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Abstract: Detecting community structures helps to reveal the functional units of complex networks.
In this paper, the community detection problem is regarded as a modularity-based multi-objective
optimization problem (MOP), and a parallel conical area community detection algorithm (PCACD)
is designed to solve this MOP effectively and efficiently. In consideration of the global properties
of the selection and update mechanisms, PCACD employs a global island model and targeted
elitist migration policy in a conical area evolutionary algorithm (CAEA) to discover community
structures at different resolutions in parallel. Although each island is assigned only a portion of
all sub-problems in the island model, it preserves a complete population to accomplish the global
selection and update. Meanwhile the migration policy directly migrates each elitist individual to
an appropriate island in charge of the sub-problem associated with this individual to share essential
evolutionary achievements. In addition, a modularity-based greedy local search strategy is also
applied to accelerate the convergence rate. Comparative experimental results on six real-world
networks reveal that PCACD is capable of discovering potential high-quality community structures
at diverse resolutions with satisfactory running efficiencies.

Keywords: complex networks; community detection; multi-objective optimization; evolutionary
algorithms; parallel island models

1. Introduction

Complex networks are used to represent many systems in the real world, such as communication
networks, social networks, and wireless sensor networks [1,2]. A complex network is made up of nodes
and edges, where nodes represent the objects in a system and each edge signifies a relation between
a pair of nodes. Actually, a network often comprises a few communities that can be represented as
clusters of nodes. In general, the number of edges within communities is much larger than that of
the edges between them. Finding community structures by community detection algorithms helps
to reveal some important information. For example, people with similar interests are in general in
the same community in a social network. Most important of all, community structures could help us
understand the functional units of complex networks.

In the area of community detection, most existing algorithms are optimization-based methods,
which detect community structures by optimizing objective functions. A well known quality metric
called modularity has been proposed by Newman and Girvan [3,4] and widely employed in community
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detection algorithms. However, a main drawback of optimization-based algorithms using only one
objective of modularity is the resolution limit [5–7]. In other words, they are in general not able to find
multiple potential structures at different resolutions.

Compared with traditional single-objective algorithms [8], multi-objective methods for community
detection, which in general optimize two competing objectives of community structures simultaneously,
do not require any parameter about the resolution scale [9]. Evolutionary algorithms (EAs), including
genetic algorithms [10,11], swarm intelligence algorithms [12–14], and cross-entropy methods [15,16],
are inspired from natural evolution and adaptation. Owing to their population-based nature, EAs are
particularly suitable for solving multi-objective optimization problems (MOPs) and multi-objective
evolutionary algorithms (MOEAs) are able to find community structures at different resolutions in
one single run. Another advantage of MOEAs for community detection lies in that it is convenient
to transform MOEAs into their parallel versions, which usually cost much less running time than
their serial counterparts. In consideration of these advantages, it becomes more and more popular to
regard community detection as one MOP with two competing objectives [6,7]. Then various MOEAs
are customized and applied to solve the MOP of community detection effectively.

In the past several years, a large number of universal MOEAs [16,17] have been proposed.
The majority of existing MOEAs are based on Pareto dominance, such as the improved non-dominated
sorting genetic algorithm (NSGA-II) [18] and the improved strength Pareto (SPEA-II). As one of the
most popular dominance-based MOEAs, NSGA-II has been widely applied in many fields in the
past decade. Furthermore, a few dominance-based MOEAs are specially re-designed for community
detection, including the multi-objective genetic algorithm for networks (MOGA-Net) [19] and the
multi-objective community detection algorithm (MOCD) [20]. Particularly, MOCD is a MOEA based
on the strength Pareto evolutionary algorithm-II (SPEA-II) framework for community detection. So far,
there has been no efficient approach to non-dominated sorting of an entire population, which results
in very high running complexities of dominance-based MOEAs for community detection.

In recent years, efficient decomposition-based MOEAs have become popular, including the MOEA
based on decomposition (MOEA/D) [10] and the conical area evolutionary algorithm (CAEA) [21].
In this paper, the community detection is considered as a modularity-based multi-objective
optimization problem and a parallel conical area community detection algorithm (PCACD) is
presented to further cut down the running time of an efficient MOEA, CAEA, for solving this
MOP. PCACD adopts a parallel process-based CAEA on distributed-memory clusters. However,
because of the global characteristics of the selection and update mechanisms of CAEA, parallel
CAEAs on distributed-memory clusters couldn’t directly utilize the local island model used in parallel
MOEA/Ds. Instead, PCACD employs a parallel global island model, targeted elitist migration policy,
and modularity-based local search strategy so that satisfactory speedup and community structures at
different resolutions are successfully achieved.

The rest of this paper is organized as follows. First, related studies are introduced in Section 2.
Then, Section 3 presents the details of our proposed method for community detection including the
objective functions, local search, island model, and migration policy. Subsequently, experimental
results are supplied and analyzed in Section 4. Finally, Section 5 concludes this paper.

2. Related Work

Up to now, community detection methods have been classified into three types: agglomerative
hierarchical methods [22–24], divisive hierarchical methods [25,26], and optimization-based
methods [8,19,20]. In agglomerative hierarchical methods, each node starts in its own cluster, and then
pairs of clusters are merged in a bottom-up recursive manner. In divisive hierarchical methods,
all nodes start in one single cluster, and then splits are performed in a top-down recursive manner.
In order to determine which clusters should be combined for agglomerative methods, or where
a cluster should be split for divisive methods, a measure of dissimilarity between sets of clusters is
required for both hierarchical methods. Most of the existing community detection algorithms are
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optimization-based methods. Unlike both hierarchical methods, optimization-based methods attempt
to define objective functions and then directly obtain the best community structure of a network by
optimizing objective functions.

