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Abstract: Implementation of energy-efficient train driving strategy is an effective method to save
train traction energy consumption, which has attracted much attention from both researchers and
practitioners in recent years. Reducing the unnecessary braking during the journey and increasing
the coasting distance are efficient to save energy in urban rail transit systems. In the steep downhill
segment, the train speed will continue to increase without applying traction due to the ramp force.
A high initial speed before stepping into the steep downhill segment will bring partial braking
to prevent trains from overspeeding. Optimization of the driving strategy of urban rail trains
can avoid the partial braking such that the potential energy is efficiently used and the traction
energy is reduced. This paper presents an energy-efficient driving strategy optimization model
for the segment with the steep downhill slopes. A numerical method is proposed to calculate the
corresponding energy-efficient driving strategy of trains. Specifically, the steep downhill segment
in the line is identified firstly for a given line and the solution space with different scenarios is
analyzed. With the given cruising speed, a primary driving strategy is obtained, based on which
the local driving strategy in the steep slope segment is optimized by replacing the cruising regime
with coasting regime. Then, the adaptive gradient descent method is adopted to solve the optimal
cruising speed corresponding to the minimum traction energy consumption of the train. Some
case studies were conducted and the effectiveness of the algorithm was verified by comparing
the energy-saving performance with the classical energy-efficient driving strategy of “Maximum
traction–Cruising–Coasting–Maximum braking”.

Keywords: rail transit; train control; energy-efficient driving strategy; steep downhill segment;
local optimization

1. Introduction

Owing to the advantages in safety, high capacity and efficiency, urban rail transit has rapidly
developed worldwide in recent years. However, with the massive construction and short headway,
the energy consumption of urban rail systems has increased dramatically. Consequently, how to
reduce the total energy consumption has become an important and urgent concern for a sustainable
development of rail transit systems. The traction energy consumption of trains accounts for about 53%
of the total energy consumption in urban rail transit system [1]. Thus, the total energy consumption
of the system can be effectively decreased if the train traction energy consumption is reduced,
which would also contribute to the reduction of operational cost and carbon emission [2].
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Implementation of energy-efficient train driving strategy in the automatic train operation (ATO)
system contributes greatly to reducing the traction energy consumption. In recent years, many scholars
have conducted a lot of research on the energy-efficient train control problem, which is mainly divided
into continuous control models and discrete control models.

In 1980, Milroy [3] developed an approach to optimize train speed trajectory based on the
continuous train control model, which established the theoretical foundation of the optimal train
control problem. Afterwards, the problem with constant gradients was analyzed and the Pontryagin
maximum principle was applied to obtain the optimal speed trajectory by Asnis [4]. Howlett [5,6]
formulated a finite dimensional constrained optimization model and used the maximum principle to
solve the energy-efficient train driving regimes and the corresponding switching points. Considering
varying gradients and speed limits, Khmelnitsky [7] built a continuous train driving model, in which
the kinetic energy was considered as the state variable. Liu [8] proposed an analytic algorithm to solve
the optimal switching points among different regimes by applying the Pontryagin maximum principle.
Taking variable traction efficiency into consideration, Su [9,10] developed a numerical algorithm based
on an energy consumption allocation method, in which the energy-efficient driving strategy among
multi-stations was calculated by optimizing the multi-station running time distribution. Except for the
analytical and numerical algorithms, many scholars also used intelligent algorithms based on modern
heuristic search methods to study the energy-efficient driving strategy of trains. To reduce traction
energy consumption by making full use of coasting, Chang and Sim [11] applied the genetic algorithm
to optimize the position of the coast starting points in the coast control table. Ma [12] used real-coded
genetic algorithm to automatically calculate the optimal coasting points in the energy-efficient driving
strategy of subway trains. Jin [13] used the neural network technology and genetic algorithm to
study the energy-efficient driving strategy of trains on the undulating track, which could adapt
to different line conditions and meet the requirements of real-time optimization. Ke et al. [14,15]
presented a method of designing block-layout between successive stations, in which the Max-Min
ant colony algorithm was used to optimize the train speed curve for a significant improvement in
computational efficiency.

