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Abstract: The application of empirical Bayes for lot inspection in sequential sampling plans is usually
conducted to estimate the proportion of defective items in the lot rather than for hypothesis testing
of the variables’ process mean. In this paper, we propose the use of empirical Bayes in a sequential
sampling plan variables’ process mean testing under a squared error loss function and precautionary
loss function, for which the prediction is performed to estimate a sequence of the mean when the
data are normally distributed in the case of a known mean and unknown variance. The proposed
plans are compared with the sequential sampling plan. The proposed techniques yielded smaller
average sample number (ASN) and provided higher probability of acceptance (Pa) than the sequential
sampling plan.

Keywords: empirical Bayes prediction; sequential sampling plan; squared error loss function;
precautionary loss function

1. Introduction

Acceptance sampling plans have been widely used in the industry for product quality inspection,
with the advantages of destructive testing, large-lot auditing, and ability to choose good history-based
suppliers. This method could reduce damage by requiring less product handling, error reduction, and
less cost and time restraints in the manufacturing process. Acceptance sampling plans by variables
can be classified into two types as follows: Estimation of the percentage of defective units out of the
specification limits and statistical hypothesis testing to control the parameters of the process that are
measured on a continuous scale, thus providing more information regarding the production in the
lots than attributes with a small sample size. The variable sampling plan is utilized as part of quality
assurance concerning the average quality of products, such as bulk materials in bags and drums [1],
which are one of the variable sampling plan that aims to identify a process mean of the statistical
hypothesis testing. Balamurali et al. [2] considered the repetitive group in the variables sampling
plan in comparison with single, double, and sequential plans. Sankle and Singh [3] studied the single
sampling plan by variables when the data were correlated with a known variance.

The Bayesian approach, as an alternative to the classical approach, is widely used in statistical
inferences. Its principle is to incorporate information in the parameters’ history through a prior
distribution, assuming a known form of distribution. The parameters of a prior distribution, called
hyperparameters, are usually assumed to be known or can be estimated regardless of the observed
data. In contrast, when the hyperparameters are unknown and estimated from the observed data, it is
called the empirical Bayes (EB) approach [4]. Studies involving EB have been performed by many
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authors, including Krutchkoff [5], Casella [6], Lu [7], Cui and George [8], Khaledi and Rivaz [9], and
Maswadah [10].

The EB approach of estimation parameters can be obtained by using several loss functions, such
as the square error loss (SEL) function and precautionary loss (PL) function. The loss functions are
considered a loss in the stages of the quality procedure, which reduces the deviation from the true
value and increases the target value [11]. They are applied in production quality assurance and the
decision-making processes of producers and statisticians. Moskowitz and Tang [12] considered the
Bayesian method of estimation parameters using the quadratic loss function and step-loss function
applied in a variable acceptance sampling plan in cases of known and unknown variance. Jaheen [13]
illustrated EB prediction of the estimation parameter using the linex and quadratic loss function. Naji
and Rasheed [14] provided Bayesian estimation based on the PL function, where the parameters were
the shape and scale of the Gamma distribution. Research on Bayesian and EB estimation loss functions
includes Rahman et al. [15], Zaka and Akhter [16], and Lavanya and Alexander [17].

In addition, EB can be used to estimate newly observed data for predictive purposes, based on
the posterior predictive distribution. Gimlin and Breipohl [18] studied the Bayesian approach in a
sequential and non-sequential sampling plan of a binomial-distributed random variable with a beta
prior distribution and aimed to identify a decision rule with the minimum average risk, using dynamic
programming equations. Lam et al. [19] investigated the Bayesian approach in a sequential sampling
plan by variables with data normally distributed under an unknown mean and known variance. The
Markov technique was used to minimize the expected cost of the optimal sequential sampling plan.
Liang et al. [20] studied the efficiency of the Bayesian approach in a sampling plan for lifetime testing
under random censoring variables with the exponential distribution using the quadratic loss function in
Bayes risk; the proposed plan minimized the total duration of the lifetime. Dunsmore and Wright [21]
studied Bayesian prediction in a sequential sampling plan to test the lifetime of items that were taken
by a group of items. The random variable followed an exponential distribution with a gamma prior
distribution. For the sequential testing at stage k, if a lot was accepted at stage k, with k survivor items,
then the predictive distribution was utilized to estimate the average lifetime of the k surviving items.