To assess the community structures of a network, Newman and Girvan [3,4] have proposed
a very popular quality metric called modularity. Furthermore, the modularity metric has been widely
employed as the objective function of some traditional optimization-based methods such as the Louvain
algorithm for community detection [8]. The Louvain algorithm [8] is just a simple and efficient greedy
optimization algorithm based on the single objective of modularity for identifying communities in
large networks. It involves two simple steps of maximizing the local modularity and transforming
every previously found community to one node of a new network. The procedure of the method
repeats these two steps iteratively until the best modularity Q is found. Nevertheless, Fortunato and
Barthelemy have pointed out that the optimization-based community detection algorithms using
only one single objective of modularity have a primary disadvantage that they are not capable of
discovering multiple potential structures at different resolutions [5–7]. Hence, various algorithms
were proposed to compensate the disadvantage of limited resolution. Most of existing methods need
to set a parameter in advance to define the resolution scale. If the end user has some knowledge
of resolutions of the detected networks, the resolution parameter allows taking advantage of this
information. Nevertheless, in most situations, it is very difficult to acquire the knowledge of resolutions
and set in advance appropriate values of the resolution parameter for different networks.

Fortunately, MOEAs are able to find community structures at different resolutions in one
single run. The majority of existing MOEAs are based on Pareto dominance. In recent years,
decomposition-based MOEAs such as MOEA/D [10,27] and CAEA [11,21] have become popular.
With respect to the running cost, MOEA/D [10] has a great advantage over dominance-based MOEAs.
MOEA/D decomposes a MOP into a number of scalar objective optimization subproblems so that it
does not have to examine non-dominance for a population anymore. Every offspring for a subproblem
has to update its T neighbor subproblems locally in MOEA/D. By taking advantage of a conical
partition strategy and a conical area indicator, the CAEA was designed to further improve the
running efficiency of decomposition-based MOEAs for bi-objective optimization [21]. Unlike in
MOEA/D, each offspring for a subproblem needs to update only the closest global subproblem
in terms of convergence direction in CAEA rather than its T neighbor subproblems. Hence, for the
identical population size and generation number, the proportion of running complexity between CAEA
and MOEA/D is O(1):O(T), where T represents the number of neighbor subproblems. Although
decomposition-based MOEAs improve the running efficiencies of dominance-based MOEAs to
a certain extent, with the increase of the size of complex networks, a relatively large number of
decision variables proportional to the number of nodes in the network bring them greater challenges.
Particularly, the biggest one of them is that the calculation costs of objective functions become
computationally fairly expensive for solving multi-objective community detection problems [28].
In order to further cut down the running time of decomposition-based MOEAs for expensive MOPs,
several of these algorithms have been redesigned as parallel algorithms by applying parallel and
distributed technologies [29]. There exist two main categories of parallel models for MOEAs:
master-slave models [30] and island models [31]. The master-slave models parallelize only the
objective calculation among the slave nodes. The island models parallelize the entire evolutionary
procedure by dividing the large population into multiple separate small sub-populations. Because of
the relative independence of the decomposed subproblems, the island models are more suitable for
the parallelization of decomposition-based MOEAs than the master-slave model.

In addition, parallel decomposition-based MOEAs could be implemented at two levels: the thread
level and process level. A few parallel MOEA/Ds at the thread level have been specially designed
for shared-memory multi-processors [32,33]. These thread-based MOEA/Ds preserve all the islands
inside the common shared memory physically while each thread evolves a logically separate but
physically shared island. Until now, several parallel MOEA/Ds at the process level, such as the
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overlapped partitioning parallelization of MOEA/D (opMOEA/D) [29,34], have been developed
for message-passing clusters with distributed memory. These process-based MOEA/Ds distribute
the islands over the compute nodes of a cluster and each process evolves a logically and physically
separate island on a compute node. In contrast to thread-based parallel MOEA/Ds, process-based
parallel MOEA/Ds have two evident advantages. Not only they avoid race conditions that multiple
threads attempt to access the shared memory at the same time, but also they generally offer better
scalability for large sizes of computing clusters.

3. Parallel Conical Area Community Detection

3.1. Chromosome Representation

Since the proposed method, PCACD, employs the framework of an efficient MOEA, CAEA, one of
the top issues of PCACD is to determine an appropriate chromosome representation for the community
detection problem. PCACD utilized an adjacency-based chromosome [35] to encode a solution, i.e.,
one community structure of the detected network. The major advantage of the adjacency-based
chromosome representation lies in that it is able to conveniently avoid the generation of any invalid
chromosome during crossover and mutation. Specifically, every chromosome Pi, i ∈ [0, N − 1],
in a population has a fixed length of n where n denotes the total number of nodes in the network and
N indicates the population size. The value of every gene Pia, a ∈ [1, n], in chromosome Pi ranges from
one to n. The gene Pia taking an integer value b ∈ [1, n] signifies that both nodes, a and b, are classified
as belonging to the same community in the community structure decoded from chromosome Pi.
In consequence, a decoding procedure has to be applied for any adjacency-based chromosome before
the evaluation of its objective functions. Figure 1 presents a simple example of an adjacency-based
chromosome in the case of n = 6 and the corresponding community structure decoded from this
chromosome where all the nodes within the same connected subgraph were just classified into the
same community. Fortunately, with the assistance of the backtracking method, this decoding procedure
costs only linear time [35].

