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Abstract: Intelligent fault diagnosis is a promising tool to deal with industrial big data due to its
ability in rapidly and efficiently processing collected signals and providing accurate diagnosis results.
In traditional static intelligent diagnosis methods, however, the correlation between sequential data
is neglected, and the features of raw data cannot be effectively extracted. Therefore, this paper
proposes a three-stage fault diagnosis method based on a gate recurrent unit (GRU) network. The raw
data is divided into several sequence units by first using a moving horizon as the input of GRU.
In this way, we can intercept the sequence to get information as needed. Then, the GRU deep
network is established through batch normalization (BN) algorithm to extract the dynamic feature
from the sequence units effectively. Finally, the softmax regression is employed to classify faults
based on dynamic features. Thus, the diagnosis result is obtained with a probabilistic explanation.
Two chemical processes validate the proposed method: Tennessee Eastman (TE) benchmark process
as well as para-xylene (PX) oxidation process. In the case of TE, the diagnosis results demonstrate
the proposed method is superior to conventional methods. Furthermore, in the case of PX oxidation,
the result shows that the proposed method also has an exceptional effect with a little historical data.
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1. Introduction

With the advancement of modern industrial technology and process control mechanisms,
an industrial process has become more and more complex [1,2]. To improve the industry process
safety and product quality, process monitoring and fault diagnosis have received lots of attention over
the past few decades [3]. Data-driven multivariate statistical process monitoring (MSPM) has been
widely applied to the monitoring of industrial process operations and production results. Compared to
knowledge-based methods and model-based methods, MSPM methods are more accessible to establish
with less or even no demand of the accurate kinematic equations [4,5]. As a result, MSPM models,
such as principal component analysis (PCA) and independent component analysis (ICA), are widely
used in industrial process monitoring and fault diagnosis [6].

Traditionally, the framework of fault diagnosis includes two main steps: (1) feature extraction;
and (2) fault classification. In the feature extraction step, many methods have been proposed to map
the raw data from the high-dimensional space into a low-dimensional feature space, and then perform
fault diagnosis in that feature space. The PCA, ICA, partial least squares (PLS), and linear discriminant
analysis (LDA) are the most widely used feature extraction methods in the fields of fault diagnosis.
In the second step, various classifiers, such as neural networks of multi-layer perceptron (MLP) [7],

Processes 2019, 7, 152; doi:10.3390/pr7030152 www.mdpi.com/journal/processes

http://www.mdpi.com/journal/processes
http://www.mdpi.com
http://www.mdpi.com/2227-9717/7/3/152?type=check_update&version=1
http://dx.doi.org/10.3390/pr7030152
http://www.mdpi.com/journal/processes


Processes 2019, 7, 152 2 of 21

support vector machine (SVM) [8], Bayesian discriminant functions [9], and adaptive neuro-fuzzy
inference system (ANFIS) [10], have been applied for fault classification. “Feature extraction +
classification” fault diagnosis strategies like PCA + SVM and ICA + MLP have obtained satisfactory
results. However, static modelling methods like PCA and LDA assume that data samples are collected
independently from sensors without sequence correlation. It is well known that most industrial
processes evolve from past operation situations to potential future events [11]. Therefore, dynamic
behavior should be one of the essential characteristics of industrial process data [12]. In order to extract
the dynamic features of the sequence data, dynamic principal component analysis (DPCA) [13] and
dynamic linear discriminant analysis (DLDA) [14], among others, has been developed by augmenting
each measurement with a fixed length of several previous measurements and aligned to a stacking
matrix [15]. Some fault diagnosis methods for the dynamic process like DPCA-SVM and DLDA-SVM
have been developed. However, conventional methods still have some obvious drawbacks as follows:

(1) Vector-based augmentation may aggravate the “curse of dimensionality” problem and make the
feature extraction methods unstable [16,17].

(2) Feature extraction and classification both affect the diagnosis performance but are designed
individually. This is a divide and conquer strategy that cannot be optimized simultaneously.

(3) The extracted features are usually hand-crafted, requiring much prior knowledge about process
monitoring techniques and diagnostic expertise, which is time-consuming and labor-intensive.

