LAC]
× KIamm

KIamm + [AMM]
, (2)

µd = kd × [LAC]

KDlac + [LAC]
× [AMM]

KDamm + [AMM]
, (3)

d[GLC]

dt
= −

(
µ − µd
YXV/glc

+ mglc

)
× XV, (4)

d[LAC]

dt
= Ylac/glc ×

(
µ− µd
YXV/glc

)
× XV (5)

d[GLN]

dt
= −

(
µ − µd
YXV/gln

+ mgln

)
× XV, (6)
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mgln =
a1 × [GLN]

a2 + [GLN]
, (7)

d[AMM]

dt
= Yamm/gln ×

(
µ − µd
YXV/gln

)
× XV − ramm × XV, (8)

d[mAb]
dt

= QmAb × XV. (9)

The Monod-type equations are based on limiting substrate and inhibiting metabolite
concentrations, as seen in Equations (2) and (3). The higher the substrate concentration, the higher
the growth rate µ, whereas higher metabolite concentrations limit cell growth by decreasing the
growth rate. The apparent growth rate (µ minus µd) is thus dependent on substrate consumption
and metabolite accumulation. These concentrations are simulated by Equations (4)–(8), where yield
coefficients (e.g., YXv/glc) empirically describe the correlation between input and output variables.
For example, YXv/glc correlates the variation in viable cell concentration (XV, E6 cells/mL) to the
variation in glucose concentration (mM) during cultivation. Because of the dynamic behavior of
a culture, yield coefficients can be quantitatively described by systematically defining cellular phases
(i.e., lag, exponential, stationary, decline).

Furthermore, the growth rate depends on cell-dependent half-maximum rates, such as Kglc.
These model parameters are, by definition, dependent on the maximum growth rate at respective
substrate concentrations and are not subject to changes during cultivation. Additionally, maintenance
coefficients (e.g., mglc) intend to simulate the maintenance metabolism, where no cell division
occurs. Product concentration, Equation (9), is described by a cell specific production rate (QmAb,
E-12 gProduct/cells/h).

Table 2. Model parameters employed in the macroscopic kinetic model. GLC, glucose, GLN, glutamine;
LAC, lactate; AMM, ammonium.

Parameter Description Value Unit Source

XV,initial Starting viable cell concentration 0.37 E6 cells mL−1 exp
GLCinitial Starting glucose concentration 33.24 mM exp
GLNinitial Starting glutamine concentration 6.0 mM exp
LACinitial Starting lactate concentration 0.42 mM exp

AMMinitial Starting ammonium concentration 0.91 mM exp
µmax Maximum growth rate 0.029 h−1 exp

kd Maximum death rate 0.0066 h−1 exp
YX/glc Yield coefficient cell conc./glucose 0.413 E9 cells mmol−1 exp
YX/gln Yield coefficient cell conc./glutamine 0.573 E9 cells mmol−1 exp
Ylac/glc Yield coefficient lactate/glucose 1.391 mmol mmol−1 exp

Yamm/gln Yield coefficient ammonium/glutamine 0.739 mmol mmol−1 exp
QmAb Specific production rate 2.25 E-12 g cells−1 h−1 exp
ramm Ammonium removal rate 6.3 E-12 mmol cells−1 h−1 Lit.
mglc Glucose maintenance coefficient 69.2 E-12 mmol cells−1 h−1 Lit.
a1 Coefficient for mgln 3.2 E-12 mmol cells−1 h−1 Lit.
a2 Coefficient for mgln 2.1 mM Lit.

Kglc Monod constant glucose 0.15 mM Lit.
Kgln Monod constant glutamine 0.04 mM Lit.
KIlac Monod constant lactate for inhibition 45.0 mM Lit.

KIamm Monod constant ammonium for inhibition 9.5 mM Lit.
KDlac Monod constant lactate for death 40.0 mM Lit.

KDamm Monod constant ammonium for death 4.0 mM Lit.

Figure 2 (left) depicts the verification of the computerized process model (first decision criterion),
by comparing experimental data with model-derived results. The viable cell, product, and glucose
concentration can be predicted sufficiently well. The coefficient of determination for each prediction is
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greater than 0.979, which is similar to the modelling of glucose concentration. Differences between
the experimental and model-derived data are possible as a result of undescribed fluctuations under
feed addition during cultivation in the kinetic model. These fluctuations mainly affect the glucose
concentration, as other model variables such as lactate, antibody, or viable cells are not being
fed. However, by adding feed, volumetric changes must be considered during the description of
all variables.