In practice, the control output of the diesel electric locomotives used for the heavy freight is
discrete. Each different handle position corresponds to a fixed fuel supply rate and output power,
thereby determining that the traction cannot change continuously. Therefore, many scholars have
developed discrete train control models for this feature [16]. In the 1990s, Cheng and Howlett [17,18]
studied the energy-efficient driving problem with a constant gradient and speed limit, and proved
that the energy-efficient driving regimes of discrete control model trains included “maximum traction,
coasting, and maximum braking”. Then, Pudney and Howlett [19] took varying speed limits into
consideration, and proved that the train must run at limits on the segments where the speed limits
were lower than the expected cruising speed. Besides, Howlett and Cheng [20] considered the
problem of continuously changing gradients. They solved critical equations of switching points in
different operating regimes by using Lagrange Function and Kahn–Tucker Conditions to find an
optimal type of driving strategy. Importantly, Howlett [21] proved that an arbitrary continuous
energy-efficient operating sequence can be approximated by discrete “traction–coasting” pairs,
establishing a connection between continuous control and discrete control models. In addition,
considering non-constant gradients, curve and speed limits, Han [22] used genetic algorithms to
optimize the driving strategy of the train ATO system. Ding [23] also designed a genetic algorithm
to find the optimal solution of the energy-efficient train operation problem. In 2014, based on a real
ATO system, Dominguez [24] introduced a Multi-Objective Particle Swarm Optimization algorithm to
obtain the consumption/time Pareto front, which solved the optimization problem more efficiently
than the previous algorithms.

It is concluded from the above studies that the classical energy-efficient driving strategy consists of
maximum traction, cruising, coasting, and maximum braking as well as their corresponding switching
points [2]. However, if there are steep slope segments in the route, the position of the switching points
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will be affected. For an individual steep uphill segment, Howlett [25] introduced an analytical method
to obtain the optimal switching points. Furthermore, Albrecht [26–28] proved that the optimal driving
strategy always existed and was unique via a perturbation analysis. Considering the regenerative
braking in the train model, Ko [29,30] adopted dynamic programming to optimize the train driving
strategy with the confined state space and irregular lattice for trains running on the route containing a
steep downhill. For a steep downhill segment, if entering the ramp at a relatively high speed, the train
would probably brake on the segment to avoid exceeding the speed limit, which increases the global
energy consumption. If the entering speed is relatively low, the trip time would be longer and the
operational efficiency and service quality would consequently be reduced. Hence, to make full use
of the potential energy of the steep downhill segment, this paper proposes an approach to solving
the energy-efficient control problem for trains running in the steep downhill segment based on the
classical energy-efficient driving strategy.

The main contributions of this paper are stated as follows:

1. Considering the route with a steep downhill, the solution space for a given cruising speed is
analyzed to obtain the classical energy-efficient driving strategy for a given trip time.

2. A local optimization approach is developed to reduce the traction energy consumption for trains
running in the steep downhill segment by applying the dichotomization algorithm.

3. A global optimization is achieved with the utilization of the adaptive gradient descent
method to calculate the optimal cruising speed, which corresponds to the minimum traction
energy consumption.

The remainder of the paper is organized as follows. Section 2 describes the optimized problem
including the formulation of an energy-efficient train control model as well as the definition of the
steep downhill. In Section 3, a numerical method is designed to calculate the optimal driving strategy
for trains running in a steep downhill segment. In Section 4, simulations with actual data of Beijing
Yizhuang line is presented to illustrate the effectiveness of the proposed approach, followed by the
conclusion in Section 5.

2. Problem Description

2.1. Assumptions

To simplify the train model, we make the following assumptions:

• The train is considered as a mass point when running on the track, and its mass is fixed.
• The slope of the centroid of the train represents the gradient of the entire vehicle.
• The traction efficiency is assumed to be constant, and the mechanical energy is used as the traction

energy during the trip.
• The regenerative braking is not considered in the train model, because we only consider

optimizing the driving strategy of a single train in this work.

2.2. Model Formulation

The train driving strategy, which is intuitively reflected with a train running speed curve, is
the combination of an operating control sequence and the corresponding switching points among
different control regimes. With the given planned trip time, line conditions, vehicle performances, etc.,
a set of train driving strategies between two successive stations satisfy the operation constraints [31]
(see Figure 1).

Although the above driving strategies can make the train arrive at the target station on a punctual
basis, the accelerating distances and positions are not the same between different driving strategies,
resulting in different traction energy consumption for the interstation. The purpose of energy-efficient
driving is to find a driving strategy with minimum traction energy consumption among these
feasible strategies.
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Figure 1. Different driving strategies of trains between successive stations.

The objective function of the energy-efficient train control problem can be generally written as [8]

min E =
∫ S

0
u f · F(v)dx. (1)

where E represents the traction energy consumption; u f is the relative traction force; F is the maximum
traction force; v is the train speed; and x and S are the train position and the trip distance, respectively.