(a)

(b)

Figure 1. (a) A simple example of an adjacency-based chromosome; (b) the corresponding community
structure decoded from this chromosome.

3.2. Modularity-Based Objective Functions and Local Search

As an optimization-based multi-objective method, PCACD transforms the community detection
into a modularity-based bi-objective optimization problem (BOP) in order to discover potential
community structures at different resolutions. The modularity metric, denoted as Q, was proposed by
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Newman and Girvan [3,4] for the purpose of assessing the quality of a network partition or community
structure. It can be represented as

Q = ∑
C∈X

[
lc
m
−
(

kc

2m

)2
]
= ∑

C∈X

lc
m
− ∑

C∈X

(
kc

2m

)2
(1)

where X denotes a partition or community structure of a network, C represents one of communities in
this partition, lc represents the number of edges in community C, m denotes the total number of edges
in this network, and kc denotes the degree of nodes within community C.

To obtain the largest modularity Q score, we should simultaneously maximize its first part

∑C∈X
lc
m and minimize the second part ∑C∈X

(
kc
2m

)2
. In short, as the first term increases, the number

of edges in the same community increases, which results in the generation of larger communities.
In contrast, as the second part decreases, the degree of nodes within the same community declines,
which tends to generate smaller communities. Therefore, maximizing modularity means finding
an appropriate trade-off between these two potentially competing terms. As a consequence, these two
terms of the modularity are often separated in order to avoid the resolution limit disadvantage of
modularity-based single objective optimization methods [5]. Similarily, PCACD applies both of them
as two competing objection functions to be optimized. Specifically, PCACD considers the community
detection problem as the following modularity-based BOP to simultaneously maximize two objective

functions, i.e., IntraQ(X) = ∑C∈X
lc
m and InterQ(X) = −∑C∈X

(
kc
2m

)2
.

minimize F(X) = (IntraQ(X), InterQ(X)), (2)

subject to X ∈ Ω.

In general, it is a little difficult for EAs to approach the local optimum partitions quickly only
through their own crossover and mutation operators. Since PCACD aims to optimize the above
modularity-based bi-objective community detection problem, a modularity-based greedy local search
strategy is further applied to every generated offspring to accelerate the search process of PCACD
with the aid of the heuristic tricks about community detection. To be specific, this local search strategy
for each offspring consists of k loops of greedy merging operations, where k is set to one quarter of the
total number n of the network’s nodes. In every loop of greedy merging operation, the local search
strategy first chooses one node a from all the nodes of the network randomly. Then node a tries to
move into the communities of its adjacent nodes one by one for the current chromosome Pi and the
best adjacent one b? is picked such that the resulting community structure could reach the local highest
modularity score. Thereafter, the gene Pia at locus a is assigned just the gene value Pib? at locus b? for
chromosome Pi. It signifies that the chosen node a is greedily merged into the community of its local
best adjacent one b?.

3.3. Parallel Global Island Model

The proposed algorithm, PCACD, utilizes the framework of an efficient bi-objective optimization
algorithm, CAEA, to solve the above bi-objective community detection problem. It means that the
bi-objective community detection problem is decomposed into N scalar optimization subproblems.
Moreover, to find a local nondominated solution in the corresponding decision subset Ω(k),
each subproblem employs a conical area as its scalar objective [21]. In PCACD, each subproblem is
associated with one individual in the current population and is responsible for searching for the best
solution in its exclusive decision subset Ω(k) in terms of its conical area indicator.

In order to further reduce the running time of solving the bi-objective community detection
problem, PCACD requires an island model to parallelize the CAEA. In general, parallel MOEA/Ds
such as opMOEA/D [29] employ some local island models since a generated offspring for a subproblem
needs to update only the neighbors of this subproblem locally in MOEA/D. In contrast, all the
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individuals in the population are essential for the global update mechanism in CAEA where a produced
offspring globally chooses and updates one out of all the subproblems according to the direction of
convergence. It results in the local island models for parallel MOEA/Ds not being suitable for parallel
CAEAs radically.

Hence, PCACD employed a global island model to solve the bi-objective community detection
problem in parallel. In this parallel island model, each island maintains an entire population in order
to globally update subproblems in CAEA while it is in charge of the optimization of only a portion of
the subproblems. In the initialization procedure, all subproblems are linearly partitioned into q groups
where q denotes the number of parallel islands. Thereafter, each island is assigned an evolutionary
task for one group out of them. That is, the size of the r-th group P(r), r∈[0, q−1], equals

N(r) =

{
N/q + 1, if r<N % q,

N/q, otherwise.
(3)

In the above equation, / and % denote the integer division and modulus operations respectively.
Formally, the k-th subproblem associated with the k-th reference direction or observation vector

λk in CAEA, denoted as g(X|λk, z∗), employs the conical area [21] as its scalar objective in the form

minimize g(X|λk, z∗) = S(F(X)− z∗, Ck),

subject to X ∈ Ω and F(X)− z∗ ∈ Ck.
(4)

In the above equation, X represents a community structure of the network, F(X) denotes the objective
vector consisting of IntraQ(X) and InterQ(X), Ck indicates the conical subregion associated with
reference direction λk, 0 ≤ k ≤ N − 1, z∗ = (min

X∈Ω
{IntraQ(X)}, min

X∈Ω
{InterQ(X)}) represents the true

ideal point for the given bi-objective community detection problem, and function S(F(X)− z∗, Ck)

denotes the conical area of the portion not dominated by the first input vector, F(X)− zr, in the conical
sub-region Ck [21]. It is worth noticing that, in practice, the true ideal point z∗ should be replaced
with the current attainable ideal point on the r-th island, written as zr, since z∗ would be in general
unknown and unavailable to PCACD.

