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Abstract: Spiral nozzles are widely used in wet scrubbers to form an appropriate spray pattern
to capture the polluting gas/particulate matterwith the highest possible efficiency. Despite this fact,
and a fact that it is a nozzle with a very atypical spray pattern (a full cone consisting of three concentric
hollow cones), very limited amount of studies have been done so far on characterization of this type
of nozzle. This work reports preliminary results on the spray characteristics of a spiral nozzle used
for gas absorption processes. First, we experimentally measured the pressure impact footprint of the
spray generated. Then effective spray angles were evaluated from the photographs of the spray and
using the pressure impact footprint records via Archimedean spiral equation. Using the classical
photography, areas of primary and secondary atomization were determined together with the droplet
size distribution, which were further approximated using selected distribution functions. Radial and
tangential spray velocity of droplets were assessed using the laser Doppler anemometry. The results
show atypical behavior compared to different types of nozzles. In the investigated measurement
range, the droplet-size distribution showed higher droplet diameters (about 1 mm) compared to,
for example, air assisted atomizers. It was similar for the radial velocity, which was conversely lower
(max velocity of about 8 m/s) compared to, for example, effervescent atomizers, which can produce
droplets with a velocity of tens to hundreds m/s. On the contrary, spray angle ranged from 58◦ and
111◦ for the inner small and large cone, respectively, to 152◦ for the upper cone, and in the measured
range was independent of the inlet pressure of liquid at the nozzle orifice.
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1. Introduction

Gas–liquid absorption processes for gaseous contaminants removal are crucial in diverse industrial
fields and are basic means for air pollution mitigation associated with large-scale industrial operations.
To ensure the reduction of the gaseous pollutants released from such processes, many industrial facilities
adopt a gas scrubbing system as a post-treatment of produced polluted air. Gas scrubbers are rather
complicated devices, in which the polluted air is cleaned using a sprayed liquid, mostly various aqueous
solutions depending on the gas to be removed. This includes, for example, CO2 and VOC removal [1–3],
flue gas desulphurization [4–6], and ammonia separation [7]. Last but not least, scrubbing systems have
widely been recognized in separation of particulate matter [8–12], the release of which is due mostly
to various combustion processes [13–15] and, for example, comminution technologies [16,17]. This is
very important due to associated health and environmental concerns [18,19]. Comparing the ability
to remove particulate and gaseous pollutants, gas scrubbers have lower efficiency in one cleaning
cycle but are able to treat a significantly higher amount of polluted air compared to, for example,
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air filtration or membrane contactors [20–23]. In these applications, filter/membrane causes additional
resistance to airflow, thus disabling processing of huge amounts of polluted air generated in large-scale
industrial processes. On the other hand, gas scrubbers work with sprayed absorption liquid media,
which must then be subjected to another processing step, such as regeneration (if possible) or disposal,
which can be very expensive and energy demanding [24]. Due to these facts, there is a large field for
development and optimization of these systems in terms of operational parameters, chemicals used or
spraying arrangement including usage of extremely broad spectrum of nozzles. Nozzles are crucial
in a plethora of industrial applications including dust control [25], spray cooling [26–30], hydraulic
descaling [31], and play a vital role in gas scrubbers as they can provide an adequate spray pattern
of the absorption liquid. This is necessary to create the largest possible contact surface with gas phase
to ensure process intensification, appropriate mass transfer and thus separation efficiency. Such a type
of nozzle, which has scarcely been studied in terms of the spray characteristics, is the spiral nozzle.

Spiral nozzles have been found in different applications including flue gas desulfurization
and spray towers [4,5,32], spray drying [33], distillation [34], petrochemical industry [35], and fire
suppression [36,37]. Several studies tried to focus on the basic spray characteristics including
droplet-size distribution, the inlet liquid pressure–flowrate relationship, and mass spray density [38–41]
at different hydrodynamic conditions. Some authors did a research on the spray surface geometry [42]
and even air-assisted atomization using the spiral nozzle [43]. Important works related to the present
study are further described in detail. Li et al. [4] investigated spray characteristics of spiral nozzles
used in flue gas desulfurization. They observed the flowrate was linear with a square root of pressure
and droplet diameter was a power function of pressure. The droplet diameter variations with pressure
were similar for spiral nozzles with different orifice, while the spray angle varied slightly at pressures
higher than 40 kPa. Zhang et al. [32] studied spray characteristics of spiral nozzles with different
diameters using particle image velocimetry at different spray pressures. They observed both, the spray
pressure and nozzle diameter, to have an influence on the spray angle, droplet diameter, droplet size
uniformity, and sprayed area diameter. In a biomass pyrolysis experiments, they found a nozzle with
a diameter of 5.6 mm and the liquid pressure of two bars to be ideal for the quenching of pyrolysis
vapors. In another study, Zhou et al. [41] conducted experiments on the flow distribution characteristics
of a low-pressure high-flux spiral nozzle using a flow distribution testing system. They analyzed
the effect of nozzle size on the flow distribution by varying several parameters including nozzle
dimensions (nozzle length to diameter ratio), radial flowrate, position of sprayed surface, and spraying
angle. The results indicated that with increasing nozzle length to diameter ratio, the flowrate decreases
and spraying angle increases. With increasing pressure, the relationships were the same as in the above
mentioned works. Dong et al. [5] compared desulfurization performance of scrubbers with spiral
and Dynawave nozzle. Li et al. [42] developed a spray surface geometry model of a spiral nozzle
with involute atomization. They further simulated the model using MATLAB, which validated its
effectiveness and provided a theoretical basis for designing and manufacturing the spiral nozzles.
Wasik et al. [38] studied the influence of nozzle type (including a TF6 spiral nozzle) on a mass spray
density. For other works on spiral nozzles, especially those with different application, refer to [33–35].