For a mass-point train, the equation of motion can be described as [8]
dv
dt

=
u f F(v)− ubB(v)− Rb(v)− Rg(x)− Rc(x)

mρ
,

dx
dt

= v,

(2)

where m is the train mass; ρ is the rotating mass factor; ub and B denote the relative braking force and
maximum braking force, respectively; Rb(v) is the basic resistance including rolling resistance and air
resistance; and Rg(x) and Rc(x) represent the grade resistance and curve resistance, respectively.

The traction force and the braking force should be bounded by the maximum traction and braking
force. Thus, we have

u f ∈ [0, 1], ub ∈ [0, 1]. (3)

The train speed should satisfy the maximum train speed and trip time constraints:

0 ≤ v(x) ≤ Vmax(x). (4)

where Vmax is the maximum allowable train speed with respect to x.
To arrive at the next station on time and stop precisely, the boundary conditions of the train

movement are described as follows.

v(0) = vstart = 0, x(0) = xstart = 0,

v(T) = vend = 0, x(T) = xend = S.
(5)

where T is the planned trip time given by the timetable.
Based on Equations (1)–(5), the optimization model is formulated to minimize the energy

consumption during the trip.
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2.3. Definition of Steep Downhill

The steep downhill is a piece of route where the train speed will increase without applying
traction force (see Figure 2). In the steep downhill segment, the gradient force is larger than the sum of
the curve resistance and line resistance.

Rg(x)− (Rc(x) + Rb(vc)) > 0, (6)

In Equation (6), Rb(vc) can be described as follows [32]

Rb(vc) = m(arv2
c + brvc + cr), (7)

Rg(x) is calculated by
Rg(x) = mg sin α(x), (8)

and the curve resistance can be described by empirical formulas [33]

Rc(x) = fc(r(x)) =


m

6.3
r(x)− 55

, r(x) ≥ 300m

m
4.91

r(x)− 30
, r(x) < 300m

, (9)

where ar, br, and cr are non-negative constants, which can be identified from the historical data. g,
α(x) and r(x) are the gravitational acceleration, the slope and the radius of curvature, respectively.
With the estimate train speed for a fixed position, the basic and curve resistances can be calculated.
By comparing with the gradient force, the steep downhill slope can be easily identified.

b c

vc vc

Figure 2. Train speed curve in a steep downhill segment.

3. Solution Approach

Given a specific planned trip time, the proposed solution algorithm starts from calculating the
classical energy-efficient driving strategy with an initial cruising speed. With the obtained driving
strategy, a local optimization approach is then developed to optimize the driving strategy in the steep
downhill segment. Furthermore, an adaptive gradient method is applied to adjust the cruising speed
such that the traction energy consumption during the trip is minimized.

The algorithm for solving the energy-efficient driving strategies of trains with considering the
steep downhill segment is mainly divided into the following four parts and the overall framework of
the proposed algorithm is shown in Figure 3.

• Initialization: Load line data and vehicle data and set a planned trip time T.
• Solution to classical energy-efficient driving strategy: Initialize a cruising speed vc, identify steep

segment [b, c] and solve classical energy-efficient driving strategy.
• Local optimization on [b, c]: Judge the driving regime of the train in the steep downhill; if the

train is cruising in this segment, then optimize the local driving strategy of the segment.
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• Optimal strategy search with adaptive gradient method: Calculate energy consumption and use
the gradient method to solve the cruising speed corresponding to the minimum traction energy
consumption, and then obtain the optimal energy-efficient driving strategy.

Set a trip 
time T

Initialize a 
cruising speed  vc

Solve classical e-e 
driving strategy

If cruise 
on (b,c) 

Optimize local 
strategy on (b,c) 

Y

N

Calculate energy 
consumption E

|▽f(vc)|<ε?

N Output the 
optimal strategy 

with  Emin

Y

Identify steep 
section (b,c)

Load vehicle data 
and line data

Solution to classical energy-
efficient driving strategy 

Local optimi-
zation on (b,c)

Optimal strategy search 
with gradient method

Initialization0

1

2

3

Figure 3. The structure of the proposed optimization approach.

