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Abstract: The effect of CuO as a sintering additive on the electrolyte of solid oxide electrolysis cells
(SOECs) was investigated. 0.5 wt% CuO was added into Sc0.1Ce0.05Gd0.05Zr0.89O2 (SCGZ) electrolyte
as a sintering additive. An electrolyte-supported cell (Pt/SCGZ/Pt) was fabricated. Phase formation,
relative density, and electrical conductivity were investigated. The cells were sintered at 1373 K to
1673 K for 4 h. The CuO significantly affected the sinterability of SCGZ. The SCGZ with 0.5 wt% CuO
achieved 95% relative density at 1573 K while the SCGZ without CuO could not be densified even at
1673 K. Phase transformation and impurity after CuO addition were not detected from XRD patterns.
Electrochemical performance was evaluated at the operating temperature from 873 K to 1173 K under
steam to hydrogen ratio at 70:30. Adding 0.5 wt% CuO insignificantly affected the electrochemical
performance of the cell. Activation energy of conduction (Ea) was 72.34 kJ mol−1 and 74.93 kJ mol−1

for SCGZ and SCGZ with CuO, respectively.
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1. Introduction

Global climate change is an important issue that is clearly found to affect the environment and
humanity. Greenhouse gas emission is the major cause for retaining heat in the atmosphere, leading to
climate change. Greenhouse gases are mainly generated from the combustion of fossil fuel such as
petroleum, natural gas, and coal. Hydrogen is the one of the promising energy carriers for better
environment since only water and energy are produced from hydrogen combustion [1,2]. Moreover,
hydrogen can be used as a feedstock for various industrial chemical productions [3–5].

Solid oxide electrolysis cells (SOECs) are used to produce high purity hydrogen from steam
electrolysis reaction at elevated temperatures. Material selection is one of the challenges faced in
the implementation of SOEC. The operation may operate under severe condition in the production
scale. Sealant of gas leakage between the stack needs to be modified [6]. Material choice for SOEC
electrode is often similar to solid oxide fuel cell [7–9]. Therefore, 8 mol% yttria stabilized zirconia
(YSZ), which is a conventional electrolyte in solid oxide fuel cell [10–13], is generally used as the
SOEC electrolyte. Attempt has been made to seek for fast ionic conductor instead of conventional
YSZ [14–18]. Doped-cerate- or doped-zirconia-based electrolyte has been studied. Scandium oxide
(Sc2O3) is the one among the dopants for zirconia-based electrolyte (Scandium stabilized zirconia,
ScSZ) that improves the ionic conductivity when compared with YSZ electrolyte. Similar ionic radius
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between Sc3+ and Zr4+ can cause low internal stress and the activation energy of conduction [16].
However, phase transition can occur in ScSZ electrolyte, leading to loss of conductivity. Abbas et al. [19]
prepared co-doping of 1 mol% Gd2O3, CaO, and CeO2 with 10 mol% Sc2O3 into zirconia structure to
reduce phase transition and it was found that 1 mol% CeO2 and 10 mol% Sc2O3 as dopants provide
relatively highest conductivity, likely because of the close ionic radius of Ce4+ and Zr4+ compared
to other dopants. Shin et al. [20] investigated the co-doping of trivalent oxides (Gd2O3, Yb2O3, and
Y2O3) with CeO2 into scandium stabilized zirconia structure. It was reported that co-doping of Gd2O3

with CeO2 provides relatively higher ionic conductivity when compared with other oxides. However,
doped-zirconia electrolyte often requires relatively high sintering temperature (~1723 K) for electrolyte
densification. High sintering temperature of the electrolyte can lead to degradation issue in other cell
compartments, leading to difficulty in fabrication process. For example, in electrode-supported cells,
nickel (Ni) component in an electrode can agglomerate at high temperature, leading to decreasing
three phase boundary of the electrode. In metal-supported cell, metal part (often containing iron (Fe)
or Ni content) cannot withstand high sintering temperature because of a large thermal expansion
coefficient of the metal. Therefore, lower sintering temperature for electrolyte is required to enhance
the fabrication process of the cell.