Sensitivity studies such as the variation of one-parameter-at-a-time or design of experiments (DoE)
are essential for detecting gross model errors. One-parameter-at-a-time variation of the maximum
growth rate (±10% µmax) can be seen in Figure 2 (right).
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Figure 2. Correlation (left) between experimental and model-derived viable cell (R2 ≥ 0.98), glucose
(R2 ≥ 0.97), and antibody concentration (R2 ≥ 0.99) with a maximum growth rate of 0.029 h−1.
One-parameter-at-a-time studies (right) of the macroscopic model exemplified by varying the maximum
growth rate ±10% of the experimental determined value.
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The higher µmax, the steeper the exponential phase between 72 and 180 h of the viable cell
concentration. This is mainly the result of a higher growth rate, which can be achieved during this
phase, as can be seen in Equations (1) and (2). Therefore, the maximum growth rate has an impact
on growth and maximum viable cell concentration in this macroscopic model, especially during the
exponential phase. Corresponding to this increase in viable cell concentration, a higher product
concentration can be observed, as well as a higher glucose consumption at the constant feed strategy,
which is dependent on the current viable cell concentration at respective phases, as seen in Equation (4).

During one-parameter-at-a-time studies, the maximum growth rate exhibited the most significant
influence on the course of the considered model variables. Therefore, a precise determination of
this process model parameter is crucial for the precise modelling of dynamic cultivation processes,
as the viable cell concentration XV, and thus the growth rate µ, are present in the equations regarding
substrates (4) and (6), metabolites (5) and (8), as well as product (9). This study indicates how important
it is to accurately determine the model parameter to construct an accurate process model.

Simulations conducted by DoE approaches enable the quantitative determination of significant
parameters. In addition, the variation of multiple parameters at the same time facilitates the coverage of
parameter interactions during process modelling. For this, a fractional factorial design (resolution IV)
consisting of all model parameters was conducted, resulting in 128 additional simulations.

The Pareto diagrams (Figure 3) indicate significant model parameters, based on a level of
significance (α) set to 0.05 (second decision criterion). Besides the maximum growth rate µmax, the yield
coefficient YX/glc has a significant impact on the considered process variable (i.e., maximum viable cell
concentration). YX/glc describes the ratio between generated viable cells (E6 cells/mL) and consumed
glucose (mM). The higher YX/glc, the more cells can be generated during substrate uptake, as depicted
in Equations (4) and (6). This results in a higher maximum viable cell concentration. The same
correlation can be found considering YX/gln.

The yield coefficient Ylac/glc, resembling the ratio between produced lactate (mM) and consumed
glucose (mM), is shown to be a significant parameter by the pareto diagram in Figure 3 (left). As seen in
Equations (2) and (5), a higher Ylac/glc results in higher lactate concentrations and, therefore, in stronger
inhibition of the growth rate and ultimately in a reduced maximum viable cell concentration. The same
correlation can be found regarding Yamm/gln.

Although the initial viable cell concentration possesses a significant influence on the maximum
viable cell concentration, higher initial values result in an increase in substrate consumption and
metabolite production, reducing the growth rate more rapidly, and may decrease the overall maximum
viable cell concentration. The maximum death rate kd possesses no significant effect on the maximum
viable cell concentrations, as this parameter is strongly dependent on the current lactate and ammonium
concentration. The higher the metabolite concentration, the higher the death rate µd, thus commonly
resulting in a lower maximum viable cell concentration, as seen in Figure 2. However, these metabolites
accumulate during cultivation and possess an impact only at the end of the process, after the maximum
viable cell concentration has already been reached. Nevertheless, kd exhibit a significant influence on
the considered process variable because the apparent growth rate (µ minus µd) will be affected by the
maximum death rate as well.

Similarities can be found regarding the pareto diagram in Figure 3 (right) for the maximum
antibody concentration (mAbmax). In addition to the aforementioned correlations, the cell specific
antibody production rate QmAb significantly influences the process variable mAbmax. However,
the process parameter µmax seems to be the most significant parameter for mAbmax, as well as for
Xv,max, as can be seen in Figure 3 and in previous one-parameter-at-a-time studies in Figure 2.

Model parameters are being quantitatively determined via experimental studies. The determination
based on experimental data is afflicted with errors, for example, resulting from handling, repetitions,
and measurement inaccuracies. Therefore, a model parameter determination concept must be
implemented to evaluate the precision of the model (third decision criterion). The modelling approach
for fed-batch and perfusion cultivation processes is summarized in Figure 4.
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Figure 4. Schematic workflow overview for the model parameter determination concept in upstream
process modelling. Detailed description can be found in the literature [2,11,13,14,45,46]. Red-marked
parameters (volumetric mass transfer coefficient kLa, mixing time θ95, as well as residence time) lead
to the characterization of the equipment. Kinetic (green-marked) and equilibrium (blue-marked)
parameters can be obtained by cultivations. For validation, similar experiments can be used. Efforts for
the generation of this data are commonly 2 to 3 weeks for two to three simultaneously run cultivations in
1 to 2 L and their respective analysis. GLC, glucose, GLN, glutamine; LAC, lactate; AMM, ammonium,
PAT, process analytical technology.