The EB method was also applied to estimate the percentage of defective units when the lots were
accepted [22]. Shin and Shin [23] applied EB for the inspection of a repeated sampling plan by variables
and using the data history to estimate the EB estimator, which was based on an estimation of the
percentage of defective units. Karunamuni [24] studied EB in a sequential component problem based
on an exponential family distribution. The minimum EB risk was used to determine the stopping
time in the sequential decision. Delgadillo and Bremer [25] utilized the EB approach, combined with
a specified cost function, to test the destruction of high-quality products in a Poisson process. The
proposed method was compared with traditional methods, including single, double, multiple, and
skip-lot sampling plans.

It can be seen that the sequential sampling plan often provides a smaller average sample number
than single, double, or multiple plans. Thus, the sequential sampling plan can be considered as part of
destructive testing for high-quality production. In this paper, we propose the use of the EB approach
using SEL and PL functions for lot inspection in sequential sampling plans to test variables’ sampling
plan process mean. The EB method under the SEL function is easy to calculate, which is the mean
of the posterior distribution function and the PL function, and can be applied for reliability and risk
analysis. The prediction is then performed to estimate a sequence of the mean under a six-sigma-level
quality. The proposed plan is then compared with the traditional approach, the sequential sampling
plan by variables. The outline of this paper is as follows. In Section 2, the variable sampling for the
process mean testing is described. Next, in Section 3, the traditional plan, sequential sampling plan by
variables, is shown. In Section 4, the prediction based on the EB approach under SEL and PL functions
is explained. Sections 5 and 6 cover the results of the simulation and application example. The final
section presents the conclusion.
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2. Variables Sampling for Process Mean Testing

The variable sampling plan is one of the acceptance sampling plans that is applied in quality
assurance of lots. Quality characteristics are measured by a continuous scale [1]. In this paper, the
variable process mean is utilized for the statistical hypothesis under a six-sigma quality level, then the
process mean has 3.4 defective units per million opportunities (p) and it is assumed to shift to ±1.5σ.
The proportion of defective units in the process is defined by:

p = P(X > USL
∣∣∣µ) = 1− F

(
USL− µ

σ

)
, (1)

where USL is an upper specification limit and F(x) =
∫ x
−∞

1
√

2π
e−

z2
2 dz. Thus, the variable process mean

hypothesis testing under USL is given by H0 : µ2 ≤ µ1 vs. H1 : µ2 > µ1, where the parameter µ1 is the
acceptable process level (APL) and µ2 is the rejectable process level (RPL). When data are assumed
to have a normal distribution: X ∼ N(µ, σ2), where σ is known, the parameters µ1 and µ2 can be
estimated by:

APL = µ1 = P(X > USL
∣∣∣µ1) = Mean + 1.5σx,

and:
RPL = µ2 = P(X > USL

∣∣∣µ2) = ACL + Zβσx, (2)

where ACL = µ1 + Zασx are acceptance control limits, Z ∼ N(0, 1), x is the sample mean, σx is the
standard deviation of the data, σx is the standard deviation of the sample mean, the producer’s risk
(α) is the probability of rejection at µ1, and the consumer’s risk (β) is the probability of acceptance at
µ2 [26].

