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Abstract: The study was performed on Centaurea cyanus, Chamomilla recutita, Majorana hortensis,
Ocimum basilicum, Plantago lanceolata, Sinapis alba, and Valeriana officinalis harvested in Lithuania,
Poland, and Ukraine. Our aim was to determine the differences in selenium concentrations,
total polyphenols, and the antioxidant activity in same-species samples from different regions.
Another goal was to assess the correlations between these variables within the species. We found
variations in most species, but not in all regions of harvesting. In four of the six species from Ukraine,
we observed the highest concentration of Se. The selenium concentrations ranged from 15–182 µg/kg
DW, and the greatest variation between the regions occurred in S. alba. The level of polyphenols was
5.52–53.25 mg TAE/100 g DW, and the largest differences between the sampling regions occurred in P.
lanceolata and O. basilicum. ABTS radicals scavenging ability ranged from 5.20–59.79 µM AAE/100
g DW, while the FRAP potential was 13.56–409.14 µM FeE/100 g DW. The largest differences in
antioxidant activity were found in O. basilicum and M. hortensis. Pearson’s correlation coefficients
indicate that polyphenols may be responsible for antioxidant activity in Ch. recutita, O. basilicum,
and V. officinalis, and selenium is responsible for antioxidant activity in M. hortensis. However, both
polyphenols and selenium play a role in the antioxidant properties of C. cyanus and P. lanceolata. Also,
selenium in C. cyanus and Ch. recutita may affect the level of total polyphenols. The examined species
may supplement the human diet with exogenous antioxidants.
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1. Introduction

In living organisms, endogenic antioxidants are not able to maintain redox balance if the level
of free radicals is overabundant. This leads to oxidative stress, which may contribute to a damage
in cellular and tissue structures. It also induces many degenerative diseases (cardiovascular disease,
diabetes, Parkinson’s disease, Alzheimer’s disease, different kinds of cancer, AIDS) [1]. Exogenous
antioxidants like polyphenols (flavonoids, phenolic acids, tannins, coumarins, and others), vitamin C
(ascorbic acid) and E (α-tocopherol), carotenoids [2], antioxidative peptides [3], and some minerals
including selenium (Se), found in food and/or dietary supplements, play an important role in fighting
against oxidative stress.

The antioxidative properties of polyphenols comes from their ability to form stable
phenoxy-radicals [2]. Polyphenols cause an increase in the activity of antioxidant enzymes: superoxide
dismutase (SOD: EC 1.15.1.1), catalase (CAT: EC 1.11.1.6), and glutathione peroxidase (GPx: EC
1.11.1.19), but also affect the concentration of low-molecular antioxidants like ascorbic acid and
α-tocopherol [4].

In a human body, selenium is a crucial trace element, acting not only as an antioxidant, but
also having anti-mutagenic, antiviral, and antineoplastic properties [5]. Two basic amino acids,
selenomethionine and selenocysteine, are composed of selenium and build enzymes that are important
for the human body (glutathione peroxidase and thioredoxin reductase) and have strong antioxidant
properties. The amount of selenium in human body depends primarily on its abundance in the diet.
It was estimated that for adults (of normal weight), the appropriate intake of selenium is 60 µg/day for
women and 70 µg/day for men [6]. A toxic effect may occur as a result of an excessive consumption of
this element. For instance, with consumption of plant and animal food products obtained in the areas
characterized by a high selenium abundance, concentrations reach as high as 350 mg/kg [7]. There are
areas with high concentrations of selenium in soil, known as “Selenium provinces”, like in Mexico,
Columbia, and in some regions of the USA. However, the Se content in soil usually ranges from 0.1
to 2 mg/kg, and its average level in the soils worldwide is 0.33 mg/kg [8]. Considerable dispersion
of selenium is typical for soils created from landslide materials formed during glaciation periods [9],
an example of which are the soils found in Poland and Lithuania. Specifically, particularly low levels
of selenium are found in loose-sandy and loamy soils. The abundance of selenium in the human diet
does not result from its concentration in soil, but rather from its bioavailability for plants (chemical
forms, soil pH, activity of microflora) and from climate conditions [10].