In this study, we focus on a spiral nozzle (Figure 1a), which generates an atypical cone-like spray
consisting of three concentric hollow cones (Figure 1b), thus creating a full cone pattern (for further
details refer to [44]). The pattern is formed via a complicated nozzle geometry without axis of symmetry
and gradually narrowing orifice, in which the liquid is sprayed from several rebound surfaces at
different rake angles. This nozzle is quite different compared to spiral channel nozzles [45] or spiral
flow nozzles [46,47] with which it can be confused. Generally, a lot of works have been carried out
on nozzles creating a full-cone spray in various application fields [48–58]. Conversely, the amount
of works on nozzles with a spiral geometry is quite limited despite the fact that they possess several
very interesting features [59]:

• They are made of one piece of material (no internal parts, hence resistant to clogging);
• They have high discharge coefficients (higher flowrates possible at lower pressure drops);
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• They can provide fine atomization, wide range of flowrates and spray angles;
• A reduction in waste energy appearing as noise;
• Very wide effective patterns produced allow replacing several nozzles with one.
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Figure 1. A 3D model of the spiral nozzle studied (a) and the concentric hollow cone pattern produced
by the nozzle (b).

Therefore, we investigate the pressure impact footprint of the falling liquid (cross-sectional pattern
of the spray), spray radial, and tangential velocity distribution using the laser Doppler anemometry
(LDA). The pressure impact footprint of the spray is generally important in spray cooling applications;
in gas absorption processes this is not typically used. However, this can be easily used for validation
of CFD data, as it is practically simpler to measure pressure impact compared to using the LDA method
which is not always available. Further, we aimed at the spray morphology. This involved droplet-size
distribution, spray angle, and determining the area of primary and secondary breakup of the spray
using a classical photography modified with an Nd:YAG (neodymium-doped yttrium aluminum
garnet) pulse laser, and assess the breakup areas using selected dimensionless numbers, which has
not been carried out before for similar type of nozzle. We also compared the droplet diameter with
selected theoretical relationships used for prediction of droplet and ligament diameter. Finally, we tried
to outline flow conditions for ideal nozzle operation.

2. Underlying Phenomena

Liquid atomization (i.e., a breakup of liquid jet into dispersed fine droplets) is a complex
process involving several physical/chemical phenomena that take place simultaneously. The spray
characteristics (e.g., morphology, droplet size distribution, etc.) are strongly dependent on the atomizer
used, especially on its size and geometry. Further, it is dependent on the physical properties of the
fluids involved (i.e., the atomized liquid and the environment into which the liquid is sprayed
(usually ambient air)). The spray atomization is strongly influenced by the liquid density, viscosity,
and surface tension. The effect of density is rather lower, as indicated by the experimental data [60].
Conversely, the influence of the surface tension is quite essential. Surface tension is a force acting
against the formation of a new surface area. Atomization involves two main phases (i.e., primary and
secondary atomization). In the primary atomization, the disruptive forces act against the consolidating
forces and cause oscillations of the liquid. Once the disruptive forces are stronger than the consolidating
ones (surface tension), the bulk liquid disintegrates into smaller formations (ligaments, larger drops).
Then the secondary atomization occurs (i.e., larger droplets or ligaments split into smaller droplets
in a gas caused by either greater relative velocity or turbulence) [61]. A governing parameter relating
disruptive inertial and restorative surface tension forces is the non-dimensional Weber number:

We =
ρν2d
σ

, (1)
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where ρ, v, d, and σ are the fluid density, absolute radial velocity of liquid, characteristic dimension, and
surface tension, respectively. The larger the Weber number, the higher the tendency toward the liquid
breakup [62]. Viscosity is another very important parameter affecting the droplet size distribution and
mainly the flow mode inside the atomizer, thus influencing the spray pattern/morphology. The influence
of viscosity on the flow in the nozzle is quite complex and depends on the type of atomizer. Generally,
drop size increases with increasing viscosity and delays the liquid jet breakup [60]. Both surface
tension and viscosity decrease the tendency of the jet/sheet to disintegrate, which is accounted for by
the Ohnesorge number (i.e., the ratio of viscous to surface tension forces):

Oh =
µl√
σρld

, (2)

where ρl and µl are the liquid density and viscosity, respectively. Many spray nozzles form a liquid
sheet from bulk liquid prior to the atomization itself. The liquid sheet exits the nozzle orifice and
may oscillate, which results in the formation of liquid ligaments, which are then broken into droplets.
The droplet size is mostly in the same order as the liquid sheet thickness [63]. The primary atomization
is strongly dependent on the liquid jet Weber number:

Wejet =
ρlν

2
jetdo

σ
, (3)

where do is the nozzle orifice diameter and νjet is the jet velocity (i.e., liquid velocity inside the nozzle
prior to exiting the orifice). If the jet Weber number is lower, the surface tension forces impede the
formation of a new surface area, thus preventing the liquid sheet breakup. Conversely at a larger
jet Weber number, the breakup occurs due to the inertial forces to completely dominate over the
surface tension forces causing the liquid sheet to tear into ligaments and droplets [64]. A critical value
of the jet Weber number describes the onset of a decrease of the radial breakup distance. This value is
typically around 1000 depending on the nozzle type [65]. After the first breakup phase, the secondary
atomization may occur which is indicated by the gas Weber number:

Weg =
ρgν2

ARdD

σ
, (4)

where ρg is the ambient gas density. Droplet viscous forces are significant for Oh > 0.1. For Oh below
this value, the breakup was observed to be independent of Oh. For Oh < 0.1, the transition We for
individual breakup modes were practically constant as reported previously [66–68]. The individual
modes are droplet deformation/vibrational breakup for 0 < We < 11, bag breakup for 11 < We < 35,
multimode breakup for 35 < We < 80, sheet thinning for 80 < We < 350, and catastrophic breakup
for We > 350. These are; however, not valid for conditions with higher Oh. The individual modes
of secondary atomization are often depicted in We-Oh space, refer, for example, to [68–71]. To assess
objectively which regime factually took place in the atomization process, several correlations for critical
Weber number (Wec) were proposed for Oh→ 0. One of such correlation was suggested for Oh < 4 by
Gelfand [72] as follows:

Wec = WecOh→0

(
1 + 1.5Oh1.74

)
, (5)

where WecOh→0 is the critical We at low Oh, as listed above for individual modes.
The liquid sheet is formed via impinging the edge layer of the liquid jet on the surface of the helix

as indicated in the CFD model (Figure 2). Therefore, we can expect an analogy with the radial spread
of a liquid jet over a horizontal plane. This can be used to estimate the liquid sheet thickness (tsh)
based on the free-surface similarity boundary layer concept as developed by Watson [73] and used
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by Ren et al. [74] and Zhou and Yu [75]. Assuming the sheet flow on the helix surface be turbulent,
the sheet thickness at the edge of the helix can be estimated as follows:

tsh =
d2

o

8rh
+

0.0245d1/5
o r4/5

h

Re1/5
o

, (6)

where do and rh are the nozzle orifice diameter (11.25 mm) and width of the helix (6.45 mm), respectively,
and Re is the Reynolds number at the nozzle orifice calculated as follows:

Reo =
doνjetρl

µl
(7)
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To estimate the spray velocity in a given radial location (r), it is necessary to consider the effect
of viscous interaction with the helix surface. Therefore, a non-dimensional sheet thickness is defined
as the ratio of the actual thickness (tsh) to an inviscid sheet thickness (tsh0):

δ =
tsh

tsh0
= 1 +

0.196

Re1/5
o

( r
do

)9/5
. (8)

Note that tsh0 is the first term in Equation (6). The average sheet velocity at the edge of the helix
can be calculated as [74]:

νsh =
K

√
∆p

2πrhtsh0δ
, (9)

where K is the flow factor, which is a characteristic constant of the nozzle and ∆p is the pressure drop
at the nozzle (inlet pressure of the liquid). There is a relationship between the volumetric flowrate (QV)
and the inlet water pressure (∆p) as follows:

QV = K
√

∆p. (10)

For the spiral nozzle used in this study, the value is about 75. Further breakup of the sheet into
ligaments and droplets is due to inherent instabilities caused by the wave growth. The wavelength at
the sheet breakup governs the size of the ligaments and ultimately the droplet diameter. Dombrowski
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and Johns [76] developed a theory to predict the wave instability of liquid sheets in an inviscid gas.
The model assumes sinusoidal waves to be on the liquid sheet, and the force balance is performed
considering the inertial, pressure, and surface tension forces be associated with the wave displacement.
After simplification, the force balance can be expressed as follows:

(
∂ f
∂τ

)2

+
µLω̃

2

ρl

(
∂ f
∂τ

)
−

2
(
ρgω̃ν2

sh − σω̃
2
)

ρltsh
= 0, (11)

where τ is time and f and ω̃ are the breakup parameter and wavenumber, respectively. The breakup
parameter, also called dimensionless wave amplitude, was first investigated by Weber [77] who
obtained a value of 12 and further confirmed by Dombrowski and Hooper [78] who stated that this
value is constant regardless of the experimental conditions. However, in this study we better used the
following correlation as it can be a function of the nozzle geometry [63]:

f = Re0.07We0.37, (12)

where the Weber and Reynolds numbers are calculated for jet (i.e., liquid properties), liquid jet velocity
prior to entering the nozzle orifice, and nozzle orifice diameter as the characteristic length. Another
attempt was to estimate theoretically the ligament and droplet sizes based on the wave instabilities,
which are the main cause of sheet disintegration. With an assumption of attenuating sheet and the
formed ligaments be of cylindrical shape, the diameter estimate can be expressed as follows [76]:

dL = 2
(

4
3 f

)1/3 k2σ2

ρgρlν2
sh

1/6
1 + 2.6µl

3

√√
kρ4

gν
8
sh

6 fρ2
l σ

5


1/5

, (13)

where k for a uniform velocity radiating sheet can be expressed as follows:

k =
rtsh

νsh
. (14)

Accordingly, the estimate of the ligament breakup time τL,bu can be written as follows [74,77,79]:

τL,bu = 24

√
2ρl

σ

(
dL

2

)3/2

. (15)

Based on the ligament size dL, the droplet diameter dD can be calculated [76,77]:

dD = 1.882dL(1 + 3Ohsh)
1/6, (16)

where Ohsh is the Ohnesorge number based on the sheet thickness.