Sintering additive can promote densification and help reduce sintering temperature of the
electrolyte. The additive can melt to form liquid phase during the sintering process. Solid grain of the
electrolyte is wet by liquid phase which provide capillary force pulling the grain denser [16]. There are
varied metal oxide such as CuO, NiO, Fe2O3, and MnO2 that have been used as sintering additives
for zirconia-based electrolyte [21–24]. However, adding sintering additives which are often metal
oxides can induce electronic conductivity in the electrolyte. Myung et al. [25] investigated scanning
electron microscope (SEM) images of sintered YSZ by varying amount of CuO additive from 0 to
1.5 wt%. It was found that optimum quantity of additive and sintering temperature was 0.5 wt% of
CuO and 1623 K, respectively. Our previous work [26] reported other metal oxides (NiO, Co2O3, and
ZnO) as additives in barium cerate-based electrolyte. The additives helped increase sinterability of the
electrolyte and provided different conductivity for the electrolyte.

In this research, Sc0.1Ce0.05Gd0.05Zr0.89O2 (SCGZ) was used as an electrolyte in SOEC. CuO was
added into the electrolyte as a sintering additive. The effect of sintering additive on phase formation,
cell densification, and electrical performance were investigated.

2. Experimental

2.1. Cell Fabrication

Scandium cerium- and gadolinium-doped zirconia (Sc0.1Ce0.05Gd0.05Zr0.89O2, SCGZ) was fabricated
into an electrolyte-supported SOEC. Three grams of SCGZ powder (Kceracell, Chungcheongnam-do,
Republic of Korea) were pressed at 24 MPa into a pellet with diameter of 25 mm and thickness of 1.4 mm.
The pellets were then sintered at 1373 K to 1673 K for 4 h. The electrolyte pellet with sintering additive
was fabricated using the same method when 0.5 wt% CuO was added into the SCGZ staring powder.
The relative density of the sintered electrolyte pellet was calculated following Equation (1).

Relative density =
Actual density

Theoretical density
× 100 (1)

where actual density is the bulk density of sintered cell. The theoretical density was obtained by lattice
parameter from X-ray diffraction (XRD) analysis (Bruker D8 Advance, Billerica, MA, USA).

Platinum (Pt) conductive paste (70 wt% Pt, Nexceris) was coated on the both sides of the electrolyte
pellet as electrodes with thickness and area of ~30 µm and ~0.5 cm2, respectively. The schematic of cell
component was shown as Figure 1. The cell was then fired at 1173 K for 2 h. It should be noted that the
choices of electrode used depend on the deposition technique, the operating temperature, and the type
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of conductivity. Using gold or platinum as working electrode was reported to perform well at high
temperature but below 873 K they are relatively blocking oxygen [27].
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Figure 1. Schematic drawing of electrolyte-supported solid oxide electrolysis cells (SOEC); (a) top view,
(b) side view.

2.2. Characterization

Phase and crystallite size of sintered electrolyte were determined using XRD with CuKα source
(Bruker D8 Advance, Billerica, MA, USA). The microstructure of the samples was investigated using
SEM (Hitachi S-3400N JEOL model S-3400, Tokyo, Japan). The average grain sizes were calculated by
linear intersection method.

2.3. Electrochemical Performance Measurement

Electrochemical performance was measured in a controlled temperature from 873 K to 1173 K
with the feed containing steam and hydrogen at the ratio of 70:30. The fabricated cell was attached
with Pt mesh and wire (Kceracell, Chungcheongnam-do, Korea) for electrical connection. The cell was
placed on a cell holder with high temperature sealant (Ceramabond 552, Aramco, Houston, TX, USA).
The holder was installed inside a vertical furnace (Chavachote, Bangkok, Thailand). High performance
liquid chromatography (HPLC) liquid pump (Teledyne SSI, State College, PA, USA) was used to supply
deionized water through a heated-pipe for steam generation in the system. Linear sweep voltammetry
procedure was applied to generate current/voltage (I/V) curves by controlling the potential from 0.4 V
to 1.8 V with a scan rate of 20 mVs−1 (Metrohm Autolab, Utrecht, The Netherlands).