3.1. Calculation of Classical Energy-Efficient Driving Strategy

3.1.1. Analysis of Energy-Efficient Driving Regimes

In this subsection, the energy-efficient driving regimes are analyzed by applying the Pontryagin
maximum principle, according to which the following Hamiltonian function should be maximized
with optimal control sequences [8,10]

H =
η1(x)
mρv

× (u f F− ubB− Rb − Rg − Rc) + η2(x)v− u f F. (10)

where η1 and η2 and the complementary slackness condition M(x) should satisfy the following
differential equations:

dv
dt

=
dH
dη1

,
dx
dt

=
dH
dη2

,

dM
dx

(v−Vmax) =
dH
dη1

,
dM
dx
≥ 0

(11)

Equation (10) can be rewritten as

H = (
η1(x)
mρv

− 1)u f F− η1(x)
mρv

(ubB + Rb + Rg + Rc) + η2(x)v. (12)

Thus, the four energy-efficient driving regimes are derived by maximizing Equation (12) in the
following cases with respect to the control variables u f and ub [10]:

• η1 > mρv: u f should be 1 and ub is 0, which implies the Maximum traction regime.
• η1 = mρv: ub should be 0 and u f may vary in (0,1), which indicates the Partial traction phase;

η1 = 0: u f should be 0, and ub may vary in (0,1), which suggests the Partial braking phase.
These two phases only exist for the Cruising regime by analyzing Equation (11).

• 0 < η1 < mρv: ub should be 1 and u f is 0, which implies the Maximum braking regime.
• η1 < 0: Both u f and ub should be 0, which suggests the Coasting regime.
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3.1.2. Solution Space Analysis

For an individual given cruising speed, the steep downhill segment [b, c] in the line is identified
by Equation (6). Then, four critical states of the driving strategy, as shown in Figure 4, and the
corresponding running time t1, t2, t3 and t4 are calculated. ti is explained as follows:

• t1 denotes the trip time of the driving strategy that the train begins to coast as soon as it reaches
the cruising speed at the position s1.

• t2 denotes the trip time of the driving strategy that the train begins to coast at the initial position
s2 of the steep slope.

• t3 denotes the trip time of the driving strategy that the train begins to coast at the final position s3

of the steep slope.
• t4 denotes the trip time of the driving strategy that the train begins to coast at the position s4

when the train speed reaches the braking profile.

��
��

�� ��

Figure 4. Driving strategies for the train, respectively, coasting from s1, s2, and s3,s4.

By the analysis, the length and position of the steep slope differ in the different steep slope lines,
which leads to five typical scenarios of the running time t1, t2, t3 and t4 (see Figure 5).

t4
t2

t3
t1

s1 s2

t (
s)

Position (km)s3 s4 s1 s2

t (
s)

Position (km)s3 s4

t1
t2

t3
t4

s1 s2

t (
s)

Position (km)s3 s4

t4
t2

t1
t3

(a)
s1 s2

t (
s)

Position (km)s3 s4

t4
t2

t1t3

(b)

(d) (e)

s1 s2

t (
s)

Position (km)s3 s4

t4
t2

t3
t1

(c)

Figure 5. Five typical scenarios of the running time t1, t2, t3 and t4. (a) t1 > t3 > t2 > t4; (b) t1 > t3 >

t4 > t2; (c): t3 > t1 > t2 > t4; (d) t3 > t1 > t4 > t2; (e) t3 > t4 > t1 > t2.
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• Scenario 1: t1 > t3 > t2 > t4 (Figure 5a). This situation always happens for the scenario that the
steep downhill is relatively short and exists in the middle of the line. For the segment [s1, s2],
when the train begins to coast later, the trip time with a higher average coasting speed will be
shorter, i.e., t1 > t2. Coasting from the position s2 makes the train speed increase due to the steep
slope such that the speed in the steep slope and the following segment is higher, which indicates
t3 > t2. In addition, a small steep slope has a small effect on the average train speed. Keeping the
cruising speed on the segment [s1, s3] can achieve a short trip time, i.e., t1 > t3. The train speed
will decrease without traction and steep slopes after s3. Hence, we have t3 > t4. In conclusion, t1,
t2, t3 and t4 will satisfy t1 > t3 > t2 > t4.

• Scenario 2: t1 > t3 > t4 > t2 (Figure 5b). This situation generally happens for the scenario that
the steep downhill exists in the second half of the line. Differing from the first situation, due to
the steep slope exists in the second half, coasting from the position s2 makes the average train
speed higher than the cruising speed in the segment [s2, s4], i.e., t4 > t2. As a result, t1, t2, t3 and
t4 will satisfy t1 > t3 > t4 > t2.