With the rapid advancement of machine learning, deep learning has developed as an efficient
way to overcome the above drawbacks. Deep learning can learn the abstract representation features of
the raw data automatically, which could avoid the requirement of prior knowledge. Deep learning is a
branch of machine learning algorithms that attempt to model complexity and internal correlation in
a dataset by using multiple processing layers, or with complex structures, to mine the information
hidden in the dataset for classification or other goals [18]. In recent years, deep learning has developed
rapidly in academic and industrial fields. Tang et al. applied deep belief networks (DBNs) to fault
feature extraction and diagnosis of the chemical industry and introduced the quadratic programming
method to estimate the sparse coefficients simultaneously class by class [18]. Wen et al. convert fault
signals into two-dimensional (2-D) images and adopt convolutional neural networks (CNNs) to extract
the features of the converted 2-D images [19]. However, the above methods are all static network
applications. Hochreiter et al. proposed recurrent neural networks (RNNs) [20]. An RNN is more
suitable for fault diagnosis of dynamic processes because an RNN takes full account of the associations
among samples. This association is represented by the connection of neurons in the RNN’s hidden
layer. You et al. adopted an RNN to diagnose battery states in electric vehicle systems and determine
the replacement time for a battery or to assess the driving mileage [21].

Gated recurrent unit (GRU) [22], a variant of RNN, not only retains all the advantages of RNN
but also adds “gate” operations to its hidden layer neurons, which allows GRU to maintain useful
information and discard useless information in dynamic sequence data automatically. A GRU
demonstrates state-of-the-art performance on sequential problems including natural language
processing, image classification, and time series prediction. For the purpose of diagnosing the faults of
dynamic process accurately, quickly, and effectively, this paper proposes a three stage fault diagnosis
method-based GRU deep network. The main contributions of this paper are as follows:

(1) Following the fault diagnosis framework, we propose a three-stage method. In the first stage,
a moving horizon is adopted to process dynamic process data such that raw data is entered into the
GRU without losing any dynamic information. In the second stage, we apply the GRU deep network
belonging to deep learning to the extract the dynamic feature of sequential data. Moreover, in the
third stage, softmax regression is adopted to obtain the output with a probabilistic explanation.

(2) Two diagnostic case studies were used to validate the proposed method. In the Tennessee Eastman
(TE) case, the parameter selection of the method was studied in depth. Furthermore, the proposed
method is compared to the conventional methods. The comparison results show the superiority
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of the method. In the case of para-xylene (PX) oxidation process, the diagnosis results show that
the method can be easily and effectively applied to other diagnostic problems.

(3) Considering the covariate shift in deep learning and the over-fitting caused by the “curse of
dimensionality,” BN is applied to our method to reduce the training time of GRU and improve
the accuracy of fault diagnosis.

This paper is organized as follows. In Section 2, a simple RNN and its variant GRU are
introduced in detail. Meanwhile, batch normalization and softmax regression are briefly described.
Section 3 details the proposed three-stage learning method. In Sections 4 and 5, the efficiency and
accuracy of the proposed method are illustrated in the TE process as well as the PX oxidation process.
Finally, the conclusion is provided in Section 6.

2. Recurrent Neural Network and Softmax Regression

2.1. Concept of an RNN

An RNN is called recurrent because they perform the same task for each element in the sequence.
The RNN uses the hidden state to record the state of each moment while processing the sequence
data, and the current state depends on the current input as well as the state of the previous moment.
Therefore, the current hidden state makes full use of past information. In this way, an RNN can process
sequence data in dynamic processes. The architecture of an RNN is shown in Figure 1. When given an
input sequence X = [x1, x2 . . . xt . . . xT ] of length T, an RNN defines the hidden state ht at the time t of
a sequence as:

ht = tanh(Whht−1 + Wxxt + b) (1)

where Wh ∈ Rdh×dh is the weight matrix between hidden layers, Wx ∈ Rdh×dx is the weight matrix of
the input layer to the hidden layer, and b ∈ Rdh is the bias. Wh, Wx, b, and the initial state h0 ∈ Rdh are
parameters of the RNN. The tanh is the activation function.
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Although the RNN is very powerful when dealing with sequence problems, it is difficult to
train with the gradient descent method because of the well-known gradient vanishing/explosion
problem [20]. On the other hand, variants of RNN have been developed to solve the above problems,
such as Long Short-Term Memory (LSTM), GRU, etc. Among them, GRU avoids overfitting, as well as
saves training time. Therefore, GRU is adopted in our method.

