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Abstract: The purpose of this study was to investigate how the properties of Mexican kefir grains
(MKG) are affected by the operating parameters used in the freeze-drying process. The factors
investigated were the freezing time (3–9 h), freezing temperature (−20 to −80 ◦C), pressure
(0.2–0.8 mbar), and lyophilization time (5–20 h). The maximum range of change and one-way
analysis of variance showed that lyophilization time and freezing time significant affects (p < 0.05) the
response variables, residual moisture content and water activity, and pressure had a significant effect
on the color difference and survival rate of probiotic microorganisms. The best drying conditions were
a freezing time of 3 h, a freezing temperature of −20 ◦C, a pressure of 0.6 mbar, and a lyophilization
time of 15 h. Under these conditions, we obtained a product with residual moisture content below
6%, water activity below 0.2, and survival rates above 8.5 log cfu per gram of lactic acid bacteria and
above 8.6 log for yeast.

Keywords: freeze-drying; operating parameters; properties; kefir grains; probiotic

1. Introduction

Kefir grains are the culture used to produce kefir: a probiotic and popular beverage in the
functional food market. This culture is a complex mixture of bacteria and yeasts that live in a symbiotic
relationship [1–3]. These grains have an irregular form with a shape similar to that of a cauliflower,
are yellow or white color, and have a variable size from 0.3 to 3.5 cm in diameter [4–6]. The grains
are initially very small but increase in size during the fermentation process, but they can only grow
from preexisting grains [7]. Their complex microbiological mixture depends on their origin, quality,
and type of milk used for reproduction. As a result, obtaining a defined and uniform starter culture for
the industrial kefir market is difficult [8]. For this reason, dehydration of kefir may provide a solution
to increase the market value of this dairy product [9].

Probiotic foods are increasing in popularity in the marketplace [10] and they are defined as
live organisms which, when administered in adequate amounts, provide health benefits to the host.
To provide these benefits, a probiotic must contain at least 10 million colony-forming units per
gram (cfu/g) [11]. This implies that the microorganisms must remain viable and maintain their
characteristics from the beginning of the production process until they are consumed because probiotic
microorganisms must survive throughout the production and storage processes [12,13].
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Freeze-drying is a well-known dehydration process in the food and dairy industry where the major
applications are the preservation of probiotics, starter cultures, and biological material. Compared
to other drying techniques such as spray drying freeze-drying is an expensive process due to its
relatively high investment, operation, and maintenance costs [14], but the freeze-drying process
produces many benefits in the results obtained in terms of viability, quality, and storage time in
dairy bacterial cultures [15–19]. Freeze-drying also has advantages in terms of the characteristics of
the final product such as stability in its composition, intact nutrients, reduction of degradation in
heat-sensitive products, reduction of chemical degradation, control of the final humidity, and reduction
of water content at the end of the process to very low levels [20–22]. Freeze-drying is a process where
water or another solvent is frozen, followed by its elimination from the sample in final steps of the
lyophilization. This process combines in three steps: (1) the sample is frozen at low temperature,
(2) primary drying occurs when the ice is sublimated under reduced pressure, and (3) secondary
drying occurs as a desorption step where the residual moisture is removed or reduced to a low
level. The objective of any kind of microbiological drying process is to enable cell survival and long
storage [23–25]. Some studies [5,26–30] have examined freeze drying of kefir grains, analyzing the
production of freeze-drying kefir cultures from whey and the effects of freeze-drying on the survival of
microorganisms present in the grains with or without the use of cryoprotectants. Until now, no study
has considered the effects of process variables on a stable and uniform starter culture with suitable
characteristics in terms of viability, percent residual moisture content (%RMC), water activity (aw),
and color for the kefir market.

2. Materials and Methods

2.1. Kefir Grains Preparation

Fresh kefir grain biomass was obtained from local sources in Orizaba, Veracruz, Mexico.
Propagation, activation, and adaptation to the medium were performed in a laboratory for 60 days.
Ultrahigh temperature (UHT) milk samples were inoculated with kefir grains 10:90 (w/v) by 24-h
cycles at a temperature of 26 ◦C. Prior to freeze-drying, kefir grains were selected and washed with
distilled water until all residues of milk were removed [31]. Kefir grain biomass viability was important
for experimental data validity [32].