Plants are an important source of exogenous antioxidants, including polyphenols and selenium.
These antioxidants are primarily found in fruits, vegetables, and herbs. These herbs are commonly used
for their healing properties (including antibacterial, anticancer, hepatoprotective, anti-inflammatory,
cardiac stimulant, sedative, and diastolic potential) and/or taste qualities include Centaurea cyanus and
Chamomilla recutita (Asteraceae), Majorana hortensis i Ocimum basilicum (Lamiaceae), Plantago lanceolata
(Plantaginaceae), Sinapis alba (Brasicaceae) i Valeriana officinalis (Valerianaceae). The use of herbal
products results in positive effects on the treatment of diseases caused by free radicals [11]. For this
reason, we have decided to undertake a study on the content of selenium and polyphenols and
antioxidative potential in the selected species of herbs and popular spice plants collected in the areas
diversified in abundance in selenium: Northern Poland, Lithuania, and Western Ukraine.

The aim of the study was: (i) To define and compare the concentration of selenium in plants
and total polyphenols as well as the antioxidative activity in the same species of plants collected in
different regions of the sample collection, and (ii) to assess the correlation between the concentration of
selenium and total polyphenol and antioxidative properties of the individual species.
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2. Materials and Methods

2.1. Plant Material

The plant material used in the study consisted of inflorescence of Centaurea cyanus and Chamomilla
recutita, leaves of Plantago lanceolata, herbs of Majorana hortensis and Ocimum basilicum, seeds of
Sinapis alba, and roots of Valeriana officinalis. The herbs were collected in Northern Poland (Pomorze
region—Połczyn Zdrój and Podlasie region—Koryciny), Western Ukraine, and in the case of the
two first species, also in Southeastern Lithuania (Olita region—Lazdijai). Research material of the
same species but of different regions was collected at the same optimal harvesting time that was
recommended for the particular herb or spice. Usually, in each region, we collected 5 samples of each
species at the same location, and only in Ch. recutita (Pomorze) and C. cyanus (Podlasie) we decided to
collect 10 samples. The material was dried in natural conditions, and the plants of the same species
collected at the same location were considered as a pool sample.

The plants collected in Poland and Lithuania grew on fawn soils with a granulometric composition
of sandy loams formed on clay moraine sediments (Luvisols—the type of soil) [12–15], while in
Ukraine, they grew on black-earth soils (chernozem) developed on loess basis [16] (Table 1). However,
in Lithuania, the soils are acidic, while in Pomerania and Podlasie, they are slightly acidic, and in
Ukraine, they are slightly alkaline. The regions of plant collection differed in selenium abundance [17].
Soils in Ukraine, in the neighborhood of Zabłotce, were characterized by a relatively high concentration
of selenium, which ranged from 0.357 to 0.492 mg/kg, whereas soils in Lithuania, in surroundings of
Lazdija, showed a scarce supply of selenium (<0.102 mg/kg). The concentration of selenium was also
low in Pomorze (Połczyn Zdrój) and Podlasie (Koryciny) and ranged between 0.102 and 0.245 mg/kg [17].
A similar difference was also found in the total amount of organic carbon (TOC): Ukraine 2.67–3.54 wt%,
Poland (Pomorze and Podlasie) 1.16–1.53 wt%, and Lithuania 0.500–0.661 wt%) [18].

Table 1. Selected climatic factors and type of soil from areas of plant materials samples’ collection 1.