2.2. Concept of a GRU

GRU has the same chain structure as a simple RNN, but a GRU is more complicated in the way
it updates the hidden state. Instead of directly updating the current hidden state with the previous
hidden state, GRU uses a reset gate and updates the gate, which can judge whether the information in
the previous hidden state is useful, then holds useful information and removes useless information.
Figure 2 shows the architecture of GRU. The way GRU updates ht is as follows:

(1) The reset gate rt and update gate zt:

zt = σ(Wzhht−1 + Wzxxt + bz) (2)
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rt = σ(Wrhht−1 + Wrxxt + br) (3)

The activation function σ is the sigmoid function, and the value range of each element in the reset
gate rt and the update gate zt are [0, 1].

(2) Candidate hidden state:

h̃t = tanh(Wh̃h(rt ∗ ht−1)+Wh̃xxt + bh) (4)

The candidate hidden state h̃t uses the reset gate rt to control the inflow of the previous hidden
state ht−1 containing past information. If the reset gate is approximately zero, the previous hidden
state will be removed. Therefore, the reset gate provides a mechanism to remove previous hidden
states that are unrelated to the future; that is, the reset gate determines how much information was
forgotten in the past.

(3) Hidden state:
ht = zt ∗ ht−1 + (1− zt) ∗ h̃t (5)
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The hidden state ht uses the update gate zt to update the previous hidden state ht−1 and the
candidate hidden state h̃t. If the update gate is approximately 1, the previous hidden state will be held
and passed to the current moment. When given an input sequence X = [x1, x2 . . . xt . . . xT ] of length T,
GRU passes the last hidden state hT through a nonlinear transformation as the output.

o = σ(WohT + bo) (6)

In the above formula Wzh, Wrh, Wh̃h ∈ Rdh×dh are the weight matrices of the hidden layer to
the hidden layer, Wzx, Wrx, Wh̃x ∈ Rdh×dx are the weight matrices of the input layer to the hidden
layer, Wo ∈ Rdo×dh is the weight matrix of the output layer and bz, br, bh, bo ∈ Rdh are the bias
Wzh, Wrh, Wh̃h, Wzx, Wrx, Wh̃x, bz, br, bh, bo, and the initial states h0 ∈ Rdh are the parameters of the GRU.

The GRU can cope with the gradient vanishing/explosion problem in the RNN, so it is more
suitable for the fault diagnosis of dynamic processes.

2.3. Batch Normalization-Based GRU

It is known that for deep neural networks, an internal covariate shift is a common phenomenon
where the features presented to a networks change in distribution during the process of training [23].
When using a GRU that resembles very deep feed-forward networks to process sequence data for
dynamic processes, this internal covariate shift may play an especially important role. In order to
reduce internal covariate shift, batch normalization was proposed recently. Batch normalization
involves standardizing the activations going into each layer, enforcing their means µ and variances σ2
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to be invariant to changes in the parameters of the underlying layers, so as to accelerate the training.
Indeed, GRU network strained with batch normalization converge significantly faster and generalize
better. The batch normalizing transform is as follows:

BN(ci; γ, β) = γ ∗ ci − µB√
σ2

B + ε
+ β (7)

where ci ∈ Rd is the vector that will be normalized, γ ∈ Rd and β ∈ Rd are model parameters
that determine the mean and standard deviation of the normalized activation, and ε ∈ Rd is a
regularization hyperparameter. The ∗ denotes the Hadamard product (element-wise multiplication).
According to Reference [24] we set β and ε equal 0. At training time, we use the mini-batch training
strategy, which divides all training samples into many mini-batches, and each mini-batch carries out a
parameter update. Therefore, the input of BN is the current mini-batch containing k samples, which

can be expressed as B = {c1...k}. µB ← 1
k

k
∑

i=1
ci is the sample mean and σ2

B ←
1
k

k
∑

i=1
(ci − µB)

2 is the

sample variance.
We introduce the batch-normalizing transform into the GRU network. Batch normalization is

adopted in the hidden-to-hidden transformations as follows:

zt = σ(BN(Wzhht−1) + Wzxxt + bz) (8)

rt = σ(BN(Wrhht−1) + Wrxxt + br) (9)

h̃t = tanh(BN(Wh̃h(rt ∗ ht−1))+Wh̃xxt + bh) (10)

ht = zt ∗ ht−1 + (1− zt) ∗ h̃t (11)

o = σ(WohT + bo) (12)