2.2. Experimental Design and Freeze-Drying

Freeze-drying of Mexican kefir grains (MKG) was carried out in a freeze dryer (Labconco
Equipment Co., KS, USA) with capacity of 12 L and an ultralow freezer (Environmental Equipment,
Cincinnati, OH, USA). The selected levels for each affecting factor are shown in Table 1. The freezing
time was set to 3, 5, 7, or 9 h; freezing temperature was set to −20, −40, −60, or −80 ◦C; and pressure
was 0.2, 0.4, 0.6, or 0.8 mbar. For this study 5, 10, 15, and 20 h were selected as the lyophilization times.
The L16 44 orthogonal design used is shown in Table 2.

Table 1. Factors and levels used in the freeze-drying experiments.

Level
Factor

Ft (h) Fte (◦C) P (mbar) Lt (h)

1 (K1) 3 −20 0.2 5
2 (K2) 5 −40 0.4 10
3 (K3) 7 −60 0.6 15
4 (K4) 9 −80 0.8 20

Ft: freezing time; Fte: freezing temperature; P: pressure; Lt: lyophilization time.
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Table 2. L1644 orthogonal experimental design sheet.

Experiment Factor

Ft (h) Fte (◦C) P (mbar) Lt (h)

1 1 1 1 1
2 1 2 2 2
3 1 3 3 3
4 1 4 4 4
5 2 1 2 3
6 2 2 1 4
7 2 3 4 1
8 2 4 3 2
9 3 1 3 4

10 3 2 4 3
11 3 3 1 2
12 3 4 2 1
13 4 1 4 2
14 4 2 3 1
15 4 3 2 4
16 4 4 1 3

2.3. Analytical Methods

The residual moisture content (% RMC) of dried kefir grains was measured using the MA35
moisture analyzer (Sartorius AG, Göttingen, Germany). Samples of 0.5 g were heated to 65 ◦C until
constant weight. Water activity (aw) was determined at 25 ◦C using an Aqualab water activity meter
(series 3, Decagon Devices Inc., Pullman, WA, USA). Color measurements were recorded using a Hunter
Lab MiniScan XE Plus (Hunter Associates Laboratory Inc., Reston, VA, USA) and results are expressed
in Hunter Lab Units L* (lightness/darkness), a* (redness/greenness), and b* (yellowness/blueness).
Survival rate of lactic acid bacteria (LAB) and yeasts before and after lyophilization are expressed as
log (cfu/g), which was determined using the pour plate method. Decimal dilutions with peptone
water were prepared from the kefir grains and LAB were quantified on Man Rogosa and Sharpe agar
(MRS) (Dibico, Cuautitlan Izcalli, Mexico) at 35 ◦C for 3 days. Yeasts were evaluated on yeast peptone
dextrose medium (YPD) (Dibico, Cuautitlan Izcalli, Mexico) after incubation at 25 ◦C for 5 days.

2.4. Statistical Analysis

Significance of the affecting factor was determined by analysis of variance (ANOVA) at p < 0.1
and F > Fcrit (critical factor) = 2.605525, and at p < 0.05 and F > Fcrit = 3.490295. The importance
of the affecting factor in range analysis was determined by the maximum changing range of dried
final product properties [33]. Multiple regression was used to predict the behavior between the final
properties of the dried product and the affecting factors, i.e., the final properties as a dependent variable
and four parameters—freezing time (Ft), freezing temperature (Fte), pressure (P), and lyophilization
time (Lt)—as independent variables in the analysis.