Climatic Factors
Lithuania Poland Ukraine

Olita Region
Lazdijai

Pomorze Region
Połczyn Zdrój

Podlasie Region
Koryciny

Lviv Region
Brody 2

Mean annual
precipitation (mm) 593 649 560 602

The highest mean
rainfalls (mm)—month

81
July

82
July

75
July

87
July

The lowest mean
rainfalls (mm)—month

22
February

30
February

28
February

31
January

Mean annual
temperature (◦C) 6.3 7.7 6.9 7.6

The warmest month,
mean temperature (◦C)

16.9
July

17.7
July

18.0
July

18.5
July

The coldest month, mean
temperature (◦C)

January
−5.3

January
−3.4

December
−2.3

January
−4.5

Type of soil Luvisols Luvisols Luvisols Chernozems
1 Climate data taken from the website https://pl.climate-data.org; 2 No climatic data from the town of Zabłocie,
data taken from the closest major town of Brody was used.

According to the Köppen–Geiger system, the regions of sample collection are classified into the
same climatic category—Dfb: temperate continental climate/humid continental climate [19]. However,
these areas sometimes differed significantly in terms of precipitation. The highest average annual
rainfall was recorded nearby Połczyn Zdrój in Pomorze (649 mm), and the smallest in Koryciny in
Podlasie (560 mm). Additionally, Olita in Lithuania was the coldest region. Not only were the lowest

https://pl.climate-data.org


Processes 2019, 7, 878 4 of 13

average annual temperatures recorded here, but also the lowest average temperatures of the warmest
and coldest month (Table 1).

2.2. Assessment of Selenium Concentration

Selenium (Se) concentrations in herbs were determined using Watkinson’s spectrofluorometric
method [20], modified by Grzebuła and Witkowski [21]. The tissues were dissolved in HNO3 at 230 ◦C
for 180 min and in HClO4 at 310 ◦C for 20 min. Then, the samples were hydrolyzed with 9% HCl.
Selenium was derivatized with 2,3-diaminonaphtalene (Sigma-Aldrich, St. Louis, MO, USA) and the
complex was extracted into cyclohexane. The Se concentration was measured fluorometrically using
a RF-5001 PC Shimadzu spectrophotofluorometer. The excitation wavelength was 376 nm, and the
fluorescence emission wavelength was 518 nm.

The accuracy of the method for herbs was verified basing on the BCR-402 White clover certified
reference material. The level of recovery was as 89% of the reference value.

2.3. Sample Preparation for Total Polyphenol Content and Antioxidant Potential

One hundred milligrams of each type of dried research material was pulverized with a mortar
and a pestle, transferred to a 10 mL plastic tube, and filled to 5 mL with deionized water heated to
50◦ C. The suspension was stirred vigorously and left for 45 min in the shade. Then, the tubes were
centrifuged at 4 ◦C, 15,000 rpm, for 10 min. The supernatant obtained in this procedure was used for
further assays within 24 h.

2.4. Total Polyphenol (TP) Content Assay

The total polyphenolic acid content of the extracts was determined using the Folin–Ciocalteu
method, modified to a microplate reader format (Infinite M200pro, Tecan, Grödig, Austria) [22].
The total amount of polyphenolic compounds was expressed as mg of tannic acid equivalent per 100 g
of dry weight (DW) of the sample (mg TAE/100 g DW).

2.5. Free Radical ABTS Scavenging Ability Assay (ABTS)

The free radical scavenging activity of water extracts was determined by the solution of ABTS
cation radical discoloration assay, according to Shi et al. [23]. The assays were conducted with a
microplate reader (Infinite M200pro, Tecan, Grödig, Austria). Further, 10 µL of the sample was added
to 300 µL of ABTS working reagent, diluted to 0.7 ± 0.02 of absorbance at 734 nm. Next, the initial
absorbance was read immediately, while the final absorbance was measured after 6 min. As a standard
for method calibration we used ascorbic acid. The percent of ABTS radical inhibition was calculated
according to Formula (1).

% inhibition = [A0 − (Af − B)]/A0 × 100 (1)

where A0 is the absorbance of control at t = 0 min; Af is the absorbance of sample after 6 min; B is the
absorbance of blank sample.

The results were expressed in equivalents of µM ascorbic acid per 100 g DW (µM AAE/100 g DW).