3. Sequential Sampling Plan by Variables

The sequential sampling plan can be categorized by attributes and variables. The sequential
sampling plan is modified from the double sampling plan (DSP) and multiple sampling plan (MSP). The
samples in this method are taken sequentially, one by one, from the process or lot, called item-by-item
sequential sampling. When more than one sample is taken, it is then called group sequential sampling.
In addition, the sequential sampling plan by attributes is a one-tailed test because it focuses on an
increase of the proportion of the defective when compared with the acceptable quality level (AQL).
In contrast, the sequential sampling plan by variables (SSP by variables) can be considered as a
one-tailed and two-tailed test: Lower or upper specification limit testing (LSL/USL) and double testing,
respectively [1]. Furthermore, when USL is specified, the acceptance limit line (Y1) and rejection limit
line (Y2) for accepting the lot, continuing sampling, and rejecting the lot are:

Y1 = −h1 + s · n and Y2 = h2 + s · n. (3)

Thus, the lot is accepted if
∑n

i=1 xi ≤ Y1, the lot sampling is continued if Y1 <
∑n

i=1 xi<Y2, and
the lot is rejected if

∑n
i=1 xi ≥ Y2. Let h1 = LBσ2/(µ2 − µ1) be the intercept of the acceptance line,

h2 = LAσ2/(µ2 − µ1) is the intercept of the rejection line, s = (µ2 + µ1)/2 is the slope of the lines, L is
the common logs, and A = log[(1− β)/α], B = log[(1− α)/β], and known σ Generally, the probability
of acceptance (Pa) is constructed by:

Pa(µ) =
{
[(1− β)/α]w − 1

}
/[(1− β)/α]w − [β/(1− α)]w, (4)

where w = (µ2 + µ1 − 2µ)/(µ2 − µ1). The average sample number (ASN) [27] is expressed as:

ASN(µ) =

[
LAσ2

µ2 − µ1
+ Pa ·

(
Lσ2 log[β/(1− α)] − Lσ2A

µ2 − µ1

)]
/
(

2µ− µ2 − µ1

2

)
. (5)
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4. Empirical Bayes Prediction Approach

The Bayesian approach is widely applied in statistical inference, where the unknown parameters,
δ, are considered as a random variable, depending on information in the history of the parameters,
called the prior probability density function, and assuming a known prior distribution, π(δ|ω), and
known hyperparameter, ω. Thus, inference concerning δ is performed using the Bayes’ theorem, which
can be expressed up to proportionality as the product of the likelihood function, L(δ), and the prior
distribution, π(δ|ω). The posterior distribution, h(δ

∣∣∣x), is obtained as following:

h(δ
∣∣∣x) = L(δ) ·π(δ|ω)

M(x
∣∣∣ω) ∝ L(δ) ·π(δ), (6)

where M(x
∣∣∣ω) denotes the marginal distribution of x.

The EB is involved, when the unknown hyperparameter (ω) is estimated from the observed
data, which do not conform to the Bayesian concept. The hyperparameter can be calculated from the
marginal distribution of x, given by:

M(x
∣∣∣ω) =

∫
δ

f (x
∣∣∣δ) ·π(δ|ω)dδ. (7)

In this case, the observed data, x, are a continuous random sample. The predictive distribution
function is then developed to estimate the newly observed data or a future observation (xn+1), based
on the previous observed data, x1, x2, x3, ..., xn or x, which can be derived from:

h(xn+1|x) =
∫
δ

f (xn+1
∣∣∣δ) · h(δ∣∣∣x)dδ. (8)

Suppose that f (xn+1
∣∣∣δ) is a function of the new observed data.

In this paper, we propose the use of EB in the sequential sampling plan (EB in SSP) in the case of a
known mean, µ0, and unknown variance, σ2. The parameter estimators are determined by SEL and
PL functions.

Assuming X ∼ N(µ0, σ2), informative prior on σ2: σ2
∼ IG(a, b), where σ2 is the parameter and the

hyperparameters are a and b that can be estimated from the marginal likelihood distribution as follows.

