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Abstract: This paper presents an investigation of external flow characteristics and pressure fluctuation
of a submersible tubular pumping system by using a combination of numerical simulation and
experimental methods. The steady numerical simulation is used to predicted the hydraulic
performance of the pumping system, and the unsteady calculation is adopted to simulate the
pressure fluctuation in different components of a submersible tubular pumping system. A test bench
for a model test and pressure pulsation measurement is built to validate the numerical simulation.
The results show that the performance curves of the calculation and experiment are in agreement with
each other, especially in the high efficiency area, and the deviation is minor under small discharge and
large discharge conditions. The pressure pulsation distributions of different flow components, such
as the impeller outlet, middle of the guide vane, and guide vane outlet and bulb unit, are basically
the same as the measurement data. For the monitoring points on the impeller and the wall of the
guide vane especially, the main frequency and its amplitude matching degree are higher, while the
pressure pulsation values on the wall of the bulb unit are quite different. The blade passing frequency
and its multiples are important parameters for analysis of pressure pulsation; the strongest pressure
fluctuation intensity appears in the impeller outlet, which is mainly caused by the rotor–stator
interaction. The farther the measuring point from the impeller, the less the pressure pulsation is
affected by the blade frequency. The frequency amplitudes decrease from the impeller exit to the
bulb unit.

Keywords: submersible tubular pumping system; external characteristics; pressure fluctuation;
numerical simulation; measurement

1. Introduction

A submersible tubular pump is a kind of horizontal pump with a low head and large discharge,
which uses a postpositive tubular-type structure with a motor and pump coaxial. It has the advantages
of low cost, high efficiency, and easy-to-realize automatic or semi-automatic control [1,2]. In recent
years, this type of pump has been widely used in small and medium-sized pumping stations, such as in
agricultural irrigation and urban flood control, especially in the plain areas [3–5]. All pumps experience
pressure pulsation due to changes, discontinuities, and variations that occur in their pumping or
pressure generating action, and submersible tubular pumps are no exception. The pressure pulsation
and unstable flow in the vane pump is mainly caused by the rotor–stator interaction between the
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impeller and the guide vane. These pulsations can sometimes be very severe and cause damage to the
piping or other components in a pumping system, which may give rise to vibration [6–9], generate
hydraulic noise [10–12], and affect the performance of the pumping system, thus affecting the stable
operation of the pumping system. Therefore, the distribution of pressure pulsations in the pump needs
to be studied to ensure the safe, efficient, and stable operation of the pumping station.

With the development of computational fluid dynamics (CFD) technology, more scholars are
using CFD to study complex flow fields in pumps [13–15], but the results of numerical simulation
need to be verified by experimental data. Therefore, combining numerical simulation and experiments
is more reliable. To ensure the safe and stable operation of pumping stations, many researchers are
paying attention to the pressure pulsation and the unsteady flow inside the centrifugal pumps [16–23]
and axial-flow pumps [24–29]. Studies on tubular pumps are relatively rare. Yang et al. [30]
studied the pressure fluctuation of an S-shaped shaft extension tubular pumping system by CFD
and experimentation, where the pressure fluctuations at 21 measurement locations in inlet and outlet
passages were obtained and analyzed in time and frequency domains for three typical working
conditions of different flow rates. Zhang et al. [31] investigated the three-dimensional turbulent flow
and the pressure fluctuation in a submersible axial-flow pump by adopting the RNG (Renormalization
Group) k-ε turbulence model and the SIMPLEC (Semi-Implicit Method for Pressure-Linked Equation)
algorithm, with which the pressure pulsation distribution of the impeller inlet and outlet was obtained.

In this paper, an experimental system for model and pressure pulsation tests is built to validate
the numerical simulation results using six transient pressure sensors in different sections of the pump.
Unsteady numerical simulations are used to reveal the complex flow fluctuations, and the fast Fourier
transform (FFT) method is used to obtain the amplitudes of pressure fluctuations. The results can
provide references for further analysis of the pressure fluctuation of submersible tubular pumps, and
ensure the safe and stable operation of submersible tubular pump stations.

2. Numerical Simulation

2.1. Pump Geometry

The simulated object is a submersible turbine pump device. Figure 1 shows a single-line diagram
of the pump used in the numerical simulation and experiment, including the inlet passage, impeller,
guide vane, bulb unit, and outlet passage. The dimensions given in the figure are values relative to the
diameter D of the impeller. The main geometric parameters of the pump device are shown in Table 1.
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Table 1. Parameters of the model pump.