The main equations are represented by a Monod-type kinetic, considering the time-dependent
variation of substrate (e.g., glucose, glutamine), metabolite (e.g., lactate, ammonium), cell, and product
concentration. The correlation between input (e.g., substrate concentration) and output (e.g., cell
concentration) variables can be macroscopically determined using empirical observations, such as
yield coefficients, which are strongly dependent on the cell line and growth phase [14].
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In terms of fluid dynamics (red-marked parameters), determination of oxygen transfer rates
according to the unsteady-state (dynamic) technique, mixing times with conductivity measurements,
and residence times with tracer experiments result in a characterization of the equipment.

Cultivations as well as the analysis of substrate, metabolite, cell, and product concentration
need to be performed to determine kinetic (green-marked, for example, maximum growth rate) and
equilibrium (blue-marked, for example, yield coefficients) parameters. The substrate saturation constants
(or substrate affinity constants) equal concentrations that support a half-maximum growth rate.

Analog experiments can be used for validation. Furthermore, cultivations assisted by an online
process model increase the gain in process information by integrating process data (e.g., turbidity) into
the macroscopic kinetic model to extract information on process variables (e.g., glucose and lactate
concentration) [11]. Efforts for the generation of this data are commonly 2 to 3 weeks for two to three
simultaneously run cultivations in 1 to 2 L and their respective analysis.

The impact of experimental model parameter determination error on the process model, based on
error propagation of experimental errors, must be assessed to evaluate model precision. These errors
depict maximal and minimal values for each model parameter. This variance can be included into
a Monte Carlo simulation to determine the effect of model parameter errors on the process model.
In this case, 100 simulations, varying each parameter equally distributed based on their experimental
errors, were conducted. An example of the distribution of model parameters is given in Figure 5.
As can be seen, the equally distributed process parameters result in maximum and minimum values for
each considered parameter. The arithmetic mean of each parameter is depicted as a red horizontal line
and corresponds to the model parameter value in Table 2 (e.g., 0.029 h−1 µmax). This analysis shows
the influence of model parameter errors and their interactions among each other on the macroscopic
kinetic model.
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The Monte Carlo simulations resulted in a range of minimal and maximal values of each process
variable, yielding enveloped curves, represented by grey lines (standard deviation of simulation
results) in Figure 6. In addition to enveloped curves, represented by grey lines, the model is able
to describe variations of process parameters, which occur with a lower probability (simulation
result larger/smaller than standard deviation of mean simulation results), as depicted by the
dotted lines. As can be seen, the variation of model parameters based on respective parameter
errors leads to a variation in each process value. Maximum viable cell concentrations result in
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a higher substrate uptake and consumption, leading to a faster glucose and glutamine depletion.
In addition, lactate, ammonium, and monoclonal antibody concentrations increase with higher
viable cell concentrations. This analysis clearly shows the aforementioned precise model parameter
determination. Especially, µmax seems to be the key model parameter in this macroscopic kinetic
model, as variations (±10% in Figure 2, as well as Monte Carlo based variations in Figure 6) result in
a significant influence on the process model, as already shown by the DoE-based pareto diagrams in
Figure 3. Sensor techniques such as turbidity (limited to cellular viability) and Raman spectroscopy
(limited to a precise chemometric model) measuring the viable cell concentration online during
mammalian cell cultivation support a precise determination of µmax and, therefore, increase the
precision of the process model (third decision criterion).
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Figure 6. Enveloped curves of each process variable resulting from 100 model parameter error-based
Monte Carlo simulations. Xv, viable cell concentration; mAb, monoclonal antibody. Black square
dots represent experimental data. Error bars comprise the standard deviation of three cultivations.
For better clarity and visualization, the enveloping curves for glucose after 72 h show the starting
concentrations before respective feed addition. The detailed course of glucose between feed additions
can be seen in Figure 2.
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Partial least squares (PLS) regressions can be conducted to statistically evaluate the correlation
between predictors (i.e., process parameters such as µmax) and responses (i.e., process variables
such as XV,max). For this, the NIPALS (nonlinear iterative partial least squares) algorithm was used
for the computation of factors. The data basis for this analysis is the results from the 100 Monte
Carlo simulations. Each varied parameter set resulted in a specific outcome of process variables
(e.g., maximum viable cell concentration, XV), as seen in Table 3.