4.1. Determine the Marginal Likelihood Distribution Function

The hyperparameters a and b are obtained by the marginal likelihood distribution as follows:

M(x
∣∣∣a, b) =

∞∫
0

f
(
x
∣∣∣σ2

)
·π

(
σ2

)
dσ2

=
∞∫
0

1
(2πσ2)

n
2

e
−

1
2σ2

n∑
i=1

(xi−µ0)
2

·
ba

Γ(a)

(
σ2

)−(a+1)
e
−

b
σ2

dσ2

Then:

M(x
∣∣∣a, b) =

ba
· Γ

(
a + n

2

)
(2π)

n
2 Γ(a)

[
1
2

n∑
i=1

(xi − µ0)
2 + b

](a+ n
2 )

. (9)

Next, if L(a, b
∣∣∣x) = M(x

∣∣∣a, b) is not a closed form, the hyperparameters, a and b, can be obtained
using a numerical method that is utilized by the Newton Raphson method [28]. Then, the estimators, â
and b̂, will be substituted into the posterior distribution function.
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4.2. Calculate the Posterior Distribution Function of σ2

The posterior distribution function of σ2 can be determined as follows:

h
(
σ2

∣∣∣x) ∝ L
(
σ2

∣∣∣x)π(σ2
)

∝
1

(2πσ2)
n
2

e
−

1
2σ2

n∑
i=1

(xi−µ0)
2

·
b̂â

Γ(â)

(
σ2

)−(â+1)
e
−

b̂
σ2

.

Thus,

h
(
σ2

∣∣∣x) ∝ (
σ2

)−(â+ n
2 +1)

e
−

1
σ2 [

1
2

n∑
i=1

(xi−µ0)
2+ b̂]

. (10)

The posterior distribution function of σ2 is an inverse gamma distribution, that is:

σ2
|x ∼ IG

â +
n
2

, b̂ +
1
2

n∑
i=1

(xi − µ0)
2

.

4.3. Obtain the EB Estimator of σ2 with Respect to the SEL Function

The SEL function format is given by:

L
(
t; σ2

)
=

(
σ2
− t

)2
, (11)

where t is the estimation value of the parameters. Thus, the EB estimator of σ2 is the mean of the
posterior distribution [29], which can be determined by:

σ̂2
SEL = E

(
σ2

∣∣∣x). (12)

Thus, the EB estimator of σ2 under the SEL function is

σ̂2
SEL =

1
2

n∑
i=1

(xi − µ0)
2 + b̂

â + n
2 − 2

. (13)

4.4. Determine the EB Estimator of σ2 with Respect to the PL Function

The PL function format is provided by:

L
(
t; σ2

)
=

(
σ2
− t

)2

t
. (14)

The EB estimator of σ2 for PL [29] is determined by:

σ̂2
PL =

√
E
[
(σ2)2

|x
]
. (15)

Then, the estimator under PL can be obtained [30] as follows:

E
[(
σ2

)2
|x
]

=
∞∫
0

(
σ2

)2
· h

(
σ2

∣∣∣x) dσ2

=
∞∫
0

(
σ2

)2
·

(
σ2

)−(â+ n
2 +1)

e
−

1
σ2 [

1
2

n∑
i=1

(xi−µ0)
2+ b̂]

dσ2.
(16)
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From Equation (16), the estimator of σ2 under PL is:

σ̂2
PL =

√√√√√√√√√√[
1
2

n∑
i=1

(xi − µ0)
2 + b̂

](â+ n
2−2)

Γ
(
â + n

2 − 2
) .

After that, the estimators of σ̂2
SEL and σ̂2

PL will be replaced into the posterior predictive
distribution function.

4.5. Construct the Posterior Predictive Distribution Function of xn+1
∣∣∣x

The posterior predictive distribution function can be calculated as follows:

h(xn+1
∣∣∣x) =

∞∫
0

f
(
xn+1

∣∣∣σ2
)
· h

(
σ2

∣∣∣x)dσ2

=
∞∫
0

1
√

2πσ2
e
−

1
2σ2 (xn+1−µ0)

2

[
b̂+ 1

2

n∑
i=1

(xi−µ0)
2
]

Γ(â+ n
2 )

(â+ n
2 )

×

(
σ2

)−(â+ n
2 +1)

e
−

1
σ2 [b̂+

1
2

n∑
i=1

(xi−µ0)
2 ]

dσ2.