• Scenario 3: t3 > t1 > t2 > t4 (Figure 5c). This situation always happens when the steep downhill
is relatively short and exists in the first half of the line. After accelerating to the cruising speed,
the train immediately enters the steep downhill segment, and the speed rises to exceed the
cruising speed such that the average running speed of the train in the segment [s1, s3] is greater
than the cruising speed, i.e., t3 > t1. Thus, t1, t2, t3 and t4 will satisfy t3 > t1 > t2 > t4.

• Scenario 4: t3 > t1 > t4 > t2 (Figure 5d). This situation exists when the steep downhill is
relatively long and exists in the first half of the line. Because a longer steep slope has a greater
effect on the average train speed, coasting from the position s2 makes the average train speed
higher than the cruising speed for the segment [s2, s4], i.e., t4 > t2. Therefore, t1, t2, t3 and t4 will
satisfy t3 > t1 > t4 > t2.

• Scenario 5: t3 > t4 > t1 > t2 (Figure 5e). This situation happens when the relatively long
steep downhill exists in the first half of the line, and there is a downward slope, but not a steep
downhill, in the segment [s1, s2]. Compared with Scenario 4, a downward slope in the segment
[s1, s2] brings a higher initial speed before stepping into the steep downhill, hence, the average
train speed will be higher than the cruising speed in the segment [s1, s4], that is, the trip time will
be shorter (t4 > t1). Consequently, t1, t2, t3 and t4 will satisfy t3 > t4 > t1 > t2.

3.1.3. Coasting Position Calculation

As shown in Figure 5, the running time t in each section is monotonously increasing or decreasing.
According to the planned trip time T and the relationships among t1, t2, t3, t4, the distribution of the
coasting position is firstly determined in Table 1.

Table 1. Five scenarios of t1, t2, t3, and t4 and distribution of the coasting point s.

t1 > t3 > t2 > t4 t1 > t3 > t4 > t2 t3 > t1 > t2 > t4 t3 > t1 > t4 > t2 t3 > t4 > t1 > t2

t2 > T > t4 [s3, s4] t4 > T > t2 [s1, s2] t2 > T > t4 [s3, s4] t4 > T > t2 [s1, s2] t1 > T > t2 [s1, s2]

t3 > T > t2 [s1, s2] t3 > T > t4 [s1, s2] t1 > T > t2 [s1, s2] t1 > T > t4 [s1, s2] t4 > T > t1 -

t1 > T > t3 [s1, s2] t1 > T > t3 [s1, s2] t3 > T > t1 - t3 > T > t1 - t3 > T > t4 -

Taking the first scenario as an example, the detailed analysis process is described as the following:

• t2 > T > t4 or t1 > T > t3: In Figure 5a, the horizontal line from the ordinate T intersects
the curve in the figure at a unique point s ∈ [s3, s4] or s ∈ [s1, s2], which indicates the optimal
coasting position with the trip time T exists in the segment [s3, s4] or [s1, s2], and the solution is
unique in these two situations.



Processes 2019, 7, 77 9 of 17

• t3 > T > t2: There will be three solutions, which belong to [s1, s2], [s2, s3] and [s3, s4], respectively.
Due to the principle that, when the running times are the same, a longer coasting distance
contributes to a smaller traction energy consumption, the optimal coasting position should be
found in [s1, s2].

It is noted that cases such as t3 > T > t1 in Scenario 3 should be treated differently. As shown
in Figure 5c, if the planned trip time T satisfies t3 > T > t1, there will be two different solutions that
belong to [s2, s3] and [s3, s4], respectively. By applying the principle that a longer coasting distance leads
to a smaller traction energy consumption, the solution belonging to [s3, s4] is undesirable. Additionally,
if the train switches from cruising to coasting in position sc that belongs to [s2, s3], the potential energy
in the first half of the segment will be wasted (see Figure 6). Compared to the strategy that trains
begin to coast at the position s, the trip time is the same but the latter strategy will cost less energy
consumption, i.e., Esc > Es. Thus, the solution sc is also undesirable. In addition, though the strategy
with coasting from s is dropped as the speed of s is less than the current given cruising speed, it will be
found in another circumstance when the other cruising speed is given.

Position (km)

S
p

e
e
d

 (
k

m
/h

)

S scs2 s3

Figure 6. Driving strategies with coasting from s and sc, respectively.

Summarizing Sections 3.1.2 and 3.1.3, the starting point s of the coasting regime is found according
to the time of four critical states and the given trip time, and then a classical energy-efficient driving
strategy with a fixed cruising speed is obtained.