Impeller diameter (mm) 120
Rotational speed (r/min) 1450

Hub to tip ratio 0.4
Discharge range (L/s) 14~24

Number of blades 3
Number of guide vane blades 5

Blade angle (◦) 0
Tip clearance (mm) 0.2

2.2. Pump Modeling

The numerical simulation study in this paper is for the entire submersible tubular pump device,
in which the inlet passage, the outlet passage, and the bulb unit are modeled by Unigraphics NX
(11.0, Siemens PLM Software, Shanghai, China, 2016) for 3-D solid modeling, as shown in Figure 2a.
The impeller and guide vane components are generated automatically in the TurboGrid software (14.5,
ANSYS Inc., Pittsburgh, PA, USA, 2013); as shown in Figure 2b, the distance between the blade tip and
the impeller chamber is set to 0.2 mm.
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Figure 2. A 3-D model of the pump device: (a) passages and bulb unit; (b) impeller and guide vane.

2.3. Numerical Model and Grid Generation

The numerical simulation of this paper adopts the current common commercial CFD software
ANSYS CFX-14.5 (14.5, ANSYS Inc., Pittsburgh, PA, USA, 2013), which performs the steady and
unsteady calculations for the submerged tubular pump devices under different working conditions.
The three-dimensional Reynolds-averaged Navier–Stokes equations were solved by CFX code.
The turbulence effects were modeled by the standard k-ε turbulence model. The pressure–velocity
coupling was performed using the SIMPLEC algorithm. The criterion for convergence was considered
to be 10−4, allowing an optimal number of iterations for each time step.

In this calculation, structured hexahedral cells were used to define the computational domain.
The grids of the inlet passage, bulb unit, and outlet passage were generated by ICEM-CFD (14.5, ANSYS
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Inc., Pittsburgh, PA, USA, 2013), while the grids of the impeller and guide vane were generated by
TurboGrid (14.5, ANSYS Inc., Pittsburgh, PA, USA, 2013). In order to ensure the grid quality, the grid
independence calculation was carried out, and the total grid number was about 4.19 × 106. Figure 3
shows the grid details for each component of the pumping system.
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The boundary conditions were set as follows: the inlet pressure was specified at the entrance of
the inlet passage. The inlet adopts the total pressure and the pressure is set to 1 for the atmosphere.
The mass outflow condition was defined at the exit of the outlet passage. The transient rotor–stator
model was used for the unsteady calculation. The shroud of the impeller was set as absolutely stationary,
and the blade and hub of the impeller were relatively stationary. No slip boundary conditions or wall
functions were used for the solid walls.

In this paper, the result of the steady calculation was taken as the initial flow field of the unsteady
calculation, and then the unsteady numerical simulation was carried out using the sliding mesh
technique. The time step of the unsteady calculations was ∆t = 3.4483 × 10−4 s. The impeller rotated 3◦

at each time step, so it took 120 steps to complete the rotation. The chosen time step was small enough
to get the necessary time resolution.

3. Experiment System

3.1. Test Bench

In order to test the external and internal characteristics of the pump, a small submersible tubular
pump test bench for model tests and pressure pulsation tests was established. The test cycle piping
system is shown in Figure 4, which had a length of 4.2 m and a height of 1.2 m (excluding the pressure
tank and the suspended height). The main dimensions of the test system are shown in Figure 4 (unit
is mm). The pipeline included a thick pipe section with an inner diameter of 200 mm, a tapered
section with an inner diameter of 200 mm to 120 mm, and a pipe section with an inner diameter of
120 mm. The test bench layout was divided into two layers. The upper layer included the submersible
pump, the pressure tank, the torquemeter, and the motor. From the inlet passage to the outlet passage,
the entire submersible tubular pump unit was made of plexiglass for flow visualization and internal
flow field measurements based on laser testing technology. The lower part contained an electromagnetic
flowmeter, auxiliary pump, butterfly valve, and other pipe accessories. The electromagnetic flowmeter
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satisfies the installation requirements as the water inlet pipe was greater than 10 D and the water outlet
pipe was longer than 5 D.Processes 2020, 8, x FOR PEER REVIEW 5 of 12 
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The external characteristic parameters of the pump device include discharge, lift head, power, and
efficiency. The instruments generally used for testing are mainly electromagnetic flowmeters, torque
meters, and differential pressure transmitters.

The discharge was measured by an electromagnetic flowmeter. The average discharge obtained
during a period of time was used as the discharge value under this operating condition.