3. Results and Discussion

3.1. Residual Moisture Content of Dried Mexican Kefir Grains

The residual moisture content of dried MKG is an important factor that affects the long-term
stability of the product and its shelf life. Our analysis of the % RMC of the dried MKG is shown in
Table 3. The results show that freezing time, freezing temperature, and pressure in the four selected
levels did not have a significant effect on this response variable, but lyophilization time did have a
significant effect for all four levels (p = 0.00163 < 0.1 and F = 9.62136 > Fcrit = 2.605525; p = 0.00163
< 0.05, and F = 9.62136 > Fcrit 3.490295). This finding is consistent with the conclusions of other
researchers [34–38], who indicated that secondary drying (desorption) in the freeze-drying process
plays a significant role in the desired moisture content of the final product.
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Table 3. Data analysis of dried Mexican kefir grain (MKG) residual moisture content (% RMC).

Data Analysis
% RMC

Factor

Ft (h) Fte (◦C) P (mbar) Lt (h)

K1 23.01 30.55 21.46 188.69
K2 99.40 62.26 77.36 46.07
K3 70.77 79.11 83.95 15.66
K4 73.06 94.32 83.46 15.82
R′ 76.39 63.78 62.49 173.03
F 0.46713 0.33514 0.41678 9.62136
p Value 0.71063 0.80025 0.74417 0.00163

MKG: Mexican kefir grains; Ft: freezing time; Fte: freezing temperature; P: pressure; Lt: lyophilization time;
K1: level 1; K2: level 2; K3: level 3; K4: level 4; R′: changing range.

The max changing range (173.03) of the lyophilization time in this analysis was the largest among
the range of the four variables (R′). This indicates that the lyophilization time plays an important role
in affecting the % RMC of dried MKG. The range (76.39) for freezing time was larger than those of the
remaining two factors. This shows that freezing time is the second-most important factor that affects
the residual moisture in the dried product.

According to the multiple regression analysis of the L1644 orthogonal experiments results,
the regression equation for the residual moisture content of dried MKG is obtained as follows.

RMC (%) = 12.3 + 12.7X1 − 10.59X2 + 36.60X3 − 38.85X4 − 2.74X2
1 + 4.29X1X2 − 0.97X1X3

− 2.460X1X4 + 1.143X2
2 − 0.80X2X4 − 3.12X2

3 − 4.348X3X4 + 8.924X2
4

(1)

In this equation, the square of the correlation coefficient (R2) was 0.9974. The coefficient (38.85) of
lyophilization time was the largest among the coefficients of the four variables. This also indicates that
the lyophilization time plays an important role in affecting the % RMC of dried MKG. On the other
hand, the coefficients 36.60 and 12.70 for pressure and freezing time, respectively, were the largest than
those of the remaining factors it can be showed with p-values for each coefficient.

According to Equation (1), the predicted % RMC values of dried MKG with different freezing
times and pressures are shown in Figure 1. The lyophilization time and freezing temperature in the
equation were 5 h and −20 ◦C, respectively. Figure 1 shows that % RMC increases more with increased
pressure and with a freezing time of 5 h. However, we observed that as when the pressure was less
than 0.1, the % RMC decreased. Table 4 shows the experimental and predicted % RMC of dried MKG
and the error differences. The smallest value obtained in the experimental results was 2.38 with a
freezing time of 5 h, freezing temperature of −40 ◦C, pressure of 0.2 mbar, and lyophilization time of
20 h. The error relative difference between the experimental and predicted % RMC was −15.29%.
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Table 4. Experimental (Exp-R) and predicted results (Pre-R) of dried MKG properties.

Experiment

Factors

Residual Moisture
Content(% RMC)

Water Activity(aw) Color Difference

Exp-R Log (cfu/g) of
LAB Log (cfu /g) of Yeasts

Exp-R Pre-R Error
(%) Exp-R Pre-R Error

(%) L* a* b* ∆E Pre-R Error
(%) Exp-R Pre-R Error

(%) Exp-R Pre-R Error
(%)