2.6. Ferric Reducing Antioxidant Power Assay (FRAP)

The FRAP method, modified to the microplate reader format (Infinite M200pro, Tecan, Grödig,
Austria) [24], was used for the antioxidants potential assay. The FRAP working reagent was prepared
by mixing acetate buffer (300 µM, pH 3.6) with 10 mM TPTZ in 40 mM HCl solution, and 20 mM FeCl3
at a 10:1:1 (v/v/v) ratio. Next, 10 µL of sample solutions were added to 300 µL of the working reagent
and preheated to 37 ºC. The absorbance was measured at 593 nm, after 6 min. A standard curve was
drawn for different concentrations of FeCl2 ranging from 1 to 0.1 mM. The antioxidant status was
expressed as µM Fe2+ equivalent per 100 of DW of sample (µM FeE/100 g DW).

All samples in all experiments were assayed in triplicate.
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2.7. Statistical Analysis

The results were analyzed statistically with STATISTICA 12.5 PL software (StatSoft Inc., Tulsa,
OK, USA). The Shapiro–Wilk test was used to evaluate the distribution of the variables. If the variables
were not normally distributed, the logarithm of the variables was calculated for further statistical
analysis. One-way ANOVA was performed, and the significance of differences between the mean
values from the different regions were calculated using the parametric Tukey’s test. Differences were
considered significant at p≤ 0.01. A correlation between the concentration of selenium and polyphenols,
potential to deactivate cation radicals (ABTS), and reducing antioxidant power (FRAP) were assessed
by calculating the Pearson’s correlation coefficient. Statistical significance of the correlation coefficients
was tested at p ≤ 0.05.

3. Results

3.1. Selenium (Se)

The concentration of selenium ranged from 15 µg/kg DW in M. hortensis from Pomorze to 182 µg/kg
DW in S. alba from Podlasie (Figure 1). In the plants of these two species, a significant difference in the
accumulation of Se was found for all sample collection regions. In Ch. recutita, the concentration of
tested trace element did not differ significantly only in plants from Lithuania and Pomorze. On the
other hand, in C. cyanus, only plants collected in Ukraine differed significantly in the level of Se in
comparison to other regions. In O. basilicum, P. lanceolate, and V. officinalis, no significant differences in
Se level between the sample collection regions were found.
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Figure 1. The concentration of selenium (Se) in herbs from Lithuania, Poland: Podlasie, Pomorze,
and Ukraine. Vertical bars indicate mean from three measurements ± SEM (standard error of
measurement). Different letters indicate statistically significant differences at p ≤ 0.01 within a species.

3.2. Total Polyphenols

The total content of polyphenols in samples from different regions was from 5.52 ± 0.115 mg
TAE/100 g DW in V. officinalis to 53.25 ± 0.049 mg TAE/100 g DW in P. lanceolata, both from Ukraine
(Figure 2). All the examined species except M. hortensis and S. alba, differed significantly in the total
concentration of polyphenols in every region of sample collection (p ≤ 0.01).
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Figure 2. The concentration of total polyphenols (TP) in herbs from Lithuania, Poland: Podlasie,
Pomorze, and Ukraine. Vertical bars indicate mean from three measurements ± SEM (standard error of
measurement). Different letters indicate statistically significant differences at p ≤ 0.01 within a species.

3.3. ABTS Radicals Scavenging Ability of Plant Extracts

The ABTS cation radical scavenging activity in the examined plants from different regions of
sampling ranged from 5.20 ± 0.176 µM AAE/100 g DW in C. cyanus from Lithuania to 59.79 ± 0.137 µM
AAE/100 g DW in O. basilicum from Podlasie (Figure 3). In all the species except P. lanceolata, we found
significant differences in ABTS radicals scavenging ability between some regions of sample collection
(p ≤ 0.01), while the highest diversification in activity was observed in Ch. recutita and O. basilicum.
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Figure 3. The ABTS radicals scavenging ability in herbs from Lithuania, Poland: Podlasie, Pomorze,
and Ukraine. Vertical bars indicate mean of three measurements ± SEM (standard error of
measurements). Different letters indicate statistically significant differences at p ≤ 0.01 within a species.



