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Abstract: Proteomics and phosphoproteomics have been emerging as new dimensions of omics.
Phosphorylation has a profound impact on the biological functions and applications of proteins.
It influences everything from intrinsic activity and extrinsic executions to cellular localization. This
post-translational modification has been subjected to detailed study and has been an object of analytical
curiosity with the advent of faster instrumentation. The major strength of phosphoproteomic research
lies in the fact that it gives an overall picture of the workforce of the cell. Phosphoproteomics
gives deeper insights into understanding the mechanism behind development and progression
of a disease. This review for the first time consolidates the list of existing bioinformatics tools
developed for phosphoproteomics. The gap between development of bioinformatics tools and their
implementation in clinical research is highlighted. The challenge facing progress is ideally believed
to be the interdisciplinary arena this field of research is associated with. For meaningful solutions
and deliverables, these tools need to be implemented in clinical studies for obtaining answers to
pharmacodynamic questions, saving time, costs and energy. This review hopes to invoke some
thought in this direction.
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1. Introduction

The recent few decades have seen an escalation in applying computer-based knowledge into
life science applications, especially medicine. Currently, proteomics and bioinformatics are deeply
rooted in biological sciences, so much so that it is hard to progress without this integration. Both these
interdisciplinary approaches draw motivation from cross disciplines such as physics, chemistry, biology,
computer science and engineering. Proteomics and bioinformatics have realized their full potential in
various areas of biological sciences, especially when it comes to medicine. This interdisciplinary research
has had an unequivocal impact on both fields, and through both fields has impacted the fundamental
understanding and unravelling of core biological process affecting human health and welfare.

Bioinformatics uses computational approaches to answer theoretical and experimental queries
in life sciences. The growth of the biotechnology industry has enormously impacted disease
characterization, pharmaceutical discovery, clinical healthcare, forensics, molecular understanding and
agriculture. These are core issues that fundamentally impact economic and social issues worldwide [1].
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Incorporation of computer knowledge into biotechnological research has been responsible for taking
things forward rapidly and authoritatively in this field. Scientific research has been on the transition
in recent years owing to the collective information obtained from numerous genome projects and
application of high-throughput technologies and mass spectrometry. The development of computational
tools has not only roused hope, but has also provided increasing opportunities on biological systems [2].
Bioinformatics is now more so an empowering technology. A fundamental understanding on
protein–protein interactions as well as protein identification and characterization and post translational
modification has been achieved through bioinformatics approaches. The prediction of primary,
secondary, tertiary and quaternary structures, and molecular modeling and visualization, has been
realized through inputs from bioinformatics. Insights into genomics, epigenomics, lipidomics,
glycomics, foodomics and transcriptomics has been the working hub of ongoing bioinformatics.

Phosphorylation is the chemical addition of a phosphoryl group (PO3
−) to an organic