1 11.84 12.08 −2.02 0.173 0.177 −2.20 44.02 −1.13 6.40 15.5 14.77 4.73 4.99 4.72 5.37 5.22 4.64 11.24
2 4.84 5.50 −13.55 0.111 0.121 −9.19 38.42 −0.98 5.58 6.23 7.66 −22.92 8.03 8.27 −2.94 5.63 6.94 −23.24
3 3.08 2.51 18.47 0.114 0.105 8.07 39.96 −1.12 6.43 7.92 6.5 17.89 8.56 8.32 2.85 8.67 7.44 14.24
4 3.25 3.12 3.88 0.131 0.128 2.60 50.58 −1.44 7.49 10.55 11.3 −7.13 4.61 4.87 −5.68 5.44 6.11 −12.42
5 4.84 3.23 33.24 0.111 0.089 20.00 36.73 −1.34 4.85 3.93 4.86 −23.59 6.81 7.45 −9.43 8.44 9.10 −7.81
6 2.38 2.74 −15.29 0.137 0.142 −3.65 42.30 −1.45 6.79 10.98 10.82 1.48 8.20 8.06 1.76 8.27 8.19 1.03
7 65.33 65.08 0.38 0.983 0.98 0.35 39.11 −1.43 5.76 7.92 8.05 −1.68 8.35 8.47 −1.49 8.4 8.55 −1.71
8 26.85 28.56 −6.35 0.494 0.518 −4.86 42.60 −1.30 5.71 8.95 8.00 10.59 8.42 7.76 7.86 8.68 8.08 6.94
9 2.94 4.64 −57.86 0.136 0.161 −18.31 38.65 −0.91 5.53 12.74 11.77 7.61 8.64 7.99 7.56 8.67 8.03 7.36
10 3.95 4.36 −10.43 0.210 0.216 −2.95 35.46 −1.08 4.80 7.13 6.89 3.37 6.49 6.31 2.85 6.20 6.08 1.92
11 3.45 3.18 7.91 0.092 0.088 4.02 44.60 −1.11 6.61 22.17 22.36 −0.83 6.59 6.75 −2.35 7.43 7.59 −2.04
12 60.43 58.85 2.62 0.986 0.964 2.27 37.98 −1.51 5.57 9.34 10.25 −9.70 8.48 9.10 −7.35 8.48 9.14 −7.77
13 10.93 9.86 9.74 0.557 0.543 2.53 49.33 −1.52 7.93 15.60 16.17 −3.62 7.13 7.59 −6.47 4.29 4.71 −9.82
14 51.09 52.64 −3.04 0.972 0.995 −2.37 41.17 −1.17 6.78 8.80 7.89 10.3 7.54 6.91 8.34 8.14 7.54 7.42
15 7.25 5.86 19.21 0.107 0.087 18.60 42.62 −1.42 5.84 3.80 4.65 −22.34 5.04 5.63 −11.61 5.95 6.55 −10.15
16 3.79 5.03 −32.72 0.076 0.093 −22.63 38.92 −1.09 5.16 8.27 7.63 7.74 7.90 7.40 6.37 8.02 7.60 5.22
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3.2. Water Activity of Dried Mexican Kefir Grains

Water activity (aw) in the dried MKG is one the most important factors that affect the quality
and probiotic viability during the storage of the dried product because, during the drying processes,
the decrease in water activity damages the bacterial structures, decreasing their viability [39]. If the aw

is below 0.60, complete inhibition of microbial growth and lipid oxidation are assured in food products
during storage [40]. The water activity is provided in Table 4. For most of the experiments, the water
activity was below 0.6.

The data obtained in this study are analyzed in Table 5. The water activity of the dried MKG
was significantly influenced (p < 0.1 and F = 6.64924 > Fcrit = 2.605525 and p = 0.00163 < 0.05 and
F = 6.64924 > Fcrit 3.490295) by the four levels of the lyophilization time. This finding is consistent
with previous research showing that during freeze-drying, extremely low water activity values are
obtained because free water is frozen and low drying temperatures prevent thermal and enzymatic
degradation of the final product [41,42].

Table 5. Data analysis of dried Mexican kefir grains (MKG) water activity (aw).