Processes 2019, 7, 878 7 of 13

3.4. FRAP Activity

Ferric reducing antioxidant power in the tested plants from all regions of sample collection ranged
from 13.56 ± 0.147 µM FeE/100 g DW in Ch. recutita from Ukraine to 409.14 ± 0.460 µM FeE/100 g
DW in O. basilicum from Podlasie (Figure 4). We found significant differences in FRAP between the
regions of sample collection in all the examined species except C. cyanus and Ch. recutita (p ≤ 0.01).
In C. cyanus, the significant differences were noted only between plants from Podlasie and Lithuania,
while in Ch. recutita, we found no differences in FRAP in these exact regions.
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Figure 4. The ferric reducing antioxidant power assay (FRAP) activity in herbs from Lithuania, Poland:
Podlasie, Pomorze, and Ukraine. Vertical bars indicate mean of three measurements ± SEM (standard
error of measurement). Different letters indicate statistically significant differences at p ≤ 0.01 within
a species.

3.5. Correlations Between Selenium, Polyphenol, and ABTS Radicals Scavenging Ability and FRAP Activity

The analysis of Pearson correlation (R) was used to explain the relationship between selenium and
total polyphenol content, and antioxidative activity measured with ABTS radicals scavenging and FRAP
methods for all the analyzed plants of particular species (Table 2). A significant positive correlation
between concentration of Se and ABTS radicals scavenging and FRAP potential was observed in
C. cyanus and M. hortensis. In P. lanceolata, Ch. recutita, and S. alba, we found a significant positive
correlation between the levels of Se and ABTS radicals scavenging. We also found a significant negative
correlation between Se and FRAP potential in the last two species. Only in C. cyanus, a significant
positive correlation was found between the levels of selenium and total polyphenols. The correlation
between these two parameters in Ch. recutita had an opposite character. Significant positive correlation
between the level of total polyphenols and ABTS radicals scavenging and FRAP potential was noted in
O. basilicum, C. cyanus, and V. officinalis. In turn, a significant positive correlation between the total
polyphenol concentration and FRAP potential was observed in Ch. recutita and P. lanceolata. Only S. alba
experienced a significant negative correlation between total polyphenols and ABTS radicals scavenging
and FRAP activity.



Processes 2019, 7, 878 8 of 13

Table 2. Pearson correlation (R—coefficient) between selenium (Se), total polyphenols (TP) content,
and antioxidant assays (ABTS and FRAP).

Parameter
Herbs Spices

Centaurea
cyanus

Chamomilla
recutita

Plantago
lanceolata

Valeriana
officinalis

Majorana
hortensis

Ocimum
basilicum

Sinapis
alba

Se & ABTS 0.656 *** 0.429 * 0.689 * ns 0.691 ** ns 0.551 *
Se & FRAP 0.607 *** -0.413 * ns ns 0.821 *** ns –0.557 *

Se & TP 0.626 *** –0.619 *** ns ns ns ns ns
TP & ABTS 0.537 ** ns ns 0.519 * ns 0.990 *** –0.671 **
TP & FRAP 0.527 ** 0.915 *** 0.818 ** 0.901 *** ns 0.999 *** –0.880 ***

Significance level: *** p ≤ 0.001, ** p ≤ 0.01, * p ≤ 0.05, ns—no significant.

4. Discussion

The content of selenium in plants depends not only on the abundance of this element in the
ground, but largely on its bioavailability pronounced by its chemical form, pH and redox potential of
soil, presence of organic substances, activity of soil microorganisms, and climatic factors as well [10,25].