3.2. Local Optimization on Steep Downhill Segment

As shown in Figure 7, [b, c] is the steep downhill segment. If the train uses the cruising regime at
the segment [a, d] in the classical energy-efficient driving strategy, the speed profile is shown as the
horizontal dotted line and the running time in [a, d] is Thold. Specifically, the train may apply partial
traction at the segment [a, b] to maintain the cruising speed vc. The traction energy consumption at
such segment is E(a,b). The train applies partial braking at the segment [b, c] to maintain the train drive
at the cruising speed. The traction energy consumption at this segment is E(b,c) = 0. The regime at
segment [c, d] is the same as that at the segment [a, b], and the traction energy consumption is E(c,d).
Thus, before optimizing the driving strategy of steep downhill segment, the actual traction energy
consumption at the segment [a, d] can be expressed as

E(a,d) = E(a,b) + E(c,d). (13)

Meeting the trip time constraint, the proposed local optimal driving strategy in the steep downhill
is to switch the regime from cruising to coasting at point x = a before the steep segment and from
coasting to cruising at point x = d after passing by the steep segment. The train coasts during the
segment [a, d] and the coasting time is Tcoast. In this way, the potential energy of the steep downhill
segment can be fully used. Furthermore, substituting the cruising with the coasting consumes no
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traction energy, i.e., E′(a,d) = 0. Hence, the traction energy consumed by the optimized energy-efficient
driving strategy is obviously reduced compared to the classical driving strategy [2], i.e., we have the
following inequality:

E(a,d) > E′(a,d). (14)

b c

vc vc

a d

Figure 7. Local optimization at the steep downhill segment.

The trip time for the segment [a, d] is continuous with respect to the coasting position s. The “s∗”
must exist, which satisfies

Thold = Tcoast. (15)

Equations (14) and (15) indicate that the effect of local optimization in the steep slope segment
is realized with the same trip time. To obtain the optimal coasting position s∗, the dichotomization
method is used in this paper.

Specifically, we define a time function

T(sa) = Thold(sa)− Tcoast(sa), (16)

then the purpose of the dichotomization algorithm for calculating the coasting position is to find the
position s∗ that satisfies

s∗ = arg
sa

(T(sa) = 0). (17)

The specific steps of the dichotomization algorithm can be described as Algorithm 1.

Algorithm 1: The dichotomization algorithm for calculating the optimal coasting position.

Step 1. Give a search segment [xs, xe] ( initially setting xs = s1 and xe = s2 ) and an error ξ, and verify
T(xs) · T(xe) < 0;

Step 2. Calculate the midpoint xm of the segment [xs, xe] and its time function T(xm);
Step 3. If T(xs) · T(xm) < 0, then turn to step (4); otherwise, turn to step (5);
Step 4. If xm − xs < ξ, then output the coasting point s∗ = xm; otherwise, return to step (2) with setting

xe = xm;
Step 5. If xe − xm < ξ, then output the coasting point s∗ = xm; otherwise, return to step (2) with setting

xs = xm.

3.3. Calculation of the Optimal Cruising Speed With Adaptive Gradient Descent Method

The above subsections have described how to obtain an energy-efficient driving strategy for a fixed
cruising speed. In this subsection, the adaptive gradient descent (AGD) method is applied to solve
the optimal cruising speed corresponding to the minimum traction energy consumption of the trip.
By dynamically incorporating knowledge of the geometry of the gradient in earlier iterations, AGD is
able to perform informative gradient-based search, which ensures more robust performance [34].
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The objective of gradient search is to find the optimal cruising speed

v∗c = arg min
vc

E(vk
c). (18)

The specific solution to the strategy search problem is described in Algorithm 2.

Algorithm 2: The ADG algorithm for calculating the optimal cruising speed.

Step 1. Give a cruising speed v0
c ∈ [vmin

c , vmax
c ], set the allowable error ε, the number of iterations k = 0 and

initialize a step size parameter λ0;
Step 2. Calculate the traction energy consumption Ek = E(vk

c) and the gradient gk = ∇E(vk
c) with vk

c ;
Step 3. Take the negative gradient direction as the search direction dk = −gk, and determine the step size λk

by λk = λ√
k
∑

i=0
g2

i

∗ gk.

Step 4. Search the next cruising speed vk+1
c = vk

c + λkdk, and calculate Ek+1 = E(vk+1
c ) and gk+1 = ∇E(vk+1

c ).
Step 5. Determine whether the termination condition |Ek+1 − Ek| ≤ ε is satisfied. If yes, then output the opti-

mal strategy with v∗c . Otherwise, set k = k + 1, and return to step (2).