Thus,

h(xn+1
∣∣∣x) = Γ( 2â+n+1

2 )

Γ( 2â+n
2 )

{
π·(2â+n)( 2

2â+n )
[
b̂+ 1

2

n∑
i=1

(xi−µ0)
2
]} 1

2

×

 1+ 1
(2â+n)

(xn+1−µ0)
2

( 2
2â+n )

[
b̂+ 1

2

n∑
i=1

(xi−µ0)
2
]

−( 2â+n+1

2 )

.

(17)

The results show that the posterior predictive distribution function, xn+1
∣∣∣x , is a location-scale

t-distribution, that is:
xn+1

∣∣∣x ∼ t(ν, µ0, λ),

where:
ν = 2â + n,

and:

λ =
( 2

2â + n

)b̂ + 1
2

n∑
i=1

(xi − µ0)
2

.
5. Numerical and Results

In this study, we considered the variables process mean hypothesis USL testing under H0 : µ2 ≤ µ1

vs. H1 : µ2 > µ1, where there is a comparison of two methods according to the SSP by variables and EB
in SSP. In the case of EB in SSP, we considered the case of a known mean, µ, and unknown variance,
σ2, assuming informative prior on σ2:σ2

∼ IG(a, b), where a and b denote hyperparameters. The
parameter σ2 is determined from SEL and PL functions. The hyperparameters, a and b, are obtained by
Newton-Raphson. The data are generated from a standard normal distribution, the lot size is specified
by N = 1000, the sample size is defined by n = 50, and the number of iterations is given by t = 1000.
The proportion of defective units is determined by a six-sigma process level in which the proportion of
defective units at APL is p = 0.00034, α = 0.05, and β = 0.10. The Pa and the ASN are considered as the
criteria for comparison. The result of the simulation with the two approaches is expressed in Table 1.
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Table 1. Comparison Pa and ASN of SSP by variables, EB in SSP for SEL and PL.

Pa ASN

SSP EB in SSP
(SEL) EB in SSP (PL) SSP EB in SSP

(SEL) EB in SSP (PL)