According to the parallel island model, although the r-th island globally preserves all N solutions
associated, respectively, with N sub-problems, the r-th island is assigned the optimization task of
only the r-th group of sub-problems, G{r} = {g(X|λk, z∗)|k ∈ N{r}}, where N{r} = {rN(r), rN(r) + 1,
· · · ,(r+ 1)N(r)− 1} if r < N%q and N{r} = {rN(r)+ N%q, rN(r)+ N%q+ 1, · · · ,(r+ 1)N(r)+ N%q−
1} otherwise. It signifies that, during the reproduction of each offspring on the r-th island, the first
parent is bound to be one out of the current individuals associated with the r-th group of sub-problems
G{r}. The role of the other groups of sub-problems, G{j}, j 6= r, on the r-th island is just to help this
island to globally select the second parent and complete the global update process for each offspring.

Figure 2 illustrates a simple example of the parallel global island model in case of q = 3 and
N = 6. From the perspective of the objective space, the r-th island, r ∈ {0, 1, 2}, is actually responsible
for optimizing N(r) = 2 sub-problems, g(X|λ2r, z∗) and g(X|λ2r+1, z∗), by evolving their respective
associated individuals, P2r and P2r+1, to approach the r-th fragment of Pareto front. In the meantime,
the r-th island has to maintain an entire population of size N = 6 in order to perform the global
selection and update mechanisms of CAEA. This parallel island model is capable of helping PCACD
to reduce the run time of its serial counterpart for community detection.
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Island 0 Island 1 Island 2

Figure 2. Illustration of a parallel global island model.

3.4. Targeted Elitist Migration

At the same time that the parallel global island model was employed for good speed-ups,
an appropriate migration policy had to be utilized to share essential evolutionary achievements
among islands so that the qualities of community structures obtained by PCACD do not degrade
substantially. The migration policy has two crucial issues: the selection of migrants and migration
topology. In a parallel MOEA/D, opMOEA/D [29], a local hybrid migration policy was used to shares
both ideal points and elitist solutions in a local migration topology where all migrants on one island
locally emigrate to one of only two islands linearly adjacent to it. However, as a parallel CAEA for
the bi-objective community detection problem, PCACD adopted a targeted elitist migration policy
on the account of the evident differences between the selection and update mechanisms of CAEA
and MOEA/D.

To be specific, MOEA/D locally selected a pair of parent solutions associated with two neighbor
sub-problems during reproduction. Since this pair of parent solutions were often very similar to each
other, their offspring was also similar to them in general. Hence, this local selection mechanism of
MOEA/D posed a great difficulty that one separate island could not achieve a satisfactory ideal point
only on its own evolution in any parallel MOEA/D. Consequently, a better ideal point was very critical to
every island in a parallel MOEA/D since it helped the island to explore an evidently wider front segment.

In contrast, CAEA globally chose the parents from the entire population rather than only from
the neighbors. Hence, a new offspring reproduced had the chance to globally update one of all the
individuals in the whole population. As a result, migration of ideal points was unnecessary to PCACD
because the ideal point resulting from one island was generally capable of meeting the evolutionary
requirements of this island. In consideration of the global property of the selection mechanism in
CAEA, only elitist individuals were considered as migrants in PCACD. That is, once the individual
associated with a sub-problem was successfully replaced at the last generation on the r-th island,
a copy of the elitist individual replacing it would be transmitted to another certain island according to
the migration topology in PCACD.

Apart from the selection of migrants, the migration topology also had a significant impact on the
extent to which the migration accelerated the parallel evolutionary progress. Instead of locally updating
several neighbor sub-problems in MOEA/D, one offspring needed to update one global sub-problem
in accordance with the convergence direction in CAEA and PCACD. Hence it would be of great benefit
to the further optimization of one successfully updated sub-problem in PCACD to directly migrate
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an elitist individual to the appropriate island, rather than simply to two linearly adjacent islands as
the same as in opMOEA/CD. In consideration of this, a targeted migration topology was specially
designed in PCACD to achieve the fast and accurate sharing of essential evolutionary achievements
among islands. In light of the global island model, the optimization of the k-th sub-problem in PCACD,
0 ≤ k ≤ N − 1, belongs to the r′-th group and it is actually in the charge of the r′-th island where
r′ = k/(N

q + 1) if k < N%q(N
q + 1), otherwise r′ = N%q + [k − N%q(N

q + 1)]/ N
q . Once the k-th

sub-problem was successfully updated by a generated offspring on one island, the individual Pk
currently associated with this sub-problem, i.e., a copy of the offspring, would be regarded as an elitist
one and it would migrate to the r′-th island in accordance with this targeted migration topology.