molecule. The removal of a phosphoryl group is called dephosphorylation. Phosphorylation and
dephosphorylation are carried out by kinases and phosphotransferases. Protein phosphorylation
is the addition of a phosphoryl group to an amino acid. The amino acid is ideally serine, however,
threonine and tyrosine in eukaryotes and histidine in prokaryotes are also on the list. The most
predominant types of phosphorylation are post-translational modifications (PTM). The identification
and characterization of proteins possessing phosphorylation as a post-translational modification (PTM)
is phosphoproteomics. This branch of omics provides insights into proteins that regulate essential
signaling pathways. It also aids in the understanding of cellular processes enabling the location of
potential drug targets. Developments in sample preparation, enrichment, quantification and data
analysis strategies have led to targeted phosphoproteome profiling. Using shotgun phosphoproteomics,
enzymatic digestion of protein samples into peptides and phosphopeptides has been achieved.
Phosphoproteomics has enabled the identification of site-specific phosphorylation in plants [3].
Technological advancements in analytical instrumentation, sample preparation and data analysis [4–14]
have enabled obtaining high-quality, reproducible and comprehensive data sets. Researchers [15] were
able to detect 50,000 phosphopeptides in a single human cancer cell line and quantify thousands of
peptides within short time frames. Published reviews have elaborately discussed proteomics and
phosphoproteomics in the context of precision medicine [16–18]. The relevance of phosphoproteomics
data in providing mechanistic information towards the understanding of disease mechanism has been
a crucial breakthrough [19–21]. The fundamental knowledge on the resistance of melanoma cells
to BRAF inhibitors [19] as well as glioblastoma cells to mTOR inhibitors has been understood via
phosphoproteomic studies. This profoundly insightful information has led to the discovery of novel
combinational therapies [20]. Other authors [22] used phosphoproteomics data to assign tumor types
for designing treatment routines. These same authors have studied acute myeloid leukemia primary
cells to identify the differences in activation of kinases in cells and their drug resistance profiles [23].
Phosphoproteomics has led to unravelling the bidirectional signaling between endothelial cells and
tumor cells for a better understanding of metastatic mechanisms of tumor cells [21]. Phosphoproteomic
data has been employed to create mechanistic models of colorectal cancer cell lines for the understanding
of specific drug resistance [24]. It is well-known that technological advancements and community
efforts to standardize protocols and achieve reproducible results are vital for disease and patient
stratification. Other than the data reproducibility issue that the mass spectrometry community is
confronting, data type-specific methods to extract valuable information is another issue. The role
of bioinformatics in proteomics/phosphoproteomics is thus evident: storage of huge volumes of
information, cross examination and cross verification of patient sample information, simulation studies,
simplification of in vivo/in vitro processes through theoretical approach and understanding underlying
fundamental interactions and networking within diseased cells. Figure 1 gives the overall workflow of
phosphoproteomics, indicating the junctures (data acquisition and data analysis) where bioinformatic
tools play a pivotal role.
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Figure 1. Work flow of phosphoproteomics indicating entry points where bioinformatics tools come
tools come handy.

The present review focusses on highlighting the importance of phosphoproteomic research and the
importance of bioinformatics approaches and inputs into this area of research. The milestones achieved
thus far via such an integration are presented and the challenges facing this integration discussed. This
review discloses the fact that in spite of the valuable deliverables from phosphoproteomics, the interest
from the research community in this area of omics is limited. Less than few tens of publications are
placed on record; the need for implementation and the reason for this reduced popularity are also
discussed in this review.

2. Biocomputational Tools for Proteomics—A Snapshot

With the increasingly large variety of proteomics workflows and data outcomes, Human Proteome
Organisation (HUPO) [25] is facing a major challenge. It is here that there is room for a new generation
of the ProteinScape™ bioinformatics platform, supported by LOOPP and PROCHECK software, to
chip in. This could prove helpful in furthering functional characterization of specified proteins [26].
Other basic databases for proteins and genes include: UniProt Knowledgebase, Entrez Gene, OMIM
Online Mendelian Inheritance in Man and Gene Ontology. Protein Interaction Databases include: DIP
(Database of Interacting Proteins), BIND (Biomolecular Interaction Database Molecular interactions),
IntAct, MIPS (Munich Information Center for Protein Sequences), HPRD (Human Protein Reference
Database), STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) and MINT (Molecular
Interaction). BioGRID, PIPs, MPIDB and TAIR, and additional tools such as PANTHER, DAVID, KEGG,
and IPA, have been improved for data mapping. These tools are useful in understanding the functions
of proteins in cells and its intricate interactions. Coon OMSSA Proteomic Analysis Software Suite
(COMPASS) is a software that is freely available for high-throughput analysis of proteomics data,
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based on the Open Mass Spectrometry Search Algorithm [27]. SPIRE (Systematic Protein Investigative
Research Environment) has a web-interface that is easy to use, generating interactive and simple data
formats [28] for mass spectrometric (MS) data. ScanRanker identifies unassigned high-quality spectra
(that evaded identification) and picks spectra for de novo sequencing and cross-linking of proteins [29].
Also available are computer-based tools for biological pathways such as: iPath, Protein Lounge,
BioCarta, KEGG and MetsCyc. Other software available for network analysis includes Ingenuity
Pathway Analysis, MetaCore Integrated software suite based on MetaBase, PathwayStudio, GenMAPP
(Gene Map Annotator and Pathway Profiler) and Cytoscape [2].