3. Experimental

3.1. Spiral Nozzle

A TF-28 150 asymmetric spiral nozzle (BETE, USA) was used in this study. Figure 3 shows a 3D
scan of the nozzle obtained using an ATOS Tripple Scan 8M camera and its profile. The nozzle is made
of Teflon and has a narrowing spiral-like orifice. The spiral is divided into three sections based on
the rake angle of the rebound surfaces related to the nozzle Z-axis. Liquid falling on the individual
rebound surfaces of the helix forms a full cone. The full cone can be considered for a combination
of three water curtains in the form of hollow concentric cones (Figures 1 and 4). Based on their position
to each other, they can be called as the outer (upper) cone, inner large, cone and inner small cone,
as indicated in Figure 4a.
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3.2. Pressure Impact Footprint

Measurement of the pressure impact footprint was done to visualize the pressure patterns
generated by the sprayed water. During spraying the water curtain fell down on surface connected
to an electronic tensometric pressure sensor. This surface was placed on a position system, which
was operated using a computer software. The real impact pressure values were recorded depending
the sensor position related to the nozzle. The impact measurement was performed twice, each with
a different arrangement of the impact surface. In each experiment, different hydrodynamic conditions
and different distances of the nozzle from the impact surface (planes, Figure 4b) were adopted.

3.2.1. Measuring the Impact Pressure in Four Planes

In the first set, pressure impact footprint of the water curtain was measured. This was done in five
planes (Figure 4b) (i.e., in the distances of 60, 80, 100, and 140 mm from the nozzle orifice). In each
experiment, an inlet water pressure was 2 bars corresponding to a flowrate of 1.76 L/s. These are
optimal hydrodynamic conditions for the operation of the nozzle tested. The experimental setup is
shown in Figure 5. It was a metal plate (1) placed on an upper moving arm (5), in the middle of which
was a dismountable metal casing (2) with a bevel-like top. At the top of the casing, an impact surface
(3) was attached and connected to a tensometric pressure sensor placed inside the casing. The impact
surface was circular with a diameter of 12 mm. The water falling down on the impact surface generates
an impact pressure, which is taken by the sensor and the signal is recorded by the data acquisition
system. The upper arm (5) was moved using a step motor in the direction of X-axis (Figure 5). This
system was placed on the top of a bottom moving arm (6), which was moving in the direction of Y-axis
(Figure 5). The area under the nozzle (4) was scanned in a length of 300 mm in the X-direction and
600 mm in the Y-direction, which was the maximum possible range of the experimental device used.
The shift of both arms was set to 5 mm.Processes 2019, 1, x; doi: FOR PEER REVIEW 9 of 26 
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3.2.2. Measuring the Impact Pressure in One Plane at Different Water Inlet Pressures

These experiments (Figure 6) were performed to clarify the effect of different inlet water pressures
(the pressure of water measured prior to entering the nozzle orifice) on the impact footprint. The impact
surface (2) was in the form of a circular plate with a diameter of 200 mm, in the center of which was
an opening (3) with a diameter of 1 mm. The opening was connected to a closed space under the
plate where the tensometric pressure sensor was placed (4). The space was completely filled up with
water prior to the measurement to ensure the impact pressure be transferred to the sensor through
the water fluctuations. The remaining parts of the experimental setup including the moving arms
in the X and Y axes were identical with the previous measurements (Figure 5). The only difference
was the extent of the area scanned, which was 240 mm in both directions with a step of 3 mm. All the
measurements were performed for plane 2 (i.e., in a distance of 70 mm from the nozzle orifice; Figure 4b).
The hydrodynamic conditions are shown in Table 1.Processes 2019, 1, x; doi: FOR PEER REVIEW 10 of 26 
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Table 1. Experimental conditions at pressure impact measurement.

Inlet Pressure (bar) 1.00 1.25 1.5 1.75 2.00

Flowrate (L/s) 1.25 1.41 1.54 1.65 1.76

3.3. Spray Morphology

Spray morphology was observed inside a transparent laboratory-scale sprinkle chamber made
of PVC glass (Figure 7a). The chamber with a water reservoir were fixed on a frame (Figure 7b)
together with a centrifugal pump providing water circulation through the nozzle. The experiments
were performed at 20 ◦C and an inlet pressure of 0.9 bar corresponding to a flowrate of 1.19 L/s. This
flowrate was selected due to ideal properties of the spray for measuring in the experimental device
due mainly to the size of the transparent chamber. Lower flowrate caused improper spray properties
including very narrow span and practically no breakup of the liquid stream exiting the nozzle into
ligaments/droplets. Higher flowrate caused significant rebound of the liquid stream from the chamber
wall, which had a negative effect on the snapshots taking.
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For a detailed evaluation of the spray, an apparatus as shown in Figure 8 was used (for the real
view refer to supplementary Figure S1). A classical photography with a modified type of lightning
(i.e., an Nd:YAG pulse laser lightning (2) with a pulse length of 5 ns) was used (a spray snapshot using
classical photography and modified with laser is shown in Figure S2). The images were taken using
a Canon D70 camera (1) with a Canon EF 10 mm f/2.8 USM Macro objective. From the images, the areas
of primary and secondary atomization of the spray were observed. The images were further used
to measure droplet size using the Stream Motion software (Olympus Corporation, Shinjuku, Japan).
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Figure 8. A scheme of the experimental setup for the assessment of the spray morphology/kinetics with
the Canon D70 camera (1), Nd:YAG pulse laser (2), spiral nozzle (3), centrifugal pump (4), flowmeter
(5), manometer (6), and valve (7).
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From the measured droplet sizes, distribution curves were plotted and fitted with suitable distribution
functions. The appropriateness of the fitting was then tested using the Kolmogorov–Smirnov test at
a significance level of 0.05. Two density distribution functions, which are frequently used to describe
droplet size in sprays were chosen (i.e., log-normal and Rosin-Rammler distribution) [80]. Log-normal
density distribution can be expressed as follows:

f (D) =
1

σD
√

2π
exp

 −
(
ln Di − µD

)2

2σ2
D

, (17)

where Di, µD, and σD are the droplet diameter, mean, and standard deviation of the distribution,
respectively. Rosin-Rammler density distribution is described by the following equation:

f (D) =
α
β

(
Di
β

)α − 1

exp
[
−

(
Di
β

)α]
, (18)

where α and β are empirical constants of the distribution. Further representative means of the droplet
size were calculated (i.e., surface-weighted mean), which is used in the area of absorption processes
where interphase area between two phases is important:

D20 =

∑ NiD2
i∑

Ni


1
2

. (19)

In addition, it is widely used Sauter mean diameter, which characterizes the spray fineness and
is often used to calculate the efficiency and rate of mass transport in chemical reactions. It is a ratio
of droplet volume to its surface area:

D32 =

∑
NiD3

i∑
NiD2

i

. (20)

Finally, volume weighted mean was calculated as follows:

D43 =

∑
NiD4

i∑
NiD3

i

. (21)

Another parameter studied was the spray angle, which was assessed using two methods. The first
method was based on the pressure impact footprint curves, which were approximated using an
Archimedean spiral. The other method was based on a visualization of the liquid spray in an
open space to determine the spraying angle of individual cones using the Stream Motion software.
Both methods are further explained in detail in the Results and Discussion section.

3.4. Spray Kinetics

Another method used was the laser Doppler anemometry (LDA), which provided us with
information about the spray velocity distribution. The LDA setup was arranged on the same apparatus
as for the experiments for the spray morphology evaluation (Figure 8). Thus, we obtained radial and
tangential velocities from the upper and inner large cone. The LDA was performed for eight horizontal
planes (Figure 9). In each plane, the spray velocity was measured in two perpendicular axes (the X-axis
in yellow, and the Y-axis in red).

The beginning of the spray velocity measurement in the X-axis was at a distance of 110 mm from
the nozzle center, as shown in Figure 9a (first position). Then, the spray velocity was measured after
each 5 mm up to a distance of 165 mm from the nozzle center (12 positions in total). The spray velocity
in the Y-axis was measured in a distance of 145 mm from the nozzle center and ranged from −80 to
80 mm (Figure 9a, detail shown in Figure 9b) perpendicular to the X-axis (33 positions in total). In each



Processes 2019, 7, 911 12 of 25

position, the measurement took 30 s or 30 thousand samples was taken. In the Z-axis, the point 0 mm
corresponds to the position above the spray. The radial velocity was then measured up to 70 mm from
this point in a step of 10 mm (8 positions in total; Figure 9b).Processes 2019, 1, x; doi: FOR PEER REVIEW 13 of 26 
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Figure 9. A representation of the measured position in relation to the spray (a) with a detailed
demonstration/description of the measured positions (b).

4. Results and Discussion

4.1. Pressure Impact Footprint

Data from measurements in individual planes are presented in Figure 10. In the 3D graphs
of Figure 10, the axes are not equidistant and the 2D graphs show the Cartesian coordinate system from
the view above, turned according to the nozzle position in the experiments. Therefore, the 2D graphs
can be considered for the spray cones’ baselines and serve mainly as a visualization of the spray impact
footprint of the two inner cones (the upper cone was out of the scanned area). The values of the impact
pressure are very low (0.61 kPa at the highest). The reason for this is the size of the impact area, which
is quite large for such a fine spray. The pressure impact intensity decreases with increasing distance
from the nozzle orifice from about 0.61 kPa in the plane 1 to less than half (0.28 kPa) in the plane 6,
which corresponds to the distances of individual planes from the orifice (60 and 140 mm of the plane
1 and 6, respectively). The effective spraying angle of the inner cones was further evaluated. This was
done only for the pressure of 2 bars because with increasing inlet pressure, the effective spraying angle
varied very slightly. Figure 10d shows the maximum impact pressure in relation to set inlet pressure
of the liquid at the nozzle. We can see a linear increase up to an inlet pressure of 1.5 bar, then the impact
pressure increase slowed down. The same is shown in supplementary Figure S3, which compares the
varying intensity of the impact pressure at a distance of 70 mm (plane 2) from the nozzle in relation
to changing increasing inlet pressure.
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Figure 10. Pressure distribution pattern of the sprayed liquid measured in the plane 1 (a), 3 (b), 6 (c),
and a relationship between maximum impact pressure and inlet pressure of liquid at nozzle (d).
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4.2. Spray Angle

The base of the inner cones can be expressed using the parametric equation of the Archimedean
spiral as follows:

x = aθ cosθ+ Sx, (22)

y = aθ sinθ+ Sy, (23)

where x and y are the points of the curve in the coordinate system, a is the parameter, Sx and Sy are the
shifted centers of the spirals, and θ is the angle between half line describing the spiral trajectory and
polar axis of the system. The values of the parameter a for the inner cones are shown in (Table S1).
An example of the expression for plane 3 (Figure 11a) is for the small cone as follows:

x = 2.6θ cosθ+ 145, (24)

y = 2.6θ sinθ+ 250. (25)

In addition, for the large cone:
x = 9.0θ cosθ+ 145, (26)

y = 9.0θ sinθ+ 250, (27)

where for each plane θ ∈ (2.95π; 4.95π). The upper cone could not be evaluated using this method
due to its large extent and was obtained using another method as explained further. The spiral curves
delineate the trajectory of the impact footprint and well corresponds to experimental data (Figure 11a).
An exception can be found in the fourth quadrant (beam number 5, Figure 11a). This is due to the
nozzle geometry and transition between individual cones resulting in a local change of liquid flow.Processes 2019, 1, x; doi: FOR PEER REVIEW 16 of 26 
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Figure 11. Pressure impact footprint with numbered water jets (individual numbers relates to individual
water beams, refer to Figure 4b) and a graphical depiction of the spirals tracing the cones’ baselines
used for spraying angle assessment (in plane 3) (a), a photograph of the spray with an image filter
applied to determine the main liquid streams (b), a visualization of the spray with assessment of inner
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angles formed by the liquid beam and nozzle longitudinal axis (c), and comparison of the spray formed
at an inlet liquid pressure of 1 bar (d) and 2 bars (e).