Algorithm 1 presents the implementation procedure of the targeted elitist migration policy on
the r-th island. It consists of two phases; (1) transmitting elitist individuals to other islands in Lines 1
to 10 and (2) receiving elitist individuals from other islands in Lines 11 to 18. In the first phase, it was
determined whether the current k-th individual Pk associated with the k-th subproblem g(X|λk, zr) was
an elitist individual in Line 2. If this is the case, the index r′ of the destination island was figured out
according to the targeted migration topology in Lines 3 to 7. Thereafter, as an elitist individual, a copy
of the current individual Pk associated with the k-th subproblem on this island was transmitted to the
corresponding destination, i.e., the receive queue βr′ of elitist individuals on the r′-th island in Line 8.

Algorithm 1 TargetedElitistMigration(r)

1: for k = 0 to N − 1 do
2: if the k-th sub-problem g(X|λk, zr) was successfully updated at the last generation then
3: if k < N%q(N

q + 1) then
4: r′ ← k/(N

q + 1);
5: else
6: r′ ← N%q + [k− N%q(N

q + 1)]/ N
q ;

7: end if
8: Transmit a copy of the elitist individual Pk to the receive queue βr′ of the r′-th island;
9: end if

10: end for
11: while the receive queue βr 6= ∅ do
12: Receive the first immigrator X′ from queue βr;

13: k′ ← f loor( (N−1)(IntraQ(X′)−zr
1)

IntraQ(X′)−zr
1+InterQ(X′)−zr

2
+ 0.5);

14: if S(F(X′)− zr, Ck′) < S(F(Pk′)− zr, Ck′) then
15: Pk′ ← X′;
16: end if
17: Delete X′ from queue βr;
18: end while

In the second phase, every immigrator X′ from the other islands, i.e., every solution in the receive
queue βr of elitist individuals on the r-th island, was utilized to update one subproblem on this island
in a similar manner to one offspring in CAEA. To be specific, according to the definition of conical
sub-problems in CAEA, the index k′ of the sub-problem with which the immigrator X′ should be

associated was first figured out on this island by k′ = f loor( (N−1)(IntraQ(X′)−zr
1)

IntraQ(X′)−zr
1+InterQ(X′)−zr

2
+ 0.5) where

f loor(·) indicates the bottom integral function in Line 13. Subsequently, if this immigrator X′ was
superior to the current individual Pk′ associated with this sub-problem in terms of their respective
conical area values, S(F(X′)− zr, Ck′) and S(F(Pk′)− zr, Ck′), the individual Pk′ was replaced by this
immigrator X′ on this island in Lines 14 to 16. Then this immigrator was deleted from the queue of
immigrators in Line 17. This operation was repeated until the queue of immigrators becomes empty in
Line 11.
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3.5. Framework of PCACD

The main framework of PCACD is presented in Algorithm 2. Each island or process is initialized
on one processor in Lines 2 to 5. In Line 2, the r-th island generates N evenly distributed reference
directions λk, k = 0, 1, · · · , N − 1, for N sub-problems. Then, the r-th island divided all sub-problems
linearly into q groups and calculated the size N(r) of the r-th group according to Equation (3) in
Line 3. Meanwhile the r-th island was only assigned the optimization task of the r-th group of
N(r) sub-problems, G{r}. In Line 4, this island randomly initialized N individuals to form its whole
population P(r) and associates them with N reference directions in terms of the directions and the
conical area values in the same manner as CAEA. During the initialization of the population, each gene
Pia of each initial individual was randomly assigned the index of one of its adjacent nodes and the
adjacency-based chromosome representation avoided the generation of invalid community structures.
Subsequently, these initial individuals in P(r) were utilized to update the local ideal point zr on the
r-th island in Line 5.

Algorithm 2 The main procedure of parallel conical area community detection algorithm (PCACD).

1: for each r∈[0, q−1] in parallel do . parallel q islands or processes
2: Generate N evenly distributed reference directions λk, k = 0, 1, · · · , N − 1;
3: Divide all N sub-problems linearly into q groups, calculate the size N(r) of the r-th group,

and assign the r-th island the optimization task of the r-th group of N(r) sub-problems, G{r};
4: Initialize N individuals randomly to form its whole population P(r), evaluate them,

and associate them with N reference directions in the same manner as CAEA;
5: Utilize the initial individuals in P(r) to update the local ideal point zr on the r-th island;
6: ng ← 0;
7: while ng < Ng do . evolutionary loops
8: for i = 0 to N(r) − 1 do
9: parent1← ParentSelection1(r);

10: parent2← ParentSelection2(r);
11: child← Reproduction(parent1, parent2);
12: child← LocalSearch(child);
13: zr ← IdealPointUpdate(child, zr);
14: SubProblemUpdate(child, r);
15: end for
16: TargetedElitistMigration(r); . targeted elitist migration
17: ng ← ng + 1;
18: end while
19: Synchronize with the root island and transmit all the individuals associated with the r-th group

of sub-problems to the root island;
20: if r == 0 then . the 0-th island
21: The root island gathers all the individuals associated with q groups of sub-problems from q

islands and integrates them into a final entire population P;
22: end if
23: end for