To transform large-scale biologically relevant proteomic data into valuable information [30],
novel and improved computational tools are required. Various bioinformatics tools tailored to
address the pressing needs of proteomics are available: Proteo Connections, Pathway Browser, and
interaction databases like IntAct, ChEMBL, BioGRID [31] and ProteoRed MIAPE [32]. Proteomic
storekeeper repositories like PRIDE, Global Proteome Machine, PeptideAtlas are also available to cater
to huge volumes of mass spectral data and their respective protein identifications [33]. ANTILOPE
is used for mathematical programming [34] and Peptidomimetics Based Inhibitor Design is a drug
designing tool [35]. Genome Medicine Database of Japan Proteomics (GeMDBJ proteomics) is a free
database [36] and HUPO [37] is another proteomic database that exchanges and imports data to
and from databases such as Primer3 software [38], ClustalW, [39] SWISS 2DPAGE and others [40,41].
The MAPU (Max–Planck UnifiedProteome Database) 2.0 database contains a huge collection of
proteomes of organelles, tissues and cell types [42]. It aids in the retrieval of organism-specific
proteomic data obtained from high accuracy MS-based proteomics and provides insight into general
features ranging from gene ontology classification to SwissProt annotation. MODELLER 9v2 software is
used to predict the 3-dimensional structure of proteins and PROCHECK and VERIFY 3D for generating
output models [43,44].

Emerging tools used in various R&D sectors are summarized [45] as follows: (i) FindMod: Predicts
post-translational modifications and single amino acid substitutions in peptides; (ii) FindPept: Identifies
peptides; (iii) Mascot: Useful in protein identification by peptide mass fingerprinting; (iv) PepMAPPER:
A web-based mapping tool developed for the purpose of epitope prediction and for sequence-structure
alignment of proteins; (v) ProFound: Searches known protein sequences; (vi) ProteinProspector:
Tools for peptide masses data (MS-Fit, MS-Pattern, MS-Digest); (vii) AACompIdent: Identifies a
protein by its amino acid composition; (viii) AACompSim: Compares amino acid composition;
(ix) TagIdent: Identifies proteins based on isoelectric point (pI), molecular weight (Mw) and sequence
tag; (x) MultiIdent: Identifies proteins; (xi) InterPro Scan: Searches associated proteins with PROSITE,
Pfam, PRINTS and other family and domain databases; (xii) MyHits: Establishes connectivity
between protein sequences and motifs; (xiii) ScanProsite and HamapScan: Scans a sequence against
PROSITE/HAMAP families; and finally, (xiv) MotifScan: Scans a sequence against protein profile
databases [46].

The list further extends to tools [46] such as Pfam HMM search, ProDom, SUPERFAMILY Sequence
Search, FingerPRINTScan, ELM (Eukaryotic Linear Motif) resource, PRATT, ChloroP, LipoP, MITOPROT,
PATS (Prediction of apicoplast targeted sequences), PlasMit, Predotar, PTS1, SignalP, DictyOGlyc,
NetCGlyc, ProtParam, Compute pI/Mw, ScanSite pI/Mw, MW, pI, Titration curve, HeliQuest, Radar,
REP, REPRO, Homology modeling SWISS-MODEL, CPHmodels, ESyPred3D, Geno3d, Phyre (Successor
of 3D-PSSM), Fugue, HHpred, SAM-T08, PSIpred, MakeMultimer, EBI PISA, PQS (Protein Quaternary
Structure), ProtBud, Swiss-PdbViewer, SwissDock, EADock DSS and SwissParam. Tushar et al. [47]
have extensively reviewed these tools in their review on the topic integration of bioinformatic tools for
proteomics research.