0.9662 0.9990 0.9977 21.1673 10.9694 12.4706
0.9598 0.9796 0.9998 * 22.0605 18.8427 5.4135
0.9548 0.9976 0.9993 * 22.7102 12.5077 10.5291
0.8883 0.9997 0.9980 28.5539 5.1358 3.4486
0.9568 0.9999 * 0.9990 22.4496 8.5023 4.9671
0.9448 0.9996 0.9987 * 23.8553 9.9511 8.4201
0.9645 0.1617 0.9599 21.4148 38.1324 22.0460
0.9703 0.9993 0.9989 * 20.5323 10.3801 6.6090
0.9235 0.9999 * 0.9995 * 25.9091 4.7902 3.9721
0.9642 0.9963 0.9994 * 21.4582 13.4647 9.9028
0.9407 0.8658 0.9762 24.2880 29.9258 19.5063
0.9651 0.9941 0.9995 * 21.3328 14.6292 9.9395
0.9767 0.2157 0.9288 19.4190 33.5929 34.0495
0.8998 0.9998 * 0.9987 * 27.7680 8.7000 11.3738
0.9521 0.9997 * 0.9997 * 23.0272 4.1074 4.8513
0.9735 0.9996 0.9996 * 19.9923 9.6105 6.4155
0.9586 0.9997 * 0.9998 * 22.2191 7.2359 6.0929
0.9691 0.9999 * 0.9315 20.7170 8.0689 25.1862
0.9437 0.9785 0.9882 23.9723 15.8336 2.7129
0.9577 0.9775 0.9243 22.3429 19.2633 25.8429
0.9434 0.9998 * 0.9991 24.0095 9.0979 7.4710
0.9544 0.9999 * 0.9996 * 22.7502 7.7668 7.5423
0.9586 0.9998 * 0.9994 * 22.2226 4.9286 5.1259
0.8849 0.9999 * 0.9998 * 28.7711 8.2136 6.7508
0.9463 0.9901 0.9990 * 23.6941 6.5899 7.0308
0.9482 0.9932 0.9998 * 23.4808 15.0636 8.8335
0.9386 0.9970 0.9994 * 24.5044 12.9948 10.1527
0.9154 0.9998 * 0.9993 * 26.5839 8.9655 7.8158
0.9444 0.9904 0.9989 * 23.8986 6.2963 6.8308
0.9748 0.9986 0.9999 * 19.7757 11.5157 8.1897
0.9748 0.8417 0.9999 * 21.7248 31.3442 15.1279
0.9623 0.9748 0.9930 25.2059 19.7683 17.1843
0.9313 0.9954 0.9867 21.5153 6.1856 6.4932
0.9638 0.9999 * 0.9980 23.5936 8.3319 5.9042
0.9472 0.9999 * 0.9974 25.5931 4.6231 5.1422
0.9271 0.9998 * 0.9996 * 21.5357 7.0424 6.6292
0.9637 0.8614 0.9894 26.0231 31.2110 9.7624
0.9222 0.9997 * 0.9996 * 23.5789 9.2951 6.9346
0.9463 0.9901 0.9997 * 23.6941 6.5899 7.0308
0.9473 0.9999 * 0.9983 23.2380 7.8688 11.2152
0.9503 0.9985 0.9988 22.7621 6.8328 7.9634
0.9543 0.9995 0.9999 * 26.4014 10.1902 9.3346
0.9177 0.9999 * 0.9997 * 21.9923 8.2467 7.6790
0.9604 0.9999 * 0.9999 * 22.6079 8.3337 6.3901
0.9556 0.9967 0.9931 20.8212 6.0245 6.3629
0.9685 0.9997 * 0.9935 23.2112 4.3715 4.7472
0.9506 0.9994 * 0.9990 22.7027 10.3105 5.9873
0.9548 0.9999 * 0.9969 22.9562 7.7538 7.1945
0.9527 0.9994 * 0.9974 22.8379 10.2288 8.6005
0.9537 0.9968 0.9853 22.9239 6.0038 5.7879
0.9530 0.9690 0.9998 * 27.7936 20.7371 9.7188

- 0.9998 * 0.9959 - 6.9083 6.9956

* is the estimated value difference at the fifth decimals position.
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In this paper, we considered the process mean USL testing with SSP by variables and EB in SSP
using SEL and PL functions. When µ1 and µ2 were determined by referring to Equation (2) and then
µ1 = 1.50 and µ2 = 1.92. In addition, Figure 1a–c show that when the process mean USL testing with
SSP by variables and EB in SSP using SEL and PL functions, the limit lines for SSP by variables and
EB in SSP approaches are included as follows: The acceptance limit line (Y1) and rejection limit line
(Y2), where h1 = 5.4387 and h2 = 6.9826. It can be seen that the results of SSP by variable testing found
that the cumulative of the sample mean are compared with Y1 and Y2, then the cumulative of sample
mean are less than Y1 at the sample size n = 26. That is, to accept H0, and then the lot is accepted. Next,
the EB in SSP for SEL and PL under USL testing are considered, where Y1, Y2, h1 = 5.4387 and h2 =

6.9826 are considered similar to the case of the SSP by variables. The hyperparameter estimators, â
and b̂, are obtained from the Newton-Raphson numerical. The results of the EB in SSP for SEL and
PL cases provide that the cumulative of the mean of the posterior predictive distribution (E(xn+1

∣∣∣x))
are comparable with Y1 and Y2, indicating that the E(xn+1

∣∣∣x) is less than Y1, the result of which is to
accept H0 or the lot is accepted at the sample size n = 9 and n = 12. Thus, the proposed plans provide
smaller sample sizes than SSP by variables.