In Line 7, the r-th island will repeat the evolutionary loop if the current number ng of generations
does not reach the maximum number Ng of generations. Lines 8 to 15 represent one generation of
evolution, and include important evolutionary operators such as selection, production, local search,
and update. Note that function ParentSelection1(r) in Line 9 chooses the first parent individual, parent1,
only from the current individuals associated with the r-th group of sub-problems G{r} on the r-th
island for the reproduction of each offspring in accordance with the tournament selection based
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on the conical area. Function ParentSelection2(r) in Line 10 chooses the second parent individual
globally, parent2, from the entire population on the r-th island in the same manner as CAEA.
Subsequently, Reproduction(parent1, parent2) generates an offspring child from parents parent1 and
parent2 through crossover and mutation in Line 11. Because it is preferable to maintain the effective
connection components of the detected network during crossover, a two-point crossover rather than
a uniform crossover is adopted in PCACD. The mutation operator randomly chooses several genes
of an individual in terms of the mutation probability and then assigns each of them the index of
the one randomly selected from its corresponding adjacent nodes. Next, LocalSearch(child) applies
the modularity-based greedy local search strategy to the offspring child to accelerate the search in
Line 12. Thereafter, function IdealPointUpdate(child, zr) evaluates the offspring child and utilizes it to
update the local ideal point zr on the r-th island in Line 13. At the end of one generation of evolution,
SubProblemUpdate(child, r) in Line 14 associates the offspring child with the nearest sub-problem on the
r-th island in accordance with the convergence direction and updates this sub-problem in terms of the
conical area value in the same manner as CAEA.

After one generation of evolution, TargetedElitistMigration(r) presented in Algorithm 1 is called to
transmit elitist solutions to other islands and receive elitist solutions from other islands in accordance
with the targeted elitist migration policy in Line 16. When the entire evolution terminates, the r-th
island synchronizes with the root island, i.e., the 0-th island, and transmits all the individuals associated
with the r-th group of sub-problems to the root island in Line 19. Finally, the root process gathers
all the individuals associated with q groups of sub-problems from q islands and integrates them into
a final entire population P in Line 21.

3.6. Computational Complexity

The fitness evaluation and the local search were the most time-consuming operations
for every parallel island of PCACD. Specifically, the fitness evaluation of an adjacency-based
chromosome consisted of the backtracking-based decoding and the calculation of two objectives,
InterQ(X) and IntraQ(X). Suppose that the detected network contained n nodes and m edges.
The backtracking-based decoding and the calculation of objectives have complexities O(n) and O(m),
respectively. Therefore, the complexity of the fitness evaluation of a chromosome is O(m + n). Because
Ng generations of evolution were performed and in total about 1

q N chromosomes were generated
and evaluated during every generation on every parallel island of PCACD, the complexity of every
PCACD process without the local search strategy is O( 1

q NgN(m + n)), where Ng denoted the allowed
maximum number of generations and N indicates the population size.

As mentioned earlier, the modularity-based local search strategy included 1
4 n loops and every

loop on average needed D fitness evaluations where D = 2m
n denotes the mean of degrees of all the

nodes in the detected network. As a consequence, the computational complexity of the local search
strategy was O(nD(m + n)) = O(m(m + n)). Hence, every PCACD process including the local search
strategy had the total complexity of O( 1

q NgNm(m + n)).

4. Experimental Results

In our experiments, PCACD was utilized to detect the community structures of some real-world
networks. To illustrate the performances of PCACD at discovering community structures, four other
community detection algorithms, i.e., the single objective Louvain algorithm [8], the multi-objective
community detection algorithm (MOCD) [20], the serial version without the parallel global island
model and the targeted elitist migration policy of PCACD, referred to as CACD, and a variant without
the local search strategy of CACD, written as CACD-, were chosen for comparison with PCACD in our
experiments. We applied these algorithms to detect six real-world networks in our experiments. Table 1
indicates the number of nodes, the number of edges, the average degree of nodes, and whether so far
the true community structure has been known for each of these six real-world networks. Zachary’s
karate club network [36] is a famous friendship network between members of a karate club at a US
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university, studied from 1970 to 1972. It is a small network including 34 members. The dolphin
social network [37] is a social network of dolphins observed by Lusseau over a period of years.
This network has 62 nodes and 159 edges, where the nodes represent dolphins while the edges indicate
frequent communications between dolphins. The political book network [4] is a network about the
American politics books published during the 2004 presidential election and sold by Amazon.com.
The word adjacency network [38] denotes a network of common adjective and noun adjacencies for the
novel David Copperfield by Charles Dickens, as described by Newman. The American college football
network [25] is a complex social network based on the American University Football League, consisting
of 115 nodes and 616 edges, with the nodes indicating the football teams and the edges representing
whether there had been a match between these two teams. The jazz musician network [39] is a social
network about the collaboration of jazz musicians. In this paper, these six real-world networks are
referred to as Karate, Dolphin, Polbook, Adjnoun, Football, and Jazz, respectively.

Table 1. Six detected real-world networks.

Name Nodes Edges Average Degree True Community Structure

Karate 34 78 4.588 Known
Dolphin 62 159 9.450 Known
Polbook 105 441 8.400 Known
Adjnoun 112 425 7.589 Unknown
Football 115 613 10.66 Known

Jazz 198 2742 27.70 Unknown

For the sake of fairness, the common parameters of four MOEA-based algorithms, i.e., MOCD,
PCACD, CACD, CACD-, were set to the same values. Specifically, the size N of the population was set
to 100 and the maximum number Ng of generations was 100. Meanwhile, the crossover probability pc

and the mutation probability pm were set as 0.8 and 0.1, respectively. In addition, the probability pl
of local search was unity for PCACD and CACD, which signified the modularity-based local search
strategy was absolutely performed for each offspring. All the computing nodes were connected by
Gigabit Ethernet and each of them was equipped with an Intel Core I5 3.20 GHz CPU and a memory
size of 8 GB RAM in our experiments. In PCACD, each island was implemented by launching a
corresponding process on an exclusive computing node. Unless otherwise stated, the total number q
of processes launched in PCACD was set to 8. All these algorithms were implemented in C++ and the
message passing interface (MPI) was additionally adopted to implement the communications between
the parallel PCACD processes.