4. Simulation Results

In this Section, we present some simulations to illustrate the effectiveness of the proposed
optimization approach. In Case 1, a case study based on the practical data of Yizhuang line was
conducted and a comparison of energy efficiency was derived between the two algorithms, i.e., the
proposed and the classical algorithms. In Case 2, the route was gently modified to verify the availability
of the proposed approach in the different situations shown in Figure 5.

4.1. Case 1

In this case, we chose the interval from Jinghai to Ciqu as an example. The distance between
Jinghai and Ciqu stations is 2086 m and the speed limit of the whole segment is 80 km/h. The gradient
information is shown in Table 2. The vehicle data of Beijing Yizhuang rail transit line were used for
simulations. Characteristics of the traction force F(v), the braking force B(v) and the basic resistance
Rb(v) can be found in [10].

Table 2. Gradient information between Jinghai and Ciqu.

Segments (m) Gradients (‰)

0–19 −1.4006
20–339 0

340–689 −15.6250
690–1389 −24.3900

1390–1629 3.0030
1630–1979 −10.1010
1980–2086 −2

For the cruising speed ranging 65–78 km/h, the segment from 690 m to 1389 m was identified as
the steep downhill segment according to Equation (6).

When the planned trip time T was set to be 160 s, the energy-efficient driving strategies calculated
with the classical algorithm and the proposed approach are shown in Figure 8. As shown in Figure 8a,
the cruising speed of the classical energy-efficient driving strategy is 69 km/h and the traction energy
consumption is 16.56 kW·h.
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Additionally, Figure 8b shows that the optimal cruising speed solved by the proposed approach is
72 km/h and the traction energy consumption is reduced to 14.79 kW·h. It is worth noting that there is
no unnecessary braking on the steep slope segment in the optimized energy-efficient driving strategy,
which consists of maximum traction regime in [x′1, x′2], cruising regime in [x′2, x′3], coasting regime in
[x′3, x′4] and maximum braking in [x′4, x′5].
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Figure 8. Energy-efficient driving strategies calculated with: (a) the classical algorithm; and (b) the
proposed approach.

The energy-efficient driving strategies with the proposed approach and the classical
energy-efficient algorithm were solved for other trip times. Then, the energy consumption was
compared, as shown in Table 3.

Table 3. Energy efficiency comparison between the proposed and classical algorithm with different
trip times.

Trip Times

E (kW·h) Methods
Proposed Classical Proportion

155 s 17.52 19.27 9.08%
157 s 16.35 18.48 11.52%
160 s 14.79 16.56 10.69%
162 s 13.84 15.38 10.01%
164 s 13.00 15.03 13.50%

Average - - 10.96%

It is shown from the simulation results that the energy consumption is reduced by 10.96% in
average. In addition, the energy-efficient performance is low when the trip time is short. To reduce
the trip time, the train has to apply partial braking to keep a high speed, although the steep downhill
segment exists. As a result, the potential energy cannot be used efficiently and the energy reduction is
less in this situation.

The simulation was conducted on a personal desktop PC with processor speed of 3.6 GHz and
memory size of 16 GB. The average computation time of the proposed approach was about 0.12 s,
which can satisfy the requirement of real-time control.
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4.2. Case 2

As stated in Section 3.1, there are five kinds of lines, in which the length and position of the steep
downhill segment are different. In this case, the availability of the proposed method was tested with
the different line data (see Table 4).

Table 4. Gradient information of different lines.

Lines Segments (m) Gradients (‰) Lines Segments (m) Gradients (‰)

Line 1

0–120 0

Line 2

0–100 0
121–330 −3 101–380 3
331–650 3 381–660 −4
651–870 −26 661–1200 2.5

871–1240 −2 1201–1620 −28
1241–1560 3.5 1621–1880 3.5
1561–1980 −2.5 1881–1980 2

Line 3

0–100 0

Line 4

0–120 0
101–320 3.5 121–420 2
321–460 2 421–1400 −26
461–780 −26 1401–1650 3.5
781–970 3 1651–1800 −2

971–1320 −3 1801–2000 2
1321–1580 4 2001–2200 1.5
1581–1760 −2
1761–1980 2

Line 5

0–120 0
121–280 2
281–420 −4

421–1400 −26
1401–1650 3.5
1651–1800 −2
1801–2000 2

Taking Line 1 as an illustrative example, the planned trip time T was set to be 160 s. The optimal
cruising speed calculated by the proposed approach is 75 km/h, and the corresponding energy
consumption is 19.93 kW·h. The energy-efficient driving strategies solved by the classical (the black
line) and the proposed (the red line) approaches are shown in Figure 9. Obviously, tn the proposed
approach, the cruising regime is substituted with coasting on segment [x3, x4] within the same trip time.