3. Biocomputational Tools for Phosphoproteomics

Phosphoprotemic tools are being developed in such a way that involves searching a sequence
database and performing analysis using designated tools [48,49]. Another approach employs searching a
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spectral localization library [50–52]. We move forward to sweep through the existing phosphoproteomic
software options available.

3.1. Tools for Analysis of Phosphopeptide Data/Spectra

SimPhospho, simulates phosphopeptide spectra searching through spectral libraries leading to
highly accurate phosphosite validation. SimPhospho, accurately simulates phosphopeptide tandem
mass spectra. The SimPhospho software uses Proteowizard project [53] and an XML library (Thomson)
and includes a Qt framework-based user interface. Two XML files [54] serve as an input to SimPhospho:
(i) a pep.xml file that contains search results [55] and (ii) an mzXML file that holds mass spectra.
The software can be retrieved at https://sourceforge.net/projects/simphospho/.

The typical outcome from MS based proteomics, is the identification of peptides assigned to
proteins. As a result of detection of extensive sub-proteomes and sub-phosphoproteomes of living cells,
description, storage, management and recovery of the obtained data becomes challenging. For this
purpose, PHOSIDA, the Phosphorylation Site Database [56] (http://www.phosida.com) was created [56].
The aim of PHOSIDA is to evolve high quality phosphoproteomic data for quantitative information,
for mapping cell regulation after treatment with a stimulus. PHOSIDA is multifunctional in that it
predicts putative phosphorylation sites, acetylation and other post-translational modification sites and
analyzes phosphorylation events of proteins of interest. Computer based extraction of knowledge
from comprehensive datasets is the agenda of ‘knowledge discovery in databases’ (KDD).

A large number of phosphopeptides and proteins are detected through mass spectrometry-based
phosphoproteomics. The critical challenge is the manual analysis of downstream data. Towards this
automation, a software called PhosFox [57] has been launched, which enables peptide-level processing
of phosphoproteomic data supported by Mascot, Sequest, and Paragon. The PhosFox software aids in
qualitative and quantitative phosphoproteomics studies and detects phosphorylated peptides and
proteins. It also distinguishes differences within phosphorylation sites.

Normalization is a crucial step when analyzing phosphoproteomics data. A median normalization
global centric method has been widely employed when it comes to label-free MS-based proteomics [58].
This works on the assumption that peptide abundances do not change between samples [59,60].
Researchers have reported that applying global-centering normalization introduces bias in distribution
of fold changes of phosphopeptides across samples. It is in this direction that an R package called
phosphonormalizer that fulfils pairwise normalization has been launched [61].

While thousands of phosphopeptides are identified in complex biological specimens, tools to
evaluate and detect large amounts of phosphopeptides and related data are needed. Skyline is a
freely-available and open source Windows client application for building Selected Reaction Monitoring
(SRM)/Multiple Reaction Monitoring (MRM), Parallel Reaction Monitoring (PRM), Data Independent
Acquisition (DIA/SWATH) and Data Dependent Acquisition (DDA) with MS1 quantitative methods
and analyzing the resulting mass spectrometer data. MaxQuant [62] and Skyline [63] have been used
in a few occasions for phosphopeptide identification and quantification. A couple of excellent reviews
describe these software programs in more detail [64,65].

3.2. Tools for Phosphorylation Site Assignment

Correct phosphorylation site assignment is a critical aspect for any phosphoproteomic analysis.
PhosphoScore [66] is such a site assignment program. It relates the match quality and intensity of
observed spectral peaks compared to a theoretical spectrum. The claim [66] is that PhosphoScore
produces >95% MS2 assignments. Ascore [67] is another statistical algorithm that measures the
probability of correct phosphorylation sites. It is reported that phosphorylation sites with an Ascore ≥ 19
are usually considered unambiguously assigned.

https://sourceforge.net/projects/simphospho/
http://www.phosida.com
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3.3. Tools for Prediction of Phosphorylation Sites