As suggested by Zhang and Li [10], Ying et al. [21], and Gong et al. [6], totally 30 runs of
each algorithm have been conducted independently for each of the six networks in our experiments.
To measure the effectiveness, the modularity Q was first used to assess the qualities of community
structures obtained by five algorithms and then another metric, the normalized mutual information
(NMI) [40], was adopted to reveal the capability of discovering potential community structures at
different resolutions in our experiments. As for the efficiency, in addition to CPU time, we used the
speedup metric to evaluate the parallel performance of the PCACD algorithm.

4.1. Qualities of Obtained Community Structures

With respect to the qualities of obtained community structures, Figure 3 presents the box plots of
the best Q scores over 30 runs of each of five algorithms for six real-world networks, where the “best”
denotes the highest one out of the Q scores of all obtained community structures in the final population
in each run. From Figure 3, it is obviously observed that PCACD and its serial counterpart, CACD,
achieved the distinctly higher qualities of community structures in terms of the modularity Q than the
other three algorithms, i.e., CACD-, Louvain, and MOCD, for nearly all six networks. Figure 3 also
clearly reveals that PCACD and CACD perform relatively more stably than Louvain for three networks

Amazon.com
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such as Karate, Dolphin and Polbook, and so they do than MOCD and CACD- for all six networks.
Particularly, in comparison with CACD, PCACD exhibits very similar overall results for networks
Karate, Dolphin and Adjnoun, slightly less stable performances for networks Polbooks and Football,
and slightly more stable performances for network Jazz. It signifies that, with the effective aids of
the parallel global island model and targeted elitist migration policy, both eight parallel processes
of PCACD and its serial counterpart, CACD, gain the nearly same satisfactory results in terms of
the modularity.

(a) Karate (b) Dolphin

(c) Polbooks (d) Adjnoun

(e) Football (f) Jazz

Figure 3. The box plots of the best modularity (Q) scores over 30 runs of each of the five algorithms
for all six real-world networks (PCACD: parallel conical area community detection algorithm; CACD:
conical area community detection algorithm; CACD-: conical area community detection algorithm
variant without the local search strategy; MOCD: multi-objective community detection algorithm).
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Moreover, Figure 4 plots the convergence curves of average best Q scores over 30 runs of each
of PCACD and CACD- for six real-world networks mentioned above, respectively, where the “best”
denotes the highest one out of the Q scores of solutions in the current generation of population.
It is evident from Figure 4 that the convergence speeds of PCACD are much better than those of
CACD- for all six networks. Meanwhile, it is also inferred from Figure 3 that the Q scores achieved
by CACD- and MOCD are also evidently worse than those by Louvain for three networks such as
Karate, Dolphin and Polbook. Like CACD-, there was no local search strategy in MOCD. It implies
that the modularity-based local search strategy also played an important role in community detection
and helped to accelerate the convergence speed of PCACD.

(a) Karate (b) Dolphin

(c) Polbooks (d) Adjnoun

(e) Football (f) Jazz

Figure 4. The convergence curve of average best Q scores over 30 runs of each of PCACD and CACD-
for all six real-world networks.
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4.2. Potential Community Structures at Diverse Resolutions

As a single objective optimization algorithm for community detection, the Louvain method is in
general only able to output one community structure. In consequence, it has a limited capability to
find potential community structures at diverse resolutions. Instead, as a MOEA, PCACD is capable to
generate a cluster of non-dominated solutions in one single run. We can discover some other interesting
community structures, apart from the community structure with the best Q score, from the set of
non-dominated solutions at different resolutions achieved by PCACD. For presentational convenience,
we take the Karate network whose true community structure has been known as an example in this
subsection. Figure 5a plots the non-dominated front discovered by eight islands or processes of
PCACD in the run with the median best Q score. In Figure 5a, the non-dominated solutions acquired
by different PCACD processes are grouped by different shapes.

(a)

(b) (c)

Figure 5. Results achieved by PCACD for the Karate network. (a) The non-dominated front fragments
acquired, respectively, by eight islands of PCACD; (b) The community structure corresponding to
solution ‘I’ with the highest Q score; (c) The community structure corresponding to solution ‘II’ with
the highest normalized mutual information (NMI) score.

In addition to the modularity Q, we also employ the NMI metric to assess the qualities of obtained
community structures. Specifically, the solution with the highest Q score and the one with the highest
NMI score are marked as ‘I’ and ‘II’, respectively, in the final non-dominated front achieved by PCACD
in Figure 5a. Different from the modularity Q, the NMI metric only makes sense for networks whose
true community structures are known, since this metric needs to calculate the similarity between the
ground truth community structure and any obtained one. The NMI value always falls in the range of
[0, 1], and a larger NMI value indicates that these two community structures are more similar. In short,
given the ground truth community structure p∗ and an obtained one p′ for the detected network, if the
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NMI value of p′, written as NMI(p′|p∗), reach one, this implies that p′ = p∗. On the contrary, if these
two community structures are completely different, then NMI(p′|p∗) = 0.