Table 3. Example of the parameter set (XV min) and target variable (XV max) resulting from 100 Monte
Carlo simulations.

Parameter Set 1 2 3 4 5 6 7 8 9 .....

XV min (E6 cells/mL) 0.37 0.32 0.42 0.36 0.38 0.40 0.34 0.32 0.37 .....
XV max (E6 cells/mL) 17.01 10.60 24.17 20.13 19.74 15.06 19.50 19.84 19.28 .....

Figure 7 schematically describes the analysis of the correlation loadings based on the PLS
regression. If responses and predictors are positive correlated to a specific factor (e.g., factor 1 or
principal component 1, PC1), they are in relation to each other. In other words, a variation of the
predictor possibly leads to a positive variation of the response. Opposite responses and predictors
are negatively correlated, and 90◦ relationships do not induce a correlation (independent variation
permitted), as they are correlated with different principal components. Higher orders of principal
components would possibly be able to describe more variance, but are more affected by noise
(i.e., PLS model is too detailed). Together, Table 3 and Figure 7 show the general principle of the
implementation of PLS models to statistically evaluate Monte Carlo simulation results, as seen in
Figure 8.
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Figure 8. PLS regression loadings (right) for the maximum viable cell concentration XV,max, maximum
glucose concentration (GLCmax), and maximum antibody concentration (mAbmax) as response,
depending on model parameters (predictors) as well as PLS regression scores (left) grouped into
the correlation between maximum growth rate µmax and XV.

Figure 8 depicts the PLS regression of the influence of model parameter variation on the
maximum viable cell, glucose, and antibody concentration. As can be seen, the maximum growth
rate µmax is strongly positive correlated with the maximum viable cell concentration XV,max

and negatively correlated with GLCmax (maximum glucose concentration). As already shown by
one-parameter-at-a-time and DoE studies (Figures 2 and 3), the higher µmax, the higher XV,max.

Additionally, Figure 8 depicts the influence of model parameter variation on the process variable
GLCmax (maximum glucose concentration). The maximum growth rate µmax is negatively correlated
with GLCmax, as a higher growth rate results in an increased substrate uptake and consumption,
as already seen in Figure 2.

The positive correlation of µmax on the maximum viable cell concentration (XV max) based on
PLS analysis is shown in the score plot (Figure 8 left). The score plot identifies patterns in the samples,
for example, by grouping responses and labeling predictors. The higher µmax, the higher the maximum
viable cell concentration, yielding higher antibody concentrations, as seen in Figure 2 and Equations (1)
and (9). Interestingly, the cell specific antibody production rate QmAb can be independently varied.
This may be the result of low variations of this process model parameter.

Concluding, as can be seen during one-parameter-at-a-time, DoE, and PLS studies, the maximum
growth rate µmax may be the key parameter of this macroscopic kinetic model based on Monod
equations. A variation of µmax exhibits a significant impact on growth, substrate consumption,
and metabolite and product formation. This is mainly because of the dependency of each process
variable on the viable cell concentration XV, as seen in Equations (4) to (9). This dependency can
also be seen during experimental cultivations. The strong dependency on cellular growth rate is,
however, not surprising, but clearly shows the importance of a valid model parameter determination
concept. The experimental determination of the maximum growth rate µmax can be conducted by
offline samples or, more preferably, by in situ probes such as turbidity or Raman spectroscopy [11],
where data density, gain in information, and thus model accuracy and precision are increased.

4. Conclusions

The presented general valid model validation workflow is based on four criteria (verification,
accuracy, precision, equality). On the basis of a literature review, a macroscopic model for the
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simulation of mammalian cell culture could be developed. The macroscopic model consists of Monod
kinetic approaches for the simulation of time-dependent variations of substrate, metabolite, cellular,
and product variables. A coefficient of determination of at least 0.97 (glucose concentration) could
be achieved (verification). The accuracy was addressed by one-parameter-at-a-time and design of
experiments studies in order to develop a Pareto plot to statistically determine significant parameters
(accuracy). Therefore, a valid model parameter determination concept was generated to determine the
effect of parameter determination error on the process model based on Monte Carlo simulations by
equally distributing parameter determination errors (precision). PLS regressions were conducted to
statistically evaluate the correlations between model parameters and variables, as well as correlations
among model parameters themselves. PAT approaches to demonstrate the usability of this kinetic
model were already applied (equality) [11]. Concluding, following the model validation workflow,
process model understanding was increased by identifying key parameters (Figure 3), the impact
of experimental parameter determination (Figure 6), as well as the correlation of model parameters
between themselves and model variables (Figure 8).
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