As is known, protein phosphorylation is catalyzed by a group of enzymes called kinases, which
add phosphate (PO4) to serine (S), threonine (T), tyrosine (Y) and histidine (H) residues. On the other
hand, phosphate moieties existing on substrates can also be eradicated by phosphatases. Since many
members of the human protein kinase family are implicated in cancer, it is reported that their alteration
or dysregulation provides clinically-validated targets for personalized treatment of cancer [68,69].
Given this fact, identification and characterization of kinases and their unique phosphorylation sites
becomes a prerequisite for understanding protein kinase-regulated signaling pathways and their
impacts on health and disease. While most or all protein kinases have been identified, the sites that
they phosphorylate are not well understood. Many computational techniques for phosphorylation site
prediction have been proposed. These differ in several ways, including the machine learning technique;
the sequence information used; the number of residues surrounding the phosphorylation site; use of
structural information/sequence information; and dependence on predictions made for specific/general
kinases. Few review articles have previously been published that elaborately discuss computational
phosphorylation site prediction. Kobe et al. [70] provided a brief review of this field [71], while Miller
and Blom [72] briefly summarized the literature on phosphorylation site prediction and discussed their
NetPhos [73,74] family of tools. Xue et al. [75] reviewed, and Trost and Kausalik [76] have extensively
reviewed, the tools available for prediction of phosphorylation sites. The list includes tools such
as: NetPhosK, PHOSITE, Predikin 1.0, DISPHOS, PredPhospho, GPS 1.0, GPS 2.1, KinasePhos 1.0,
KinasePhos 2.0, NetworKIN, PhosPhAt, AutoMotif, PhoScan, Siteseek, Predikin 2.0, Phos3D, PostMod,
PPRED, Musite.

MusiteDeep [77], is an advanced deep-learning framework that predicts general and kinase-specific
phosphorylation sites. DeepPhos [78], is another novel deep learning architecture for prediction
of protein phosphorylation, applied for kinase-specific prediction. DeepPhos is reported to
outperform competitive predictors in general and kinase-specific phosphorylation site prediction.
PhosphoPredict [79] is yet another novel bioinformatics tool, which combines protein sequence and
functional features to predict kinase-specific substrates and their associated sites.

3.4. Tools for Detection of Phosphosites and Kinase Activity from Phosphopeptide Data

Another approach to phosphoproteomics is through biochemical methods whereby kinase
activities are assessed in vitro [80,81]. The major limitation is that these methods are limited in
throughput and time-consuming. In vitro methods are not effective in reflecting in vivo activities of
kinases, which is why MS-based methods are needed for evaluating kinase activity [82,83]. An approach
to link phosphoproteomics data with the activity of kinases was presented by Qi et al. [84], which is
known as kinase activity analysis (KAA). CLUE (CLUster Evaluation) is a method designed specifically
for phosphoproteomics data [85], based on the hypothesis that phosphosites targeted by the same
kinase will show similar temporal profiles. This principle has been utilized to guide the clustering
algorithm and group kinases associated to these clusters. The abundances of the target phosphosites
are studied using MS followed by in vitro enzymatic reactions. Since every phosphorylation event
results from the activity of a kinase, the data thus involved is able to infer the activity of many kinases
without the need of actual experiments. This task requires computational analysis of the detected
phosphorylation sites (phosphosites), since thousands of phosphosites can routinely be measured
in a single experiment. GSEA (Gene Set Enrichment Analysis), is generally applied to an entire set
of gene expression data in order to obtain extensive information. It has also been reported to be
useful for inference of kinase activity from phosphoproteomics data. This is related to the inference of
transcription factor activity, based on the gene expression data.