Figure 5a also shows that solution “II” has the highest NMI score of 1.0 and the Q score of 0.3715
while solution “I” has the highest Q score of 0.4198 and the NMI score of 0.5235. Moreover, Figure 5b,c
illustrate the community structures corresponding to solutions ‘I’ and ‘II’, respectively. It’s worth
noting that the NMI score of 1.0 signifies that solution ‘II’ is exactly the same as the true community
structure of the Karate network. From the obtained results for the Karate network, it can be inferred
that the acquired community structure with the highest Q score is often different from the one with
the highest NMI score. In fact, there is no necessary causal relationship between these two metrics.
Moreover, it is impossible for the NMI metric to serve as a special optimization objective for any
community detection algorithm since the calculation of NMI requires the true community structure p∗.
Even so, a series of community structures in the uniformly distributed population of PCACD along the
Pareto front in the bi-objective space are at diverse resolutions and beneficial to yield the potential true
community structure with the highest NMI score through simultaneously maximizing two objective
functions of IntraQ and InterQ. For example, solutions ‘I’ and ‘II’ just correspond to a high resolution
and a low resolution, respectively, where each large community in solution ‘II’ substantially consists of
two small communities in solution ‘I’, as shown in Figure 5b,c. Similarly, there might be still some other
community structures at diverse resolutions in the front, which could help us reveal other interesting
potential functional units of a complex network.

4.3. Running Time

With regard to the running cost, Table 2 records the CPU time in seconds spent by each algorithm
for six real-world networks. Figure 6 presents the speedup curves achieved by PCACD as the number
p of parallel processes increases from one to eight for all six networks. It is evident from Table 2
that the Louvain algorithm spent far less running time than the other four algorithms based on
MOEAs due to the characteristic of single objective greedy optimization. However, as mentioned
earlier, since the Louvain algorithm only obtains one community structure generally, it is not good
at discovering useful potential community structures at diverse resolutions. As for the algorithms
using multi-objective optimization, it is obvious from Table 2 that CACD- runs faster than MOCD
for all the six networks. It is in accordance with the fact that the computational complexity of
CACD-, O(NgN(m + n)), is much lower than that of MOCD, O(NgN2(m + n)) [20]. CACD has the
computational complexity of O(NgNm(m + n)) and takes about double the CPU time compared to
CACD-, because of its local search strategy. Even so, CACD not only achieves the obviously better
qualities of community structures, but also takes slightly less time than MOCD for these networks.

Figure 6. Speedup curves achieved by PCACD with the increase of the number of parallel processes
for six real-world networks.
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Table 2. The CPU time (s) spent by each algorithm for six real-world networks (PCACD: parallel
conical area community detection algorithm; CACD: conical area community detection algorithm;
CACD-: conical area community detection algorithm variant without the local search strategy; MOCD:
multi-objective community detection algorithm).

Network PCACD CACD CACD- Louvain MOCD

Karate 17.86 102.36 67.10 0.18 184.14
Dolphin 29.83 164.06 94.32 0.26 299.28
Polbook 56.68 282.26 137.80 0.38 512.87
Adjnoun 51.09 311.70 135.44 0.53 501.90
Football 96.74 522.43 254.00 0.41 558.25

Jazz 144.88 970.70 277.13 0.87 1099.54

Ulteriorly, Figure 6 clearly indicates that, owing to the parallel global island model and targeted
elitist migration policy, the speedups acquired by PCACD grow approximately in a line with the
increase of the number p of parallel processes for all six networks in our experiments. Specifically,
in the case of 8 parallel processes, PCACD achieves the speedups of around 7.0 and 5.0, respectively,
for networks Jazz and Polbook. For the rest four networks, PCACD also gains the speedups of about
6.0. Moreover, it can be inferred from Table 2 that PCACD with 8 parallel processes performs the
fastest among four algorithms using multi-objective optimization and spends much less CPU time than
CACD, because of the low computational complexity, O( 1

q NgNm(m + n)), of every PCACD process.

5. Conclusions

In this paper, community detection is treated as a modularity-based bi-objective optimization
problem. A parallel conical area community detection algorithm, PCACD, is proposed to solve this
BOP. In order to reduce the running time, PCACD applies a global island model and targeted elitist
migration policy to parallelize the CAEA for community detection due to the global characteristics
of the selection and update mechanisms in CAEA. This global island model preserves an entire
population on each island in order to implement the global selection and update while each island
is in charge of the optimization of only a portion of subproblems. In the meantime, the targeted
elitist migration policy migrates every elitist individual directly to the appropriate island in charge
of the sub-problem associated with it to share essential evolutionary achievements and accelerate
the convergence rate. In addition, PCACD adopts an adjacent-based chromosome representation
and a modularity-based local search strategy to avoid invalid individuals and heighten the ability
of finding the local best community structures. The experimental results on six real-world networks
demonstrate that PCACD achieves high-quality community structures with satisfactory speedups
in virtue of the global island model and targeted elitist migration policy. Furthermore, a cluster of
non-dominated solutions produced by PCACD contributes to the discovery of interesting potential
functional units at diverse resolutions of networks.

Our ongoing research focuses on developing parallel MOEAs for overlapping community
detection. Meanwhile we are also interested in radically cutting down on the computational costs
of MOEAs for dealing with expensive multi-objective community detection problems in large-scale
complex networks with the aids of some other efficient strategies, such as surrogate-assisted approaches
and hierarchical network reduction methods.
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