Data Analysis for aw
Factor

Ft (h) Fte (◦C) P (mbar) Lt (h)

K1 0.529 0.977 0.478 3.114
K2 1.725 1.430 1.315 1.254
K3 1.424 1.295 1.716 0.511
K4 1.712 1.687 1.880 0.511
R′ 1.196 0.711 1.402 2.603
F 0.60391 0.15021 0.77428 6.64924
p Value 0.62489 0.92756 0.53045 0.00678

The maximum rate of change (2.603) for the lyophilization time in this analysis was the largest
among the range of the four variables. This indicates that the lyophilization time plays an important
role in affecting the aw of dried MKG. The range (1.402) obtained for pressure was larger than those of
the remaining two factors shown, which means that pressure is another factor that significantly affects
this response variable.

The equation for the water activity using multiple regression is

aw = 0.246 + 0.033X1 − 0.098X2 + 0.319X3 − 0.3560X4 − 0.0074X2
1 + 0.0405X1X2 + 0.0441X1X3

− 0.0640X1X4 + 0.0307X2
2 − 0.0321X2X4 − 0.0260X2

3 − 0.0692X3X4 + 0.1162X2
4

(2)

The R2 for Equation (2) was 0.9979. The coefficient of the lyophilization time (0.3560) indicates
that the lyophilization time plays the most important role in affecting the water activity of the dried
MKG. The relationship between freezing time and pressure was obtained using Equation (2) when the
freezing temperature and lyophilization time were −20 ◦C and 5 h, respectively (Figure 2). We found
that the water activity decreased to almost zero under low pressure and a freezing time of 3 h when
the other two factors were kept constant.

In Table 4, the experimental water activity is compared with the predicted water activity.
The smallest value obtained in the experimental result was 0.076 with a freezing time of 9 h, freezing
temperature of −80 ◦C, pressure of 0.2 mbar, and lyophilization time of 15 h. The error relative
difference between the experimental and predicted aw was −22.63% in test number 16.
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Figure 2. Predicted water activity of dried MKG at different freezing times and pressures.

3.3. Color Difference of Dried Mexican Kefir Grains

Color is the first judgment and major quality attribute in dried foods, because its change indicates
that certain components in the product might have deteriorated [43–45]. In this study, the reference
standard was a fresh sample of MKG, for which the L*, a*, and b* values were 35.28, −1.15, and 2.84,
respectively. The analysis of color data is shown in Table 6. In this table, R′ is the maximum difference
among the four levels for each factor. The larger the R′, the more significant the effects. Table 6 shows
that lyophilization time affects the lightness (L* value), whereas a* is mostly affected by pressure.
However, yellowness (b* value) is more influenced by lyophilization time and pressure than the other
two variables: freezing temperature and lyophilization time. These results differ from those reported
in other studies that reported that color parameters are affected by freezing and drying time [46].

The results in Table 6 reveal that L*, a*, b*, and ∆E (color difference) of dried MKG are affected by
pressure. This can be noted, for example, in the analysis of the color difference influenced by pressure
(p = 0.07176 < 0.1 and F = 3.01767 > Fcrit = 2.605525), whereas the other three parameters were not
significant (p < 0.1 and F > Fcrit = 2.605525 and p < 0.05 and F > Fcrit = 3.490295) for this response
variable. This change is seen in R′.

The equation for color difference (∆E) of the dried product using the multiple regression analysis is

∆E = 16.2 + 11.02X1 + 18.15X2 − 21.51X3 −7.27X4 + 0.61X2
1 − 5.77X1X2 − 1.23X1X3

+ 1.590X1X4 −0.257X2
2 − 0.07X2X3 − 1.45X2X4 + 3.0X2

3 + 1.754X3X4
(3)

The R2 for Equation (3) is 0.9666. Figure 3 provides the relationship among color difference (∆E),
freezing time, and pressure at freezing temperature −20 ◦C and lyophilization time of 5 h. At the
same freezing time, the predicted color difference decreases with pressure increase until a pressure of
0.6 mbar, and remains constant up to a pressure of 0.8. The minimum ∆E is obtained with freezing
time from 3 h. The coefficient of pressure, 21.51, indicates that the pressure plays the most important
role in affecting color difference of the dried MKG.
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Table 6. Data analysis of MKG color difference (∆E).