The extent of the small cone angle was calculated as a sum of the inner angles of the beams no.
1 and 2 (refer to Figure 11a). The extent of the large cone was a sum of the beam no. 4 and an arithmetic
average of beams no. 3 and 5. The inner angles of individual water beams were determined in relation
to the nozzle longitudinal axis (the Z-axis) in the same position as in experiments (i.e., in the XZ plane
(refer to Figure 3)). Based on the extent of water beams of both cones, the effective spraying angle γef

was calculated. The average values of effective spraying angle were 61.7◦ and 115.5◦ for small and
large cone, respectively, (for detailed results, refer to Table S2).

Another method to determine the spraying angle was using the photographs of the spray with
applied screen filters to assess the main liquid beams (Figure 11b) and comparing with the photographs
of the nozzle without spray (Figure 11c). Evaluation of the angles was done in the Stream Motion
software (refer to Table S3). The small, large, and upper cone angles were 58.0◦, 111.4◦, and 152.3◦,
respectively. Comparing the results of the angles for the small and large cone with those obtained
with the previous method (Table S2), we get values, which are smaller by 6% and 3.5%, respectively.
This difference is mainly caused by a subjective assessment of the 2D photograph of a 3D spray, which
may bring an error into the determination of the spraying angle. Both discrepancies are; however,
very small and can be neglected.

Comparing the results of the spray angle with other studies, one significant difference can be
observed (i.e., an independence of the spray angle on the inlet pressure (flowrate) of the liquid;
Figure 11d,e), refer also to (Figure S4). This is in agreement with a previous study on characterization
of a spiral nozzle, in which authors observed minimal variation of the spray angle at pressures above
0.4 bar [4]. On the contrary, such behavior is quite different compared, for example, to an air–water
impinging jet atomizer [81], in which the spray angle increased with increasing pressure, or pressure
swirl atomizer, in which the spray angle increased up to 7 bar and then decreased [82]. Some researchers
also observed a decrease in spray angle with increasing inlet pressure in the whole measured range [48].
Another typical feature of the nozzle studied is its large spray angle, thus large spray coverage. This can
be observed in nozzles mostly used for fire suppression applications [36]. However, this property is
also required in the applications related to gas cleaning via absorption processes, especially for gas
scrubbers with larger spray tower diameter.

4.3. Spray Breakup

Here we discuss the breakup of the outer upper cone only (Figure 4a). The other two inner cones
are not evaluated as it was not allowed by the experimental setup. Moreover, the results are compared
with mathematical models assuming the analogy with radial spread of a liquid jet over a horizontal
plane. The condition of the horizontal plane is fulfilled for the upper cone only (Figure 2), which is
formed by impinging the liquid jet on the first twist of the helix, which is horizontal (refer to CFD
model at cross-section, Figure 2). The other helix surfaces (second and third twist) have different rake
angles and are not horizontal, so the model could not be applied to these.

Individual atomization phases can be observed in the pictures (Figure 12) (i.e., primary/secondary
atomization in various distances from the nozzle). The water sheet remains continuous up to a
distance of about 80 mm (Figure 12a), even though some local perforations can be observed. Some
perforations can be observed throughout the whole length of the liquid sheet (Figure 12b 2). The jet
Weber number was higher than 22,000, which is far higher than the critical value of 1000 proposed by
other researchers [65,83]. At this Weber number, we can expect very short radial breakup distance and
the sheet to thin rapidly. The sheet thickness was estimated using the Equation (6) to be 2.47 mm at the
edge of the helix and gradually decreased with increasing radial distance from the nozzle. At a distance
of 78 mm, corresponding to the first sheet breakup into ligaments, the sheet thickness was estimated
to 0.33 mm. The estimated sheet thickness also decreased with increasing liquid flowrate. At a radial
distance of about 80 mm the sheet integrity is markedly disturbed (i.e., a primary atomization occurs



Processes 2019, 7, 911 16 of 25

up to 125 mm forming larger ligament structures; Figure 12b 1). The first ligaments observed (at the
distance of 78 mm) were as large as (1.86 ± 0.57) mm with a breakup time estimate of 10.9 ms (according
to Equation (15)) and attenuating down to (0.75 ± 0.19) mm with a breakup time of 2.8 ms (at a distance
of approximately 120 mm). The estimate of the ligament diameter was 0.70 mm (based on Equation
(13) using the correlation in Equation (12) for the dimensionless wave amplitude, at a radial distance
of 120 mm). However, conducting experiments at different flowrates is necessary to assess further
this comparison.
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(c), and a detail of the boundary of both phases (d).

Subsequently a breakup to individual droplets (Figure 12c) occurred in a very narrow area.
From this area the droplet-size distribution and structure has changed very slightly indicating area
of secondary (or better quasi-secondary) atomization of the spray. A detail of the boundary between
primary (sheet breakup into ligaments) and the quasi-secondary atomization of the spray (ligaments
breaking into droplets) is shown in a modified photograph (Figure 12d). Generally, similar qualitative
spray characteristics were very scarcely found in the literature. Qualitatively the most similar
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sprays were observed in studies focusing on characterization of fire sprinklers, refer, for example,
to [64,74,75,84,85]. These sprinklers consist of a convergent nozzle with a cone-disc deflector placed
under in a defined distance to create a circular liquid sheet. This is very similar to the spray generated
by the spiral nozzle as the principle of forming the liquid sheet is practically the same (i.e., a rebound
from a surface into the ambient space).