There are many freely available databases that collect experimentally verified phosphosites,
such as PhosphoSitePlus [86], Phospho.ELM [87], Signor [88], or PHOSIDA (explained above) [89].
Each of these databases differ in size and aim. For example, Phospho.ELM computes a score for
the conservation of a phosphosite and Signor focuses on interactions with proteins involved in
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signal transduction. PhosphoNetworks [90] is dedicated to kinase–substrate interactions. One other
prominent database for interactions between kinases and individual phosphosites is PhosphoSitePlus.
The unique database PhosphoGRID is exceptional in that it provides analogous information [91] for
Saccharomyces cerevisiae. Specific information about phosphatase targets can be found in DEPOD [92].
As estimated, there are between 100,000 [93] and 500,000 possible phosphosites in the human
proteome, and this has been the motivation for the development of computational tools to predict
in vivo kinase–substrate relationships [94]. Scansite [95] uses position-specific scoring matrices
(PSSMs) obtained by positional scanning of peptide libraries [96] or phage display methods [97].
Netphorest [98] classifies phosphorylation sites instead of predicting individual kinase–substrate
links [75,98]. The software packages NetworKIN [99] (extended asKinomeXplorer [100]) and iGPS [101]
combine information about kinase recognition motifs, in vivo phosphorylation sites and contextual
information (STRING database [102–104]).

Currently available applications that offer kinase related analyses include inference of kinase
activities from phosphoproteomics (IKAP) [105], kinase perturbation analysis (KinasePA) [85],
CLUE [106] and Kinase Enrichment Analysis (KEA) [107], now updated as KEA2. IKAP is platform-
specific, KinasePA and CLUE are limited to multi-condition studies and KEA is based on substrate
overrepresentation. Kinase–Substrate Enrichment Analysis (KSEA) [108] scores each kinase based on
the relative hyperphosphorylation or dephosphorylation of its substrates. To make KSEA available
to the greater scientific community, a web-based implementation called the KSEA App has been
developed. This KSEA App version 1.0 is hosted on the shinyapps.io server as a free online tool:
https://casecpb.shinyapps.io/ksea/. Alternatively, this tool is also available as the R package ‘KSEAapp’
in CRAN: https://CRAN.R-project.org/package\protect$\relax\protect{\begingroup1\endgroup\@@
over4}$KSEAapp/.

4. Future Direction—Implementation of Biocomputation Integrated Phosphoproteomics

As summarized above and in Table 1 [109–133], it is clearly evident that biocomputation had
indeed played a vital role in the establishment of phosphoproteomics as a well accomplished offshoot
of omics. However, it was observed that not much implementation of these tools towards applications
has been reported. Most of the publications present the potential of the bioinformatics tools, or the
development of these tools, and very few target the implementation of these for relevant applications.
Few publications on applying phosphoproteomics for precisions medicine have been reported.
Additionally, not much progress has been made in applying any of these bioinformatics tools for
phosphoproteomics in clinical or plant/animal biotechnological research.

We assume that the challenge could be owing to the fact that compared to proteomics,
phosphoproteomics is a more specialized field requiring more expertise. This could be a reason
for the inhibition of extensive research interest in this direction. Moreover, this field being a highly
interdisciplinary field (with acquaintance in cross disciplinary fields such as molecular biology,
computation, protein chemistry and informatics) this very aspect could be a limiting factor. However,
with good progress in the development of such valuable bioinformatics tools being achieved, it is
now high time that these resources are put to productive and real time applications and ultimate
utility realized. This review points out to this lacuna that in spite of so many tools being developed,
nothing much has been accomplished in terms of fundamental understanding of human diseases or
animal/plant pathogenicity.

Except for a few reports on cancer related studies where bioinformatics phosphoproteomic
approaches came handy, there appears to be no implementation. An interdisciplinary approach with
cross disciplinary researchers collaborating will lead to positive progress and practical implication for
harnessing wholesome benefits.

https://casecpb.shinyapps.io/ksea/
https://CRAN.R-project.org/package\protect $\relax \protect {\begingroup 1\endgroup \@@over 4}$KSEAapp/
https://CRAN.R-project.org/package\protect $\relax \protect {\begingroup 1\endgroup \@@over 4}$KSEAapp/
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Table 1. Overview of software options available for phosphoproteomics.

Software
Function/Application Bioinformatics Tool Specified Function Website Ref.