2.4. Softmax Regression

In neural networks, softmax regression is often implemented at the final layer for multiclass
classification. It is computed fast and can provide a result with a probabilistic explanation. Suppose that
we have a training set {X(i)}m

i=1 with its label {Y(i)}m
i=1 where X(i) is the input sample and

Y(i) ∈ {1, 2, . . . j . . . , K} is the label. It should be noted here that one should not confuse the input of
softmax with the input of GRU. In fact, in our task, the input sample X(i) here is the output o(i) of the
GRU network. For each input sample X(i), the model works to estimate the probability P(Y(i) = j|X (i))

for each label of j = 1, 2, . . . , K. Thus, the result of softmax regression will output a vector that gives
K estimated probabilities of the input sample X(i) belonging to each label. Concretely, the result of
softmax regression φθ(X(i)) takes the form:

φθ(X(i)) =


p(Y(i) = 1

∣∣∣X(i); θ )

p(Y(i) = 2
∣∣∣X(i); θ )

...

p(Y(i) = K
∣∣∣X(i); θ )

 =
1

K
∑

j=1
exp(θT

j · X(i))


exp(θT

1 X(i))

exp(θT
2 X(i))
...

exp(θT
KX(i))

 (13)

where θ = [θ1, θ2, . . . , θK]
T are the parameters of the softmax regression model. It should be noticed

that the term
K
∑

j=1
exp(θT

j · X(i)) normalizes the distribution such that the sum of the elements of result

equals 1.
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2.5. Loss Function and Optimizer

Based on the result, the whole model is trained by minimizing the cost function J(Θ):

J(Θ) = − 1
m

[
m

∑
i=1

K

∑
j=1

1{Y(i) = j} log(p(Y(i) = j
∣∣∣X(i) ; Θ))

]
(14)

where Θ = {Wzh, Wzx, Wrh, Wrx, Wh̃h, Wh̃x, Wo, bz, br, bh, bo, h0, γ, θ} is the set of parameters containing
all the parameters above. As mentioned earlier, this article uses the mini-batch training strategy,
so m here can be understood as a mini-batch. Furthermore, in the experiments in Sections 4 and 5,
the setting of the mini-batch will be given. K is the number of classes, 1{Y(i) = j} is the indicator
function indicating that if the class of the ith sample is j, then 1{Y(i) = j}= 1, otherwise 1{Y(i) = j}= 0.

In this paper, we use Adam to optimize the loss function. Adam is a first-order optimization
algorithm that can replace the traditional stochastic gradient descent process. It can iteratively update
neural network parameters based on training data. The stochastic gradient descent maintains a single
learning rate to update all parameters, and the learning rate does not change during the training
process. Adam calculates independent adaptive learning rates for different parameters by calculating
the first-moment estimation and second-moment estimation of the gradient. The pseudocode of the
Adam algorithm for updating Θ is shown in Figure 3. For more details regarding Adam, please refer
to Reference [25].
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3. Three-Stage Fault Diagnosis Method of Dynamic Process

This section details the proposed three-stage fault diagnosis method for fault diagnosis of the
dynamic process. The illustration and flowchart of the method are shown in Figure 3. In the first
stage, the moving horizon was used to process raw data as the input sequences of GRU. In the second
stage, the GRU model was established through batch normalization, and the model was trained with
sequences processed by moving horizon. In this way, the GRU model extracts the dynamic features in
the raw data. In the third stage, softmax regression was applied to classify faults using the extracted
dynamic features.

3.1. First Stage—Moving Horizon

In order to make full use of the correlation among sequential data of the dynamic process,
we adopted the moving horizon to process the raw data. The width of the moving horizon can be
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adjusted according to different needs. The width of the moving horizon is the length of the input
sequence which is defined as time steps (T) in GRU. For example, suppose there are n sets of raw data
X = [x1, x2 . . . xn] where x ∈ Rdx×1, when the time steps are set to 3 (T = 3), then the moving horizon
divides raw data into several sequences like [x1, x2, x3][x2, x3, x4][x3, x4, x5]... such that there are m = n
− T sequences, and each sequence is an input sample to the GRU neural network.

3.2. Second Stage—Extract Dynamic Features by GRU

Once the input sequences of GRU is obtained, we define the input in this way X(1) = [x1, x2, x3],
X(2) = [x2, x3, x4], . . . , X(m) = [xn−2, xn−1, xn], where x ∈ Rdx×1 and X ∈ Rdx×3. What needs to be
explained here is that we just use T = 3 as an example. In fact, the time step can be adjusted according
to different needs. Each input X(i) corresponds to an output o(i) refers to Equations (2), (3), (4), (5),
and (6). During this time, the output vector o(i) is the dynamic features extracted by GRU.