Data Analysis for ∆E Factor

Ft (h) Fte (◦C) P (mbar) Lt (h)

L*

KL1 172.98 168.72 169.84 162.28
KL2 160.74 157.35 155.75 174.95
KL3 156.69 166.28 162.37 151.07
KL4 172.04 170.08 174.47 174.15
R′L 16.29 12.73 18.72 23.08
F 0.91679 0.40606 0.94622 2.23689
p Value 0.46201 0.75143 0.44902 0.13646

a*

Ka1 −4.67 −4.90 −4.78 −5.24
Ka2 −5.52 −4.68 −5.25 −4.91
Ka3 −4.61 −5.08 −4.50 −4.63
Ka4 −5.20 −5.34 −5.47 −5.22
R′a 0.91 0.66 0.97 0.61
F 1.28314 0.44649 1.30616 0.48155
p Value 0.32468 0.72427 0.31764 0.70120

b*

Kb1 25.90 24.71 24.96 24.51
Kb2 23.11 23.95 21.84 25.83
Kb3 22.51 24.64 24.45 21.24
Kb4 25.71 23.93 25.97 25.65
R′b 3.39 0.78 4.13 4.59
F 0.94204 0.04580 0.96255 1.57480
p Value 0.45084 0.98634 0.44197 0.24680

∆E

K∆E1 40.20 47.77 56.92 41.56
K∆E2 31.78 33.14 23.30 52.95
K∆E3 51.38 41.80 38.41 27.25
K∆E4 36.47 37.11 41.20 38.07
R′∆E 19.61 14.63 33.62 25.71
F 0.75283 0.39523 3.01767 1.36381
p Value 0.54157 0.75880 0.07176 0.30074

MKG: Mexican kefir grains; KL1: lightness level 1; KL2: lightness level 2; KL3: lightness level 3; KL4: lightness level 4;
R′L: lightness changing range; Ka1: redness level 1; Ka2: redness level 2; Ka3: redness level 3; Ka4: redness level 4; R′a :
redness changing range; Kb1: yellowness level 1; Kb2: yellowness level 2; Kb3: yellowness level 3; Kb4: yellowness
level 4; R′b : yellowness changing range; K∆E1: color difference level 1; K∆E2: color difference level 2; K∆E3: color
difference level 3; K∆E4: color difference level 4; R′∆E: color difference changing range.
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Table 4 compares the experimental ∆E of dried MKG with the predicted ∆E. The lowest ∆E
was 3.80 (Experiment 15) at freezing time 9 h, freezing temperature −60 ◦C, pressure 0.4 mbar,
and lyophilization time 20 h. The maximum ∆E was 22.17 (Experiment 11). Figure 4 shows visual
color images of MKG; the color of dried MKG with the lowest ∆E (Experiment 15) was very close to
that of the fresh sample.
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3.4. Survival of Probiotic Microorganism of Dried Mexican Kefir Grains

The survival rate of microorganisms after freeze-drying requires adequate stabilization processes
to avoid bacterial damage or death [47]. This is the most important requirement for a product to
be considered probiotic. However, the survival rate of microorganisms easily decreases due to the
stress to which bacteria are subjected during freeze-drying. For a food to be considered probiotic,
it must contain at least 106 colony forming units per gram (6 log cfu/g) of food. Counts above 8 log
(cfu/g) have been suggested to ensure probiotic effects [48–50]. In this research, the survival rate of
microorganisms was investigated under different experimental drying conditions. In this analysis,
the initial value of survival of probiotic microorganisms in the fresh sample of MKG was 9.05 and log
(cfu/g) for LAB and 8.90 log (cfu/g) for yeasts.

The results in Table 7 show that R′ is the maximum difference among the four levels for each
factor. The max changing range (6.57) of pressure was the largest among the range of the four variables.
This indicates that pressure plays an important role in affecting the survival LAB of dried MKG.
The range (5.60) for freezing time was larger than those of the remaining two factors. This shows that
freezing time is another important factor that affects the survival LAB in the dried product.

Table 7. Data analysis of dried MKG log (cfu/g) of lactic acid bacteria (LAB).