Analysis of phosphopeptide
data/spectra SimPhospho Search, simulate phosphopeptide spectra and tandem mass spectra https://sourceforge.net/projects/

simphospho/
[53–55]

PHOSIDA

Storage, management and recovery of phosphopeptide data,
predicting putative phosphorylation sites, acetylation and other

post-translational modification sites and analyses phosphorylation
events of proteins of interest

http://www.phosida.com [56,89]

Prophossi Automating expert validation of phosphopeptide–spectrum matches
from tandem mass spectrometry

http://www.compbio.dundee.
ac.uk/prophossi [109]

PhosFox
Peptide-level processing of phosphoproteomic data generated by

Mascot, Sequest, and Paragon, qualitative and quantitative
phosphoproteomics

https://bitbucket.org/phintsan/
phosfox [57]

R package, Phospho
normalizer Normalization of phosphoproteomics data https://bioconductor.org/

packages/phosphonormalizer [61]

Correct phosphorylation site
assignment PhosphoScore Phosphorylation site assignment https://omictools.com/

phosphoscore-tool [66]

Ascore Phosphorylation site assignment http://ascore.med.harvard.edu/
ascore.php [67]

Phosphorylation site
prediction NetPhos Machine learning methods, artificial neural networks (ANNs) cbs.dtu.dk/services/NetPhos [73,74]

Scansite Machine learning methods, position-specific scoring matrices
(PSSMs) used scansite.mit.edu [95]

Predikin 1.0 Structural analysis (SA) used predikin.biosci.uq.edu.au [110]

DISPHOS Logistic regression (LA) used www.dabi.temple.edu/disphos [111]

NetPhosK ANN used cbs.dtu.dk/services/NetPhos [74]

PredPhospho Support vector machines (SVMs) used (website no longer accessible) [112]

PHOSITE PSSM (website no longer accessible) [113]

GPS 1.0 PSSM, Markov clustering (MC) used gps.biocuckoo.org [114]

KinasePhos 1.0 Hidden Markov Model (HMM) used kinasephos.mbc.nctu.edu.tw [115]

https://sourceforge.net/projects/simphospho/
https://sourceforge.net/projects/simphospho/
http://www.phosida.com
http://www.compbio.dundee.ac.uk/prophossi
http://www.compbio.dundee.ac.uk/prophossi
https://bitbucket.org/phintsan/phosfox
https://bitbucket.org/phintsan/phosfox
https://bioconductor.org/packages/phosphonormalizer
https://bioconductor.org/packages/phosphonormalizer
https://omictools.com/phosphoscore-tool
https://omictools.com/phosphoscore-tool
http://ascore.med.harvard.edu/ascore.php
http://ascore.med.harvard.edu/ascore.php
cbs.dtu.dk/services/NetPhos
scansite.mit.edu
predikin.biosci.uq.edu.au
www.dabi.temple.edu/disphos
cbs.dtu.dk/services/NetPhos
gps.biocuckoo.org
kinasephos.mbc.nctu.edu.tw


Processes 2019, 7, 869 9 of 17

Table 1. Cont.

Software
Function/Application Bioinformatics Tool Specified Function Website Ref.

PPSP Bayesian probability (BP) based ppsp.biocuckoo.org [116]

NetworKIN
/KinomeXplorer ANN, PSSM based networkin.info [100,101,117]

KinasePhos 2.0 SVM kinasephos2.mbc.nctu.edu.tw [118]

AutoMotif SVM (website no longer accessible) [119]

PhosPhAt SVM phosphat.mpimp-golm.mpg.de [120]

PhoScan PSSM bioinfo.au.tsinghua.edu.cn/
phoscan [121]

MetaPredPS Meta-predictor (MP) metapred.biolead.org/
MetaPredPS [122]

SiteSeek Non specified (no web implementation
available) [123]

Predikin 2.0 HMM, SA predikin.biosci.uq.edu.au [124]

GPS 2.0 PSSM, genetic algorithm (GA) gps.biocuckoo.org [125]

CRPhos Conditional random fields (CRF) www.ptools.ua.ac.be/CRPhos [126]

Phos3D SVM phos3d.mpimp-golm.mpg.de [127]

PPRED PSSM, SVM ashiskb.info/research/ppred [128]

PAAS PSSM (website no longer accessible) [129]