3.3. Third Stage—Obtain Fault Diagnosis Result Using Softmax Regression

This section details the proposed three-stage fault diagnosis method for fault diagnosis of the
dynamic process. The illustration and flowchart of the method are shown in Figure 4. In the first stage,
the moving horizon is used to process raw data as the input sequences of GRU. In the second stage,
the GRU model is established through batch normalization, and the model is trained with sequences
processed using a moving horizon. In this way, the GRU model extracts the dynamic features in
the raw data. In the third stage, softmax regression is applied to classify faults using the extracted
dynamic features. Once the dynamic features set {o(i)}m

i=1 is obtained, we combined it with the label
set {Y(i)}m

i=1 to train the softmax regression. The softmax regression model computes the probability
that the feature o(i) has the fault labels Y(i) as in Equation (12). The sum of the probabilities over
all class labels being 1 ensures that the right side in Equation (12) defines a properly normalized
distribution. After being trained, the maximum posterior probability in φθ(o(i)) indicates which fault
label the feature o(i) belongs to.

After the three stages, we used test samples to verify the proposed method. For example,
there were new samples of a dynamic process Xnew = [xnew

1 , xnew
2 . . . xnew

n ], where x ∈ Rdx×1, first,
we used a moving horizon to divide it into several sequences as X(new1) = [xnew

1 , xnew
2 , xnew

3 ], X(new2) =

[xnew
2 , xnew

3 , xnew
4 ], . . . , X(newm) = [xnew

n−2, xnew
n−1, xnew

n ]. Then, we put them into the GRU model and
obtained the dynamic features {o(newi)}m

i=1 extracted by the GRU. Finally, the faults of the test samples
are decided by the trained softmax regression model using the dynamic features.
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4. Case Study I: Fault Diagnosis of TE Using the Proposed Method

In this section, a GRU-based fault diagnosis algorithm is applied to the TE process, which is a
benchmark case designed for testing the fault diagnosis performance. A model of this process was
developed by Downs and Vogel [26], consisting of five major transformation units, which are a reactor,
a condenser, a compressor, a separator, and a stripper, as shown in Figure 5. The MATLAB codes can
be downloaded from http://depts.washington.edu/control/LARRY/TE/download.html. From this
model, 41 measurements are generated along with 12 manipulated variables. A total of 21 different
process upsets are simulated for testing the detection ability of the monitoring methods, as presented
in Table 1 [27,28]. Our goal is to diagnose and classify the faults that have occurred, so normal data is
not used as a training sample.
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The fault diagnosis algorithm in this paper is designed for time series problems or dynamic
problems. We check whether the TE data has autocorrelation by calculating the autocorrelation
coefficient of each variable of the TE data. The autocorrelation coefficient measures the degree to which
the same event is correlated between two different periods. Suppose that the process has mean µ and
variance σ2 at time t. Then the definition of the autocorrelation between times Xt and Xt+τ is:

R(τ) =
E[(Xt − µ)(Xt+τ − µ)]

σ2 (15)

where “E” is the expected value operator, t is the lag, and Xt(t = 1, 2 . . . T). We selected a feature
corresponding to the fault occurrence in the fault data of the TE process to calculate its autocorrelation
between the time Xt and Xt+τ, τ= (1, 2 . . . 20).The calculation results are shown in Figure 6. In the figure,
approximate 95% confidence intervals are drawn with blue lines. From the results, this feature does
have autocorrelation. Therefore, due to the recurrent structure and adaptive training strategy of the GRU,
our proposed algorithm can fully extract the dynamic information in TE for further fault diagnosis.

http://depts.washington.edu/control/LARRY/TE/download.html
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Table 1. Process faults for the TE process simulator. Reproduced with permission from Rato, T.J. and
Reis, M.S., Chemometrics and Intelligent Laboratory Systems; published by Elsevier, 2013 [13].