In the case of Ch. recutita, C. cyanus, and M. hortensis, plants from Ukraine contained significantly
more selenium than those growing in Poland and Lithuania (Figure 1). Undoubtedly, this was
influenced by the type of soil and its abundance in selenium (Table 1, see Section 2.1). Soils in Ukraine,
in the region of plant harvesting, are the chernozems. Compared to the luvisols found in harvesting
regions in northern Poland and Lithuania, the chernozem is characterized by, e.g., a higher percentage
of humus and a slightly alkaline pH. They show a greater selenium content, which is positively
correlated with the amount of organic carbon [18]. Higher pH levels promote the formation of selenates
(VI), which are the most absorbable form of Se for plants. This fact probably explains the highest level
of selenium in the aforementioned species found in Ukraine. In soils of Northern Poland and Lithuania
with a slightly acidic or acidic pH, the availability of Se may be lower, since acidification leads to the
formation of sparingly soluble and poorly digestible selenides and elemental selenium [26]. Higher Se
levels in samples from Western Ukraine compared to the material collected in Northern Poland were
previously also observed in Calendula officinalis, Mentha x piperita, and Sylibum marianum [27].

In Ch. recutita, M. hortensis, and S. alba, a significantly lower Se content was found in plants
harvested in Pomerania than in Podlasie, despite the fact that both regions are classified in the same
soil category, in the terms of Se abundance [15]. The soils from the sample collection areas in all these
regions belong to the same type, and therefore differences in selenium accumulation in plants of the
same species may be caused by other factors, e.g., the climate. However, in this specific case, the level
of selenium does not seem to be influenced by temperature, and although it is an important climatic
factor playing a role in Se intake by plants, its long-term data only slightly differ in these two regions
(Table 1). However, the difference in the amount of average annual precipitation is clear, as they are
nearly 90 mm higher in Pomorze. During the periods of intense rainfall, easily soluble selenium
compounds can be leached out of the soil. In addition, Se will be less absorbed in wet areas as it creates
poorly soluble iron compounds in such conditions [28].

The content of selenium in plants also depends on the species and variety, as well as on its
developmental stage and part, because this element in various stages of plant development is
accumulated in its particular organs to varying degrees [29,30]. It has been proved that in medical plant
material, fruits and seeds contain the most selenium [31]. In our study, in S. alba seeds (although not in
all the regions of collection), the highest average selenium content was found, compared to the other
tested plant samples (Figure 1). S. alba seeds from Podlasie and Ukraine turned out to be particularly
rich in Se. Much less of this element was found in seeds from Pomerania. This indicates that S. alba
seeds can accumulate Se widely and also be a rich source of it. S. alba belongs to the Brassicaceae
family, in which some of the species are considered to be accumulators or even hyper accumulators
(e.g., Stanleya pinnata) of this bioelement [32–34]. However, not all of the analyzed species showed
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a relationship between Se accumulation and the location, because within O. basilicum, P. lanceolata,
and V. officinalis, no differences were found in samples originating from different regions (Figure 1).

The examined species in general differed in levels of total polyphenols between all the regions of
sample collection (Figure 2). The exceptions were M. hortensis and S. alba, in which the differences
occurred only between some regions. In C. cyanus, P. lanceolata, and S. alba, the highest content of
polyphenols was found in plants harvested in Ukrainian chernozem, rich in organic compounds.
The polyphenol content depends on the plant species and results from the variations in edaphoclimatic
conditions of the growing sites (e.g., soil composition, water availability, and sunlight exposure),
which may influence the formation of these compounds [35,36]. The concentration of polyphenols
in O. basilicum from Pomerania and Podlasie (Figure 2) was lower than in the other species of the
Lamiaceae family—Mentha x piperita, obtained in the same regions [27]. An analogous relationship
regarding the level of total polyphenols between O. basilicum and M. x piperita was observed in the
Czech Republic [37]. Plants of the Lamiaceae family are known as a rich source of polyphenolic
compounds and are popular for their good antioxidant properties [38].