Under this circumstance, the critical states are s1 = 426 m, s2 = 651 m, s3 = 870 m and
s4 = 1626 m; the running times are t1 = 167.61 s, t2 = 160.06 s, t3 = 160.98 s and t4 = 151.91 s; and the
coasting position s, i.e., x5 in Figure 9, is 914 m. It is clearly shown that, because T is set to be within the
time interval (t4, t2], the coasting point s is obtained from the interval (s3, s4], which is in accordance
with Scenario 1 described in Table 1, i.e., s ∈ (s3, s4].

Furthermore, when different line conditions and planned trip times are given, the results solved
by the proposed approach are shown in Tables 5 and 6. Table 5 shows the optimal cruising speed
and corresponding energy consumption of each scenario with the given planned trip time. Moreover,
the critical states and the corresponding running time of each scenario are given in Table 6. It can
be observed that the coasting point s of each scenario is obtained according to the planned trip time,
as analyzed in Section 3.1. For instance, the planned trip time T of Line 2 was set as 160 s, which
belongs to the interval (149.84, 168.02], i.e., T ∈ (t3, t1]. Thus, according to Scenario 2 illustrated in
Table 1, the coasting point s found in (333, 1201] is 622 m, i.e., s ∈ (s1, s2].
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Figure 9. Energy-efficient driving strategy for the train running in Line 1 with T = 160 s.

Table 5. The optimal cruising speed v∗c and energy consumption E of each line with a planned trip
time T.

Lines T (s) vc (km/h) E (kW·h)

Line1 160 75 19.93
Line2 160 74 19.19
Line3 160 73 19.38
Line4 164 73 15.85
Line5 154 70 14.29

Table 6. Four critical states s1–s4, the corresponding running time t1–t4 and the coasting point s of
different lines.

Lines s1 (m) s2 (m) s3 (m) s4 (m) s (m)

Line1 426 651 870 1626 914
Line2 333 1201 1620 1689 622
Line3 430 461 780 1579 1056
Line4 319 421 1400 1906 343
Line5 287 421 1400 1723 310

Lines t1 (s) t2 (s) t3 (s) t4 (s) T (s)

Line1 167.61 160.06 160.98 151.91 160
Line2 168.02 149.22 149.84 149.76 160
Line3 166.74 165.69 167.98 155.48 160
Line4 164.56 162.21 166.26 161.77 164
Line5 154.35 152.35 156.80 154.85 154

In addition, we present comparisons among the proposed and the classical strategies to illustrate
the energy-saving performance, respectively, with the same planned trip time (see Table 7). It can be
concluded that the greater the proportion of the steep slope in the line accounts for, the more obvious
the energy-saving effect is (e.g., see Line 4 and Line 5).
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Table 7. Energy-saving performance comparisons for trains running in different lines.

Lines

E (kW·h) Methods
Proposed Classical Proportion

Line 1 19.00 19.48 2.46%

Line 2 21.65 23.37 7.36%

Line 3 18.37 19.27 4.67%

Line 4 16.16 19.23 15.9%

Line 5 15.25 18.07 15.6%

Average - - 9.20%

5. Conclusions

Based on the classical energy-efficient train control approach, this paper proposes an optimization
approach focusing on solving the energy-efficient control problem for trains running on a line with a
steep downhill segment. The solution space for a given cruising speed is firstly analyzed to obtain
the classical energy-efficient driving strategy for a given trip time. With the same trip time, a local
optimization approach is developed to replace the partial braking in the downhill segment by the
coasting regime such that the local energy consumption is reduced. Further, the adaptive gradient
descent method is utilized to obtain the optimal cruising speed with minimum traction energy
consumption to achieve a global optimization. Some simulations based on practical data of the
Yizhuang line showed that the proposed approach can averagely reduce the energy consumption by
10.96%, compared with the classical energy-efficient train control approach. Simulations with five
typical lines were also conducted to indicate that the proposed method has a good availability for
variable lines. The average computation time of this method was about 0.12 s, thus the proposed
approach can be applied in the real-time control system. Future work could extend this approach to
study the energy-efficient train control strategy with considering multi-slopes in the line.
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