Variable Description Type

IDV (1) A/C feed ratio, B composition constant (Stream 4) Step
IDV (2) B composition, A/C ratio constant (Stream 4) Step
IDV (3) D feed temperature (Stream 2) Step
IDV (4) Reactor cooling water inlet temperature Step
IDV (5) Condenser cooling water inlet temperature Step
IDV (6) A feed loss (Stream 1) Step
IDV (7) C header pressure loss-reduced availability (Stream 4) Step
IDV (8) A, B, C feed composition (Stream 4) Random variation
IDV (9) D feed temperature (Stream 2) Random variation

IDV (10) C feed temperature (Stream 4) Random variation
IDV (11) Reactor cooling water inlet temperature Random variation
IDV (12) Condenser cooling water inlet temperature Random variation
IDV (13) Reaction kinetics Slow drift
IDV (14) Reactor cooling water valve Sticking
IDV (15) Condenser cooling water valve Sticking

IDV (16)–IDV (20) Unknown Unknown
IDV (21) The valve for Stream 4 was fixed at the steady state position Constant positionProcesses 2019, 7, x FOR PEER REVIEW 10 of 21 
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4.1. Data Description

The experimental dataset was generated by the TE simulation model, and 21 types of faults could
be simulated. The simulation times of the training and the test sets were 24 h and 48 h, and the faults
appeared after 1 h and 8 h, respectively. There were 480 sets of data for each fault as the training set.
There were 800 sets for each fault as the test set. Since faults 3, 9, and 15 were difficult to diagnose with
a data-based method, these three faults were not considered in our experiment. Therefore, there were
a total of (480 × 18 = 8640) sets training data and (800 × 18 = 14400) sets of test data.
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4.2. Hyperparameters Selection and Fault Diagnosis Result and Analysis

4.2.1. Hyperparameters Selection

Our GRU model contains two important hyperparameters: the number of GRU layers and the
width of the moving horizon. We evaluated the accuracy for the GRU with different layers and
different width of the moving horizon. The epochs of training were set to 30. Each accuracy was the
result of averaging ten experiments, and the results are given in Table 2.

Table 2. The mean accuracy of the GRU with different layer numbers and different width of the
moving horizon.

Number of Layers
Width of the Moving Horizon

2 3 4 5 6 7 8 9 10

1 layer 0.8236 0.8342 0.8342 0.8340 0.8302 0.8300 0.8295 0.8272 0.8254
2 layers 0.8138 0.8228 0.8225 0.8214 0.8190 0.8163 0.8156 0.8106 0.8020
3 layers 0.7984 0.8134 0.8123 0.8078 0.8070 0.8008 0.8006 0.7988 0.7985
4 layers 0.7752 0.7880 0.7863 0.7849 0.7835 0.7803 0.7800 0.7762 0.7755

It is concluded from the table that when the number of GRU layers is set to one, and the width
of the moving horizon is set to three and four, the accuracy reached a peak, but it decreased with the
further increase of the width and the number of layers. The reason for this phenomenon was that as
the number of GRU layers and the width of moving horizon increased, the amount of parameters, such
as weights and biases in the model, was multiplied, which made the model’s generalization ability
worse and easy to overfit when dealing with high-dimensional industrial data.

Therefore, the network structure and hyperparameters are as follows: the number of GRU layers
was set to 1, the width of the moving horizon was set to 3, the dimension of the hidden state dh was
set to 30, and the parameters of batch normalization algorithm β and ε were set to 0. In the training,
the mini-batch was set to 128, and the number of epochs was set to 30.

Experiments were run on a computer with Intel Core i7-7700 CPU, 8GB memory, and an NVIDIA
GeForce GTX 1060 GPU. The diagnosis results of 21 faults are shown in a confusion matrix of Figure 7,
where the confusion matrix considers target and output data. The target data are ground truth labels
corresponding to 21 types of faults. The output data are the outputs from the tested method that
performs classification. In the confusion matrix, the rows show the predicted class, and the columns
show the ground truth. The diagonal cells show where the true class and predicted class match and
the proportion. The off-diagonal cells show instances where the tested algorithm made mistakes and
the proportion. The darker the color of the diagonal cell, the better the classification effect. Figure 6 has
shown that only the diagnosis effect of fault 21 was not ideal, but the rest of the diagnosis results were
satisfactory, with many fault diagnosis accuracy rates over 90%, and the mean accuracy was 87.36%.