The gas Weber number calculated for the measured droplet sizes and radial velocities was always
lower than 11. This may indicate, according to some studies, no secondary breakup [86–88], droplet
deformation [67], or vibrational breakup [66]. The latter two may be true as indicated in obtained
photographs (Figure 12d, also refer to an example shown in Figure S5). This is; however, a mere
qualitative observation of the spray. As the liquid is sprayed into a quiescent air, it is more probable that
the secondary atomization did not occur at the adopted experimental conditions. It is also important
to say that the Weber number ranges defining individual secondary breakup modes were mostly
derived for liquid jets. In liquid sheets or even conical sheets, the situation can be different and is rather
a suggestion for future research. In general, vibrational breakup is not always observed. Oscillations
at a natural frequency of the drop are typical and a formation of only a few fragments with comparable
sizes as the original droplet are observable at this mode [68].

4.4. Droplet Size Distribution

Droplet size distribution was obtained from the modified classical photography of the upper cone
in various distances normal to the nozzle axis. From detailed photographs of the secondary atomization
area, droplet size was measured using the Stream Motion software. Prior to the measurement, a filter
was applied to the photographs to better recognize the droplet edges. Spherical droplets’ diameter
was measured once, whereas the diameter of droplets of non-spherical shape was measured twice
(two diameters normal to each other, refer to Figure S6), and then an arithmetic average was calculated.
Using this method, 1773 droplets’ diameters were evaluated. Droplet-size distribution curves were
then plotted using the obtained data (Figure 13). The width of one size class was 0.07 mm. This was
obtained by dividing the whole distribution width by square root of the number of measured droplet
sizes. The agreement between experimental and theoretical distribution was assessed using the
Kolmogorov–Smirnov test, which revealed the best fit only for the log-normal distribution for which
the P-values were higher than the selected significance level of 0.05 (refer to Table S4).
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Droplet-size distribution of a spray can be considered monodisperse if the standard deviation is
approximately less than 10% of the mean particle diameter [80]:

σD

µD
< 0.1. (28)

In our case, according to the number droplet-size distribution of the spray, the ratio is as high
as 0.48, confirming a polydisperse spray. The average droplet size was 0.815 mm, while the mode
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was around 0.587 mm with a portion of 8.7%. The surface-weighted average (D20) was 0.997 mm
and the Sauter mean diameter (D32) was 1.201 mm. The largest amount of droplet surface (6.6%) was
represented by a droplet diameter of 0.911 mm. For the volume-weighted distribution, the mean value
is shifted to larger droplet diameters as large as 1.423 mm and a mode of 1.108 mm representing 5.8%
of the liquid volume. The theoretical predictions of the droplet diameter were based on the theory
of the liquid sheet instability, assuming an analogy with a rebound of liquid jet from a horizontal
plane. A droplet diameter of 1.413 mm was calculated based on Equation (16), which is quite different
from the average value obtained experimentally (0.815 mm), despite the expected analogy with the
theory adopted for the diameter estimate. It is; therefore, necessary to conduct further research in this
area as the description of conical sheets breakup mechanisms is rather scarce in the literature [89].
The measured droplet diameters are mostly much larger compared to different types of atomizers,
which produce droplets in the range up to 100–150 µm in diameter, refer to, for example, [58,90–93],
but in a similar order as compared to fire sprinklers [64,79,94]. Comparing the Sauter mean diameter
empirical formulas developed for different atomizers we can also see rather significant differences. For
example, the Sauter mean diameter for pressure-atomized sprays is a function of several parameters,
as proposed in the correlation by Elkotb [95]:

D32 = 3.08µ0.385
l (σρl)

0.737ρ0.06
g ∆p−0.54, (29)

where ∆p is the pressure drop at the nozzle (i.e., the pressure difference between pressure inside
the nozzle and the ambient pressure of the space, into which the liquid is sprayed). This formula
gives the Sauter mean diameter as large as 1.844 mm, which is more than 0.6 mm larger than that
obtained experimentally.