Pressure measurement sections A-A and B-B in the system can be seen in Figure 4. The equation
for lift head is written as [32]:

H =

 p1

ρg
+

V2
1

2g
+ Z1

−  p2

ρg
+

V2
2

2g
+ Z2

 (1)

The torque moment and the rotational speed values are read from the tacho-torquemeter directly,
and converted to power through Equation (2):

P = Mω, ω =
2πn
60

(2)

When the above data are obtained, the efficiency is computed through Equation (3):

η =
ρgQH

p
(3)

3.2. Pressure Pulsation Measurement

The pump device pressure pulsation test mainly uses multiple dynamic pressure sensors to collect
pulsation data. The micropressure sensor used in this test was a CYG1505GSLF made by Kunshan
Shuangqiao Sensor Measurement Controlling Company (Kunshan, China, 2016). The basic parameters
are given in Table 2. The SQCJ-USB-36 data acquisition instrument was also produced by Kunshan
Shuangqiao Sensor Measurement Controlling Company (Kunshan, China, 2016). The number of
analog channels was 36 channels, and the sampling frequency was 100 kHz.

Table 2. Parameters of the pressure sensor.

Sensor Model CYG1505GSLF

Range (kPa) 50
Output (V) 0~5

Accuracy (%) 0.25
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In order to compare the different pressure pulsations in the various flow components of the
submersible pump device, dynamic pressure sensors were arranged at the impeller outlet (P1), middle
of the guide vane (P2), the guide vane outlet (P3), and the bulb unit (P4, P5 and P6) to monitor the
pressure pulsation, as shown in Figure 5. All the measuring points were arranged on the line where
the horizontal longitudinal section intersected the wall surface.
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4. Results and Analysis

4.1. External Characteristics of Pumping System

The external characteristic data of the submersible pumping system obtained by the model test was
compared with the performance of the pumping system predicted by CFD calculation. The comparison
results of the two are shown in Figure 6 (the solid square points in the figure are the data points
obtained by the model test, and the hollow square points are the data points obtained by the numerical
simulation. These points are respectively fitted with a quadratic curve to obtain the final performance
curve). It can be seen that the numerical simulation results agree well with the experimental results,
especially in the high efficiency area, where the high efficiency point appears in the same flow rate at
about 19 L/s, and the corresponding maximum efficiency is 74.4%. Under the small flow condition,
the numerical calculation results were higher than the model test values, while under large flow
conditions, the model test value was slightly higher than the calculated value. From the comparison of
calculated and measured results, the calculated data can be considered accurate and reliable.
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4.2. Pressure Pulsation Analysis

In order to compare the results of the pressure pulsation measurements, the monitoring points set
in the numerical calculation were the same as those in the experiment (P1, P2, P3, P4, P5, and P6), and
additionally the monitoring points inside the pump, which cannot be measured by testing, were added
to obtain more pulsation information for the pump. The detailed location of the monitoring points is
shown in Figure 7. Since the actual measurement points are distributed from the plane parallel to the
ground plane, this arrangement makes each point on the line appears to coincide, and only one point
can be seen in the front view. In order to show the location of the measuring points, Figure 7 is the
actual calculation domain rotated 90◦ clockwise along the axis.
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The pressure pulsation data of each point was subjected to fast Fourier transform analysis to
obtain the frequency domain diagram of each point. The results were compared with the experimental
data in different sections, as shown in Figure 8. (The red points in the figure are the pulsation data
points measured experimentally, while the black points are the pulsation data points obtained by
numerical calculation. Each point is connected with a straight line to obtain the final pressure pulsation
curve.) Only the pressure pulsation values for the six points P1–P6 were taken: P1 is the impeller
outlet, P2 is the middle guide vane, P3 is the guide vane outlet, P4 is the middle of the bulb unit, P5 is
the bulb unit tapered section, and P6 is the bulb unit tail in the optimum condition (Qopt = 19 L/s),
where the abscissa is the rotational frequency multiple, NF, and the ordinate is the amplitude, A. Here,
NF is defined as follows:

NF = 60 zF/n = F/Fn (4)