In practical applications, we can collect online data during online monitoring and re-model and
update parameters at regular intervals because the proposed model requires little computational
cost and time cost. In this way, the diagnosis accuracy will be further improved. This is one of the
advantages of the proposed model.
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4.2.2. Effects of Batch Normalization

In deep learning, such as with a GRU, as the network deepens, there will be problems with the
covariate shift, which will reduce the learning efficiency of the GRU network. The recently proposed
batch normalization algorithm can effectively solve this problem. We can see the effect of batch
normalization from the convergence speed and extent of the loss function during the training process
in Figure 8. In addition, Table 3 compares the GRU and the BN-based GRU in several details and
shows that the BN-based GRU is superior, both in terms of speed and accuracy.

The choice of model hyperparameters and the use of BN algorithms are theoretically based.
Industrial data has the characteristic of being high-dimensional, and the deep network structure
has too many parameters (weights and biases), thus it has poor generalization ability and is easily
over-fitted when dealing with high-dimensional industrial data, that is, the “curse of dimensionality”.
Therefore, the GRU network is adopted in this paper. The GRU network is relatively sparse, so it has
advantages in processing industrial data. The experimental results also show that the classification
performance was superior when the number of layers and the width of moving horizon were both
small. Moreover, in order to prevent over-fitting, the BN algorithm was cited herein to improve the
GRU, and it turns out that the introduction of BN was effective. Consequently, the proposed method
solves the “curse of dimensionality” in the industrial data to a certain extent.
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Table 3. The comparison between GRU and BN-GRU.

Details GRU BN-GRU

Training accuracy 0.9429 0.9647
Testing accuracy 0.8342 0.8736

Training loss 0.3973 0.0012
Testing loss 0.7839 0.4493

Epochs at convergence 30 23

4.3. Comparing with Related Work

At the same time, we also conducted a comparative test. We used two fault diagnosis methods,
DPCA-SVM and MLP, they both processed the sequence data to diagnose 21 faults also. According to
the literature [7,13] and for the sake of fairness, the window size for DPCA was equal to the width of the
moving horizon, which was equal to 3. For DPCA, we provided the performance under different reduced
dimensions (the number of principal components) from 2 to 30. We also offered the performance of MLP
and BN-based GRU under a different number of nodes in the hidden layer. The MLP used in this article is
a five-layer network with the same number of nodes (dimensions) per layer. The diagnosis accuracy of the
three methods in different cases is shown in Figure 9. The diagnosis accuracy shows that the proposed
three-stage method based on a BN-based GRU can provide the best performance of all the methods.

We set the number of principal components of DPCA and the dimensions of the hidden layer in
MLP and BN-based GRU equal to 30. The diagnosis results of DPCA-SVM are shown in Figure 10,
and the mean accuracy rate was 66.40%. The diagnosis results of MLP are shown in Figure 11, where
the mean accuracy rate was 77.23%.
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We used the dimensionality reduction technique T-distributed stochastic neighbor embedding
(t-SNE) to convert the features extracted by the three algorithms into a two-dimensional (2D) image,
and the resulting scatter plot is shown in Figures 12–14. As shown in Figure 12, the feature extraction
effect of DPCA was very poor, and only a few fault features were separated. The feature extraction
effect of MLP was relatively good, and most of the fault features could be separated, but there were a
few cases where, for example, faults 10, 19, 20, and 21 were confused. The fault extraction effect of a
BN-based GRU was the best. Only a small part of the fault 20 and 21 were overlapping, and the rest of
the features were well separated.

When dealing with data with small sizes (such as diagnosing certain types of TE faults),
DPCA-SVM has considerable effects, but when dealing with large-scale data (such as diagnosing all
21 faults of TE), traditional methods like DPCA-SVM are not very effective. The GRU model of deep
learning has a unique advantage in dealing with sequential data in the dynamic process. From the
simulation results of the TE process, we could conclude that the proposed three-stage diagnosis
method-based GRU in this paper was indeed superior to the traditional method.
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5. Case Study II: Fault Diagnosis of a PX Oxidation Process Using the Proposed Method

The PX oxidation reaction process is used for the production of PTA. There are three types of
devices including one reactor, four condensers, and one reflux drum [29,30]. PX, acetic acid (solvent),
cobalt acetate, manganese acetate (catalyst), tetrabromoethane (accelerator), and air were placed in
the oxidation reactor to produce terephthalic acid (TA) in a high-temperature and high-pressure
environment. [29,30]. The simplified flow chart of the PX oxidation process is shown in Figure 15.
A total of nine different process upsets were simulated for testing the diagnosis ability of the proposed
methods, as presented in Table 4.