4.5. Liquid Velocity Distribution

Using the LDA method, radial and tangential velocities in the outer upper cone (Figure 4a)
were obtained. 3D surface graphs of absolute radial velocity in relation to position were created.
Data was processed into velocity distribution histograms of radial and tangential velocity component
at individual points (Figure 14). The absolute radial velocity (vAR) was obtained through a vector sum
of radial and tangential velocity at a given point. An example of the data processing into histograms for
the position (140,0,40) mm (x,y,z) is shown in Figure 14. The velocities minus signs are due to the LDA
experimental setup, which measured the radial velocities as negative. An average radial and tangential
velocity at the point (140,0,40) mm was (7.78 ± 2.03) m s−1 and (0.17 ± 1.28) m s−1, respectively. The
vector sum of the both velocities (i.e., the representative absolute radial velocity of the liquid) is
7.78 m s−1. This means that the contribution of the tangential velocity was very small with a very
narrow distribution. This is in contrast with a spiral flow nozzle with an annular slit [47] using which
a tangential velocity up to 8 m/s was observed (in relation to slit width). Looking at the geometry
of the spiral nozzle studied, more noticeable tangential velocity contribution was expected. This is due
to the centripetally-oriented impact surfaces of the spiral causing torque of the liquid at the outlet.
This would probably be more noticeable at lower liquid velocities, at which the liquid sprayed copies
the trajectory demarcated by the spiral. However, this effect is rather limited at high velocities due
to high impact force causing a strong rebound of the liquid from the surface in the radial direction,
thus eliminating the formation of the torqued flow.
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Using the treated data, 3D surface graphs of absolute radial velocity in relation to radial X-
and Y-position at different axial distances (Z) were plotted and approximated using the distance
weighted least squares algorithm in the TIBCO Statistica (USA) software. The 3D graphs are shown
from two different orientations, and blue marks represent individual points approximated by the
plane. Figure 15a shows a decrease in velocity with increasing distance. At the Z-axis 0 and 10 mm,
the velocity was measured right above the liquid sheet; therefore, the measured velocities are low.
The highest velocity is at the Z-axis between 40 and 50 mm, where the main liquid stream occurs
and then slightly decrease (the same in 2D is shown in supplementary Figure S7). The highest radial
velocity of 8.26 m s−1 was measured at a radial and axial distance of 110 and 40 mm, respectively.
At the same axial distance was also the lowest measured velocity of 7.22 m s−1, but at the position
corresponding to a radial distance of 165 mm (the most distant position from the nozzle axis). This is
due to the kinetic energy loss in the space with increasing distance from the nozzle orifice. However,
at the 0 and 10 mm Z-distance, there is an obvious decrease of the velocity profile, which is higher than
could be expected from the loss of kinetic energy. This is probably caused by the large spray angle
(the liquid in the upper cone is sprayed from the nozzle almost horizontally) and a descent of the liquid
sheet due to gravity. In a distance between 110 and 165 mm, the descent by 15 mm can be expected.
The kinetic energy loss (liquid flow deceleration) is also due to the friction caused by the complicated
nozzle orifice geometry. This can be expressed using the Euler number (Eu) (i.e., the ratio of pressure
loss due to flow restriction and kinetic energy per volume of the flow):

Eu =
2∆p
ρlv2 , (30)

where ν is the liquid velocity inside the nozzle. Figure 16 shows the relationship between Euler number
and Reynolds number at nozzle orifice (Reo) of the flow inside the nozzle (Equation (7)).
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We can see an atypical behavior of the nozzle studied. The friction losses expressed in terms
of Eu are quite low (ideal frictionless flow corresponds to Eu = 1). However, Eu first decreases with
increasing Re from approx. 1.4 × 105 to 1.6 × 105. Such a high Re corresponds to fully developed
turbulent flow and any further increase is expected to rather increase pressure losses due to friction.
Nonetheless, the extraordinary nozzle orifice geometry probably causes this slight anomaly and up
to the point corresponding to Re of about 1.6 × 105 the friction losses slightly decreased. This can
outline ideal operation conditions for the use of this nozzle in gas cleaning applications. At lower Re
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the friction is higher but the turbulence is lower at the same time causing non-ideal conditions for the
removal of the contaminative gases from air. With further increase of Re, Eu starts to also increase up
to 1.28 corresponding to an inlet pressure of 2 bars (i.e., a flowrate of 1.76 L/s; refer to Table 1). It is
further suggested for future work to measure a wider range of inlet pressures to obtain more complex
idea about the nozzle behavior. However, we were limited to a pressure of 3 bars at the highest due
to the nozzle made of Teflon (for higher pressures, metal nozzles are necessary). The nozzle behavior
described in Figure 16 is quite different compared to a hollow-cone pressure swirl nozzle as studied by
Nonnenmacher and Piesche [96]. The authors observed higher values of Eu increasing approx. from 50
to 80 with Re increasing approx. from 300 to 50,000.

5. Conclusions

This work tried to provide basic characteristics of a spray produced using a spiral nozzle and
compare the spray properties with other atomizers. The spray produced using the spiral nozzle
consists of three concentric liquid cones creating a full-cone pattern. Typical spray angle is quite
large compared to other nozzles, the upper large cone having a spray angle as large as 150◦. At the
adopted conditions, the droplet-size distribution was larger. Sauter mean diameter was 1.201 mm,
the same is true for velocity which was, conversely, lower compared to, for example, effervescent
atomizers. Ideal operational conditions were found to be at a liquid flowrate of 1.41 L/s corresponding
to an inlet pressure of 1.25 bar. Based on the initial comparison with the theory, we can see a gap
in the mathematical description of the conical sheets. Therefore, future research is necessary to further
understand the breakup behavior of the liquid jets on plates horizontal as well as at different angles.
Future work will also focus on the description of the conical sheet breakup using detailed observations
with optical methods, and basic RANS simulations (Reynolds-averaged Navier-Stokes equations) and
large eddy simulations (LES) with adaptable computational mesh to catch as many of the smallest
structures and droplets formed during the sheet atomization as possible. The presented results will
also serve as the experimental verification of the developed CFD models.
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s1, Figure S1: Representation of the measured position in relation to the spray (a) and a detailed
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S3: Effective spraying angles γef of small and large cones for planes 1, 3, and 5; Figure S4: Comparison of the
spray at two different flowrates of 1.25 l/s corresponding to a pressure at the nozzle of 1 bar (A) and 1.76 l/s
corresponding the a pressure at the nozzle of 2 bars (B); Figure S5: Deformation (yellow-circled) and vibrational
breakup (red-circled) of droplets; Table S4: Results of the Kolmogorov–Smirnov test; Figure S6: Detail of individual
droplets (a) and evaluation of their size (b); Figure S7: Velocity profile of the liquid sheet in relation to radial
distance X at individual axial positions Z
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15. Sitek, T.; Pospíšil, J.; Poláčik, J.; Špiláček, M.; Varbanov, P. Fine combustion particles released during
combustion of unit mass of beechwood. Renew. Energy 2019, 140, 390–396. [CrossRef]
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