Figure 8 shows that the pressure pulsation measurement at the monitoring point P1 has a significant
amplitude at the full-fold frequency, and the numerical calculation of the frequency domain map is
only due to small adverse effects, such as noise interference. The blade passing frequency (BPF) and its
integer multiples have a large amplitude. However, both of them obtain the maximum amplitude at
BPF. The amplitude of the pressure pulsation test at the impeller exit monitoring point is 1.14 times the
unsteady calculated amplitude. The reasons for the error may be: (1) The influence of dynamic and
static interference. (2) The submerged cross-flow pump has a small bulb unit, and the motor is placed
outside the pump device and connected to the impeller through the rotating shaft. During the rotation
of the impeller, the rotating shaft also drives the water in the inflow passage to rotate, so under test
conditions, the pressure pulsation value is too large. (3) There are many interference factors in the test
case. (4) There is a certain relationship between the form of the Fourier transform and the selection and
length of the window function. However, the overall pressure pulsation test and numerical simulation
have a high degree of agreement for the main frequency. At monitoring point P2, due to the restriction
effect of the inlet vane on the water flow, the amplitude of the blade frequency is significantly reduced
with respect to the impeller outlet, and the amplitudes of the 1x rotation frequency and the 2x rotation
frequency do not change much. The amplitude of the model test at the blade frequency is 1.07 times the
unsteady calculated amplitude. At the integer frequency of the blade frequency, the amplitude of the
test and the numerical calculation is in good agreement, and the model test is caused by the influence
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of bubbles. The frequency domain map has more components at high frequencies. At monitoring
point P3 (the vane outlet), the amplitude of the model test and the unsteady calculation result of the
blade frequency are somewhat reduced, and the amplitude of the model test at this point is 1.23 times
the unsteady calculated amplitude. The amplitudes of the measurement and the unsteady calculation
result are obviously increased with the 12-fold frequency shift, which may cause undesirable flow
states. such as backflows and vortexes at the exit of the guide vane.
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The bulb unit also has a certain inhibitory effect on the pressure pulsation due to the rectifying
action of the supports. At monitoring point P4 (in the middle of the bulb unit), the pressure pulsation
amplitude is significantly reduced relative to the vane section. At the blade frequency, the amplitude
of the pressure pulsation test is 1.5 times the amplitude of the unsteady calculation. The amplitude of
the pressure pulsation test is significantly larger than the unsteady calculation result, but the difference
between the amplitudes of these two is smaller at 1x frequency. Probably because the monitoring point
is far from the impeller, the influence of the impeller on the pressure pulsation is reduced, which leads
to a large numerical error in the calculation of the amplitude at the 3x frequency shift. The frequency
domain diagram of monitoring point P5 is shown at the blade frequency, and the amplitude of the
pressure pulsation test is 2.4 times the amplitude of the unsteady calculation. The amplitude difference
between the test and the digital mode gradually increases, and the distance from the pulsating source
impeller also increases. The amplitude becomes smaller, and the influence of interference on the
test results is more obvious. At the same time, the flow path of the gradual section is widened, and
certain bad flow patterns occur when the water flow is fast. The model test has a large amplitude at
high frequencies. At the end of bulb section monitoring point P6, the test and numerical calculations
have large amplitudes at low frequencies. At the blade frequency, the amplitude of the model test is
2.8 times the unsteady calculated amplitude. Due to the poor flow pattern in the tail of the bulb body,
the frequency domain diagram of monitoring point P6 obtained as measured by the pressure pulsation
test also has a large amplitude at high frequencies.

In summary, under the optimal working conditions, the pressure pulsation values of the monitoring
points obtained by the pressure pulsation test are basically the same as the general trend for the
unsteady calculation results. In the impeller and vane parts especially, the monitoring points are at
the main frequency and amplitude. The upper abundance is higher, and the amplitude of the blade
frequency increases up to 11%. It can be seen that the pressure pulsation test and the pressure pulsation
data obtained by the nonfixed constant value simulation are more accurate, which further studies the
internal characteristics of the pump device through a nonfixed constant value simulation.

5. Conclusions

The study presents a numerical simulation and experiment of external characteristics and pressure
pulsation of a submersible tubular pumping system. The following results are obtained:

(1) Comparing the numerical simulation results and experimental data of pump performance under
different working conditions, the results of the calculation and the experiment are in good
agreement, especially in the high efficiency area, and some deviations under high flow and small
flow conditions.

(2) The pressure pulsation values of the six monitoring points in the axial direction of the wall of the
pumping system calculated by the unsteady simulation are basically the same as the overall trend
of the pressure pulsation test results. The pressure fluctuation intensity is strongest in the impeller
outlet, and then it gradually weakens. The main frequency and the amplitude matching degree
are higher, and the pressure pulsation values on the wall of the bulb unit are quite different.

(3) The blade passing frequency and its multiples play a leading role in pressure pulsation. Due to the
rotor–stator interaction at the exit of the impeller, the influence of the blade frequency is obvious.
The farther the measuring point is from the impeller, the less affected the pressure pulsation is by
the blade frequency. The frequency amplitudes decrease from the impeller exit to the bulb unit.

(4) Based on this research, the experimental pressure pulsation monitoring points can be increased
in the future to further reveal the internal pulsation distribution law of submersible tubular
pumping systems.
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Nomenclature

A Amplitude, Pa
F Actual frequency after Fourier transform, Hz
Fn Blade passing frequency, Hz
g Gravity, m/s2

H Lift head, m
M Torque, Nm
n Rotational speed, r/min
NF Rotational frequency multiple
p1,p2 Static pressure of section A-A and B-B, Pa
P Shaft power, kW
Q Discharge, L/s
Qopt Discharge of optimal condition, L/s
T Period, s
V1,V2 Flow velocity of section A-A and B-B, m/s
z Blade number of impeller, 3
η Efficiency
ρ Density of water, kg/m3

ω Angular velocity of rotation, rad/s
4t Time step, s
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