In addition, the process mean USL testing with SSP by variables and EB in SSP using SEL and PL
functions can be considered by Pa and ASN. Table 1 shows that the Pa and ASN of EB in SSP for SEL
and PL are comparable with SSP by variables. The Pa can be calculated by using Equation (4). The Pa

of the SSP by variables is the smallest, which is around 0.8849 to 0.9767, and it has a decreasing trend
when the averages are large. However, the majority of the Pa for EB in SSP for SEL and PL yield the
highest Pa that is stable close to 0.99. It is evident that Pa of the proposed plans provides a higher and
wider spread than the SSP by the variables, as can be seen in Figure 1d,e, respectively.

Furthermore, the ASN for SSP by variables and EB in SSP can be calculated from Equation (5), for
which the values of ASN for the SSP by variables are between 19 and 29 per lot. The majority of the
ASN for the EB in SSP for SEL and PL are the smallest, from 4 to 25 per lot. Thus, it can be seen that the
ASN values of the proposed plans are smaller and more spread than the SSP by variables. It can be
seen in Figure 1f,g, respectively.
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6. An Application Example

Real data considers liquid crystals’ display with super twisted nematic (STN) technology for
improvement of the LCD, which is considered the thickness of the liquid crystals’ display [31]. APL(µ1)
is 0.70 mm, RPL(µ2) is 0.77 mm, α= 0.05, and β= 0.10. This data are observed by n = 79 as follows:

0.717, 0.698, 0.726, 0.684, 0.727, 0.688, 0.708, 0.703, 0.694, 0.713, 0.730, 0.699, 0.710, 0.688, 0.665, 0.704,
0.725, 0.729, 0.716, 0.685, 0.712, 0.716, 0.712, 0.733, 0.709, 0.703, 0.730, 0.716, 0.688, 0.688, 0.712, 0.702,
0.726, 0.669, 0.718, 0.714, 0.726, 0.683, 0.713, 0.737, 0.740, 0.706, 0.726, 0.688, 0.715, 0.704, 0.724, 0.713,
0.694, 0.742, 0.690, 0.704, 0.697, 0.705, 0.707, 0.687, 0.718, 0.718, 0.724, 0.706, 0.687, 0.673, 0.730, 0.732,
0.720, 0.688, 0.710, 0.707, 0.706, 0.709, 0.729, 0.729, 0.685, 0.686, 0.722, 0.720, 0.715, 0.727, 0.696.

The sample mean of this data is 0.7088 and the standard deviation is 0.0172. The results show that
the majority of the Pa values of EB in SSP for SEL and PL provide higher values than SSP by variables,
which is about 0.99, as can be seen in Figure 2a,b, respectively. In contrast, the ASN of the two proposed
plans is mostly smaller than the SSP by variables, which are provided in Figure 2c,d. Therefore, it is
clear that the result of EB in SSP for SEL and PL in the data provide similar simulation results.
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7. Conclusions

In this paper, we considered the EB in SSP using SEL and PL functions for variables’ process mean
USL testing when data were assumed to be normally distributed under a situation of a known mean
and unknown variance. The lot size was N = 1000, the sample size was n = 50, and the number of
iterations was t = 1000. The proportion of defective units was determined by a six-sigma process level
in which the proportion of defective units at APL was p = 0.00034, α = 0.05, and β = 0.10. The proposed
plans were compared with the traditional SSP by variables. The result indicated that the proposed
methods provides a higher Pa and smaller ASN than the traditional approach. The proposed methods
also provided promising results in a real situation for variables’ process mean testing and reduced the
producer’s risk, including cost savings in inspecting products in the lot. It is clear that the EB in SSP
under SEL and PL functions use the data twice because of the prior distribution having less knowledge
about the parameters. Thus, it is a good technique for solving this problem, which is to estimate the
hyperparameters from observed data. It can be seen that the proposed plans are more sufficient than
SSP by variables because they can reduce the sample size or ASN for inspection of the lot and provide
high values of Pa. In addition, we applied the proposed plan to real data of a liquid crystal display with
super twisted nematic (STN) technology for improvement of the LCD, which yielded consistent results
with those in the simulation. In future research, the EB in the SSP approach can be compared with
other plans. The EB in the SSP approach can be performed using different types of priors and data.
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