Table 4. Process faults for the PX oxidation reaction process.

Variable Description Type

IDV (1) Change of PX feed Step
IDV (2) Change of HAC feed Step
IDV (3) Change of H2O feed Step
IDV (4) Change of air feed Step
IDV (5) Change of PX feed temperature Step
IDV (6) A Step change of air feed temperature Step
IDV (7) Change of FC1102 temperature Step
IDV (8) Sticking of B1 valve Sticking
IDV (9) Sticking of condenser valve Sticking
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5.1. Data Description

The experimental dataset was collected by the PX oxidation process involving nine different fault
types. The simulation times were 10 h, and the sampling frequency was 100 times per hour. There were
1000 sets of data for each fault as the dataset. Ten percent was used as a training set and the rest as
a test set. Therefore, there were a total of (100 × 9 = 900) sets of training data and (900 × 9 = 8100)
sets test data. The width of the moving horizon was also set to 10 in this experiment.

5.2. Fault Diagnosis Results and Analysis

In this experiment, the network structure and hyperparameters were as follows: the dimension of
hidden state dh was set to 20, and the parameters of the batch normalization algorithm β and ε were
set to 0. In training, the mini-batch was set to 32, the number of epochs was set to 30, the number
of GRU layers was set to 1, and the width of the moving horizon was set to 3. The diagnosis results
of nine faults are shown in a confusion matrix of Figure 16a. The visualization of feature extracted
using a BN-based GRU is shown in Figure 16b. We can see that the dynamic information of the PX
oxidation process data could be effectively utilized by the proposed method, and the mean testing
accuracy reached 99.10%.

In actual industrial processes, labeled data is difficult to obtain. Therefore, in this experiment,
we trained the network with very little data and got good results. This means that the proposed
method can be applied to the fault diagnosis of dynamic processes in real industry.
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Figure 16. (a) The diagnosis results of PX oxidation process. (b) Visualization of features extracted
using a BN-based GRU in the PX oxidation process.

5.3. Comparing with Related Work

In this case, the results of the proposed method are compared with two deep learning methods:
DBN and CNN. In accordance with References [18,19], the neural numbers of DBN were set to
23× 20× 16× 9, and the CNN consisted of a pair of convolutional layer and pooling layer with
a convolution kernel size of 2. The diagnosis results of DBN are shown in Figure 17a, and the
mean accuracy rate was 92.09%. The diagnosis results of CNN are shown in Figure 17b, where the
mean accuracy rate was 97.56%. From the results, it can be clearly seen that the proposed method
outperformed DBN and CNN in terms of the mean accuracy, showing the potential of the proposed
GRU-based fault diagnosis method.
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5.4. Practical Verification

Due to the complexity of real industrial processes, the data collected is often not idealized.
The existence of outliers in the training data should also be considered. In order to further verify the
anti-interference ability and practicability of the proposed method, the outliers to the training data
were added randomly in this case. We added 10 lots of fault 2 data in fault 1 and 10 lots of fault 5 data
in fault 2 as well as fault 3.

As shown in Figure 18, only a small number of fault 3’s were incorrectly classified as fault 5,
and the diagnosis results of faults 1, 2, and 5 were unaffected. The mean accuracy remained at a high
level with 98.93%. Consequently, the proposed method has practicality for real industrial processes.
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6. Conclusions

In this paper, a three-stage fault diagnosis method based on a GRU neural network was proposed.
In this method, we used the moving horizon to process the sequence data in the industrial process
and adjusted the time step by changing the width of the moving horizon. In this way, data could
be better trained using the GRU neural network. Then, we trained the GRU neural network and
optimized it with the BN algorithm to reduce the influence of the covariate displacement that existed
in the deep learning. The GRU neural network was relatively simple and efficient, and it could
guarantee both efficiency and high accuracy when extracting the dynamic features from sequential
data. Finally, softmax regression gave an accurate probability interpretation of extracted dynamic
features. By optimizing the hyperparameters of the network, the proposed method solved the “curse
of dimensionality” in the industrial data to a certain extent. The simulation experiment of TE data
and PX oxidation process data proved that the method could effectively extract the information in the
dynamic process and improved the accuracy of fault diagnosis. In addition, online data during online
monitoring can be collected to update model parameters, which will further improve the accuracy.
In the future, this method can be applied to more complex industrial processes. Also, a further study
on dynamic information in industrial process data will be put forward.
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