Data Analysis for
Log (cfu/g) of LAB

Factors

Ft (h) Fte (◦C) P (mbar) Lt (h)

K1 26.19 27.57 27.67 29.37
K2 31.79 30.27 28.36 30.17
K3 30.20 28.54 33.16 29.76
K4 27.61 29.40 26.59 26.48
R′ 5.60 2.69 6.57 3.69
F 0.81998 0.14854 1.16898 0.32509
p Value 0.50748 0.92864 0.36213 0.80726

Table 7 shows that although the four factors do not have a significant influence (p < 0.1 and
F < Fcrit = 2.605525, neither p > 0.05 nor F < Fcrit = 3.490295) on the survival log (cfu/g) of yeasts of
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dried MKG, the greatest effect was observed in R′, as this variable was affected by the pressure and
freezing time.

The equation for log (cfu/g) LAB of the dried MKG using multiple regression analysis is

Log (cfu/g) of LAB = 0.06 − 2.88X1+ 3.09X2+ 2.332X3+ 3.52X4+ 0.504X2
1 − 0.157X1X4

+ 0.103X2
2 − 0.510X2X3 − 0.907907X2X4 − 0.433X3X4

(4)

In this equation, R2 is 0.8851. The relationship between the log (cfu/g) LAB and pressure was
obtained using Equation (4) when freezing temperature and lyophilization time were maintained at
−20 ◦C and 5 h, respectively. The predicted log (cfu/g) of LAB is shown in Figure 5. The log (cfu/g) of
LAB increases with increasing pressure increases and decreasing freezing time. The maximum value
was obtained for a pressure of 1 mbar and 3 h freezing time. With higher pressures, the survival of
LAB increases more than two logarithmic cycles.
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Figure 5. Predicted log (cfu/g) of LAB of dried MKG at different freezing times and pressures.

The experimental and predicted log (cfu/g) of LAB values of dried MKG are shown in Table 4.
The highest value was 8.64 log (cfu/g) of LAB, less than 0.5 cycle logarithmic of the fresh sample before
drying (9.05 log (cfu/g) of LAB). This was obtained at a freezing time 7 h, freezing temperature of
−20 ◦C, pressure of 0.6 mbar, and lyophilization time of 20 h. The relative error difference between the
experimental and predicted log (cfu/g) of LAB was 7.56%. Freeze-drying had a negative effect on the
survival rate of 4.53%. This result is different from other researchers who reported a negative effect of
7% on the viability of LAB without the use of cryoprotectants during the freeze-drying process [51,52].

From the results presented in Table 8 for yeasts show that R′ is the maximum difference among
the four levels for each factor. The max changing range (9.83) of pressure was the largest among the
ranges of the four variables. This indicates that pressure plays an important role in yeast survival in
dried MKG. The range of 8.83 for freezing time was larger than those of the remaining two factors.
This shows that freezing time is another important factor affecting the survival of the yeasts in the
dried product.
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Table 8. Data analysis of dried MKG log (cfu/g) of yeasts.

Data Analysis for Log
(cfu/g) of Yeasts

Factor

Ft (h) Fte (◦C) P (mbar) Lt (h)

K1 24.97 26.63 28.94 25.02
K2 33.79 28.25 28.51 21.75
K3 30.78 30.46 34.16 31.48
K4 26.40 30.61 24.33 28.33
R′ 8.83 3.98 9.83 6.58
F 2.23175 0.34546 2.19270 0.53571
p Value 0.13706 0.79307 0.14177 0.66659

Table 8 shows that although the four factors do not have a significant influence (p > 0.1 and
F < Fcrit = 2.605525, neither p > 0.05 nor F < Fcrit = 3.490295) on the survival log (cfu/g) of yeasts of
dried MKG, the greatest effect can be observed in R′, where this variable is affected by the pressure
and freezing time.