PostMod PSSM pbil.kaist.ac.kr/PostMod [130]

GPS 2.1 PSSM, GA gps.biocuckoo.org [131]

Musite SVM musite.sourceforge.net [132]

MusiteDeep Predicting general and kinase-specific phosphorylation sites https://github.com/duolinwang/
MusiteDeep [77]

DeepPhos Prediction of protein phosphorylation, kinase-specific prediction https://github.com/USTCHIlab/
DeepPhos [78]

PhosphoPredict Prediction of kinase-specific substrates and associated
phosphorylation sites

http://phosphopredict.erc.
monash.edu/

[79]

ppsp.biocuckoo.org
networkin.info
kinasephos2.mbc.nctu.edu.tw
phosphat.mpimp-golm.mpg.de
bioinfo.au.tsinghua.edu.cn/phoscan
bioinfo.au.tsinghua.edu.cn/phoscan
metapred.biolead.org/MetaPredPS
metapred.biolead.org/MetaPredPS
predikin.biosci.uq.edu.au
gps.biocuckoo.org
www.ptools.ua.ac.be/CRPhos
phos3d.mpimp-golm.mpg.de
ashiskb.info/research/ppred
pbil.kaist.ac.kr/PostMod
gps.biocuckoo.org
musite.sourceforge.net
https://github.com/duolinwang/MusiteDeep
https://github.com/duolinwang/MusiteDeep
https://github.com/USTCHIlab/DeepPhos
https://github.com/USTCHIlab/DeepPhos
http://phosphopredict.erc.monash.edu/
http://phosphopredict.erc.monash.edu/


Processes 2019, 7, 869 10 of 17

Table 1. Cont.

Software
Function/Application Bioinformatics Tool Specified Function Website Ref.

Inference of kinase activity
from phosphoproteomics

data/detection of phosphosites

Kinase-Substrate
Enrichment Analysis

(KSEA)

Computational characterization of differential kinase activity from
phosphoproteomics datasets

https:
//casecpb.shinyapps.io/ksea/

[108]

CLUE (CLUster
Evaluation) include IKAP,
KinasePA, KAA (Kinase

activity analysis) and KEA

Computational analysis of the detected phosphorylation sites
(phosphosites) https://omictools.com/clue-tool [83,84,106–

108]

GSEA (Gene Set
Enrichment Analysis) Inference of kinase activity from phosphoproteomics data http://software.broadinstitute.

org/gsea/
[133]

PhosphoSitePlus Database for expert-edited and curated interactions between kinases
and individual phosphosites

https://www.phosphosite.org/
homeAction.action [86]

Phospho.ELM Computes a score for the conservation of a phosphosite http://phospho.elm.eu.org [87]

Signor Focuses on interactions with proteins involved in signal transduction https://signor.uniroma2.it/ [88]

Netphorest Classifies phosphorylation sites http://www.netphorest.info/ [98]

PhosphoGRID Related information for Saccharomyces cerevisiae https://phosphogrid.org/ [91]

DEPhOsphorylation
database DEPOD Supports phosphatase–kinase substrate networks http:

//www.koehn.embl.de/depod [92]

https://casecpb.shinyapps.io/ksea/
https://casecpb.shinyapps.io/ksea/
https://omictools.com/clue-tool
http://software.broadinstitute.org/gsea/
http://software.broadinstitute.org/gsea/
https://www.phosphosite.org/homeAction.action
https://www.phosphosite.org/homeAction.action
http://phospho.elm.eu.org
https://signor.uniroma2.it/
http://www.netphorest.info/
https://phosphogrid.org/
http://www.koehn.embl.de/depod
http://www.koehn.embl.de/depod
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5. Conclusions

This review aimed at consolidating the bioinformatic tools available, giving a snapshot of the
ones useful for proteomics and touching on the tools available for phosphoproteomics. Despite such
valuable tools having been developed, in terms of real time application into clinical/pathological
research and investigations we are not even close to accomplished. It is about time bioinformatics tool
developers loop in with biologists and implement their tools.
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