Plants of the same species but from different regions of sample collection generally showed
differentiated antioxidant potential, wherein the variation was greater for FRAP than for ABTS radicals
scavenging ability (Figures 3 and 4). The highest value of antioxidative potential, regardless of the
test method, was found in O. basilicum from Podlasie and was proportional to the content of total
polyphenols. A similar relationship, but only with respect to DPPH and polyphenols, was found in
this species in Romania [39]. M. hortensis from Ukraine and P. lanceolata from Ukraine and Pomerania
also were characterized by a high antioxidative activity (Figures 3 and 4).

Polyphenols are probably the main components responsible for antioxidative activity in Ch. recutita,
O. basilicum, and V. officinalis, which is indicated by a positive significant Pearson rank correlation
measured between the total polyphenols level and FRAP and/or ABTS radicals scavenging ability
(Table 2, Scheme A1). A linear relationship between the total polyphenols content and antioxidant
potential has been found in plants of these species before [40–42]. In M. hortensis, however, it is
likely that Se is strongly associated with the antioxidant properties. This can be demonstrated
by the high (ABTS) and very high (FRAP) correlation of selenium levels with antioxidant potential.
Both polyphenols and selenium have an effect on the antioxidant properties of C. cyanus and P. lanceolata,
but to varying degrees (Scheme A1). In P. lanceolata, it is probably the polyphenols that play a decisive
role (Table 2, Scheme A1). Our research is in line with previous observations made on plants of
this species in Romania [43]. In C. cyanus, antioxidant activity is more correlated with selenium
than with total polyphenols (Table 2), and therefore polyphenols may not be the main compounds
responsible for the antioxidant activity of this species (Scheme A1). Some other selenium-induced
compounds, e.g., ascorbic acid, can play this role. Erol-Dayi et al. [44] pointed out the lack of role of
polyphenols as free radical scavenging constituents in Centaurea spp. obtained in Turkey. The negative
significant and high correlation in S. alba noted in our research is in opposition to the results obtained
by Thangi et al. [45], who observed a positive high correlation between the content of polyphenols and
antioxidant activity in seeds of this species from India.

Our results also suggest that selenium in some species may have a positive (C. cyanus) or negative
(Ch. recutita) effect on the total polyphenols level, which is reflected in the values of Pearson correlation
coefficients (Table 2). It has been shown that exogenous selenium stimulated the level of phenolic
compounds in broccoli and Lycopersicon esculentum [46–48]. It can cause abiotic stress, which stimulates
the synthesis of polyphenol compounds [49].

5. Conclusions

Our research showed that the variations in Se concentration, total polyphenols, and antioxidant
properties are noticeable in most plant species, but not in every collection region. The type of soil
and its abundance in selenium could have played a decisive role in the concentration of this element
in Ch. recutita, C. cyanus, M. hortensis, and S. alba. In the case of samples collected in different
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regions on the same soil type and with a similar Se content, the amount of rainfall could have an
effect on the concentration of this element in plants. For example, it was noticeable in Ch. recutita,
C. cyanus, and S. alba harvested in Pomerania and Podlasie. The higher concentrations of total
polyphenols in C. cyanus, P. lanceolata, M. hortensis, and S. alba from Ukraine could be caused by the type
of soil found there, which is rich in organic matter. The results suggest that the antioxidant properties
of Ch. recutita, O. basilicum, and V. officinalis are clearly associated with polyphenols, in M. hortensis
with selenium, and in C. cyanus and P. lanceolata with both selenium and polyphenols.
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Scheme A1. The role of selenium and total polyphenols in the antioxidant potential of Centaurea cyanus,
Chamomilla recutita, Majorana hortensis, Ocimum basilicum, Plantago lanceolata, Sinapis alba and Valeriana
officinalis. Plant species were connected with the factors responsible for their antioxidant potential with
continuous lines. The thickness of the line corresponds to the strength of the parameter in influencing
the antioxidant activity of the species. The dashed line indicates a parameter that negatively affects the
antioxidant potential.
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