Multiple regression analysis for log (cfu/g) of yeasts is as follows

Log (cfu/g) of yeasts = 2.52 + 3.35X1 − 0.71X2 + 3.90X3 + 2.57X4 − 0.32X2
1 + 2.77X1X2 − 0.656X1X3

− 0.348X1X4 + 0.080X2
2 + 0.150X2X3 − 0.42X2X4 − 0.375X2

3 − 0.343X3X4
(5)

In this equation, the R2 was 0.8017. The log (cfu/g) of yeast determined using Equation (5) is
shown in Figure 6. The freezing temperature was set to −20 ◦C and lyophilization time to 5 h. Figure 6
shows that the maximum predicted survival of the yeast is reached when the pressure increases to
0.8 mbar and freezing temperature is 3 h. With higher values of pressure and a higher freezing time of
3 h, the survival of the yeast decreases more than two logarithmic cycles.
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The experimental and predicted log (cfu/g) values of yeasts of dried MKG are shown in Table 4.
The highest value of 8.67 log (cfu/g) for yeasts is less than 0.5 cycle logarithmic of the fresh sample
before drying (8.90 log (cfu/g) of yeasts). This was obtained at freezing times of 3 to 7 h, freezing
temperatures of −20 to −60 ◦C, pressure of 0.6 mbar, and lyophilization time of 15 to 20 h. The relative
error differences between the experimental and predicted log (cfu/g) of yeasts were 14.24 and 7.36%
for tests No. 3 and 9, respectively. Freeze-drying had a negative effect on the survival rate of 2.60%;
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this result is similar to that reported in other studies, which also reported a negative effect, even with
the use of cryoprotectants [53,54].

3.5. Optimization of the Freeze-Drying Parameters for Dried Mexican Kefir Grains

Because the residual moisture, water activity, and survival of probiotic bacteria are the most
important factors for dried MKG, optimization of the freeze-drying considers these three factors,
with the goal of obtained values for % RMC below 6, aw below 0.60, and at least 106 colony forming
units per gram (6 log cfu/g) of probiotic microorganism. The optimum process for desirable moisture,
water activity, and survival of probiotic microorganisms is shown in Table 9. Optimal levels for those
parameters are the same: freezing time of 3 h, freezing temperature of −20 ◦C, pressure 0.6 mbar,
and lyophilization time of 15 h. The residual moisture in the dried product needs to be below 6% [55].
In this study, a residual moisture content in dried MKG of less than 6% was obtained. As shown
in Table 4, the pressure of 0.6 mbar was chosen as optimal to prevent probiotic bacterial loss. At a
pressure of 0.2 mbar, we observed a lower survival in LAB and yeasts, with the lowest value being
4.99 log (cfu/g) for LAB and 5.22 log (cfu/g) for yeasts. Therefore, the pressure of 0.6 mbar was
selected as optimal. Under these optimal conditions, the properties of dried MKG were: residual
moisture 5.03%, aw 0.167, ∆E 7.79, LAB 8.5 log (cfu/g), and yeasts 8.6 log (cfu/g).

Table 9. Optimal factors for each properties of dried MKG.

Property of Dried MKG Factor

Ft (h) Fte (◦C) P (mbar) Lt (h)

RMC Level 1 Level 1 Level 3 Level 3
aw Level 1 Level 1 Level 3 Level 3
Log (cfu/g) of LAB Level 1 Level 1 Level 3 Level 3
Log (cfu/g) of yeasts Level 1 Level 1 Level 3 Level 3

4. Conclusions

We freeze-dried Mexican kefir grains in a compact freeze-dryer. The L16 orthogonal experimental
design was applied to find the optimal operating conditions for obtaining a product suitable for
the market. The residual moisture and water activity were mainly influenced by the operating
lyophilization time (p < 0.05). These response variables decreased when the lyophilization time
decreased. The color difference and survival rate of probiotic bacteria were significantly affected by
pressure. The optimal conditions for dried MKG freeze-drying are a freezing time of 3 h, a freezing
temperature of −20 ◦C, a pressure of 0.6 mbar, and a lyophilization time of 15 h. Under these optimal
conditions, the properties of dried MKG were a residual moisture of 5.03%, an aw of 0.167, an ∆E of
7.79, and a survival rate of 8.5 log (cfu/g) for LAB and 8.6 log (cfu/g) for yeasts, which are suitable
physicochemical and microbiological characteristics for a functional and probiotic food on the market.
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