Resistance was determined by the slope of current/voltage (I/V) curves and the conductivity of
fabricated cell (σ) was then calculated using Equation (2).

σ = L/RA (2)

where σ is the conductivity (S cm−1); L is the thickness of fabricated cell (cm); R is the cell resistance
(Ω); and, A is the area of electrode (cm2).

The activation energy of conduction (Ea) was obtained by using Arrhenius, Equation (3) with
conductivity value as mentioned above.

σT = A· exp
(
−

Ea

RT

)
(3)

where σ is the conductivity (S cm−1); T is the absolute temperature (K); A is a constant; Ea is the
activation energy of conduction (J mol−1); and R is the gas constant (8.314 J K−1 mol−1). It should be
noted that the activation energy of conduction in this study was calculated from I/V curves ranging
from open circuit voltage to 1.8 V. The slope of I/V curve is total resistance, which includes electrode
resistance. The I/V slope was not constant and was derived using a linear regression with R-squared
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(R2) ranging from 0.90–0.97. In this study, Pt was applied as both electrodes (Pt/Electrolyte/Pt) and was
expected to provide rather low resistance at operating conditions.

3. Results and Discussion

3.1. Densification of the Fabricated Cell

SEM images of SCGZ electrolyte with and without 0.5 wt% CuO sintered at varied temperature
from 1423 K to 1673 K are presented in Figures 2 and 3, respectively. The microstructure images
reveal that the SCGZ without the sintering additive could not be densified although high sintering
temperature was used. Porosity were observed all over the SCGZ without the sintering additive. Grain
boundary was observed from 1623 K but the grain size was rather small. The porosity decreased
when the sintering temperature was increased. However, the relative density of the SCGZ without
the sintering additive was only <90%, although high sintering temperature was increased up to
1673 K. On the other hand, densification and larger grain size were observed in the sample with the
sintering additive. The grain growth was observed when increasing sintering temperature (Table 1).
The added CuO could diffuse along the grain boundary and substituted in the vacancy position of
the microstructure. Myung et al. [25] investigated CuO (0.3 wt% to 1.5 wt%) as sintering additive in
yttria-stabilized zirconia (YSZ) sintering between 1423 K to 1673 K. It was reported that 0.5 wt% of CuO
is the optimal amount providing the highest densification. Amount of optimal CuO additive at 0.5 wt%
was the same for YSZ and SCGZ, likely because both materials are zirconia-based electrolyte. However,
although having same optimal CuO amount, YSZ requires relatively higher sintering temperature
(1623 K) when compared with SCGZ (1573 K) at the same sintering additive amount.
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Figure 3. SEM images of sintered SCGZ with 0.5 wt% CuO at (a) 1423 K, (b) 1473 K, (c) 1523 K, (d) 1573 K,
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Table 1. Average grain size of sinterted Sc0.1Ce0.05Gd0.05Zr0.89O2 (SCGZ) electrolyte and sintered SCGZ
electrolyte with 0.5 wt% CuO when sintering temperature was varied.

Sintering Temperature (K) Average Grain Size (µm)

SCGZ SCGZ with 0.5 wt% CuO

1423 - 1.58
1473 - 2.66

1523 1.04 5.02
1573 1.20 5.11

1623 1.51 3.32
1673 2.28 3.77

Adding 0.5 wt% CuO enhanced the densification of SCGZ. The relative densities of the fabricated
cells are presented in Figure 4. The SCGZ without sintering additive provided rather low relative
density (<90%) at all sintering temperatures, corresponding to porosity observed in the SEM images.
The SCGZ with 0.5 wt% CuO could be densified at lower sintering temperature. Increasing sintering
temperature from 1423 to 1673 K could help increase the relative density of the fabricated cell. The cell
was densified at 95% relative density at 1573 K respect to other sintering temperature. It was reported
that CuO exhibit relatively low melting point (around 1599 K) and can enhance sintering by pore
filling during liquid phase sintering [28]. Increasing temperature above 1623 K was found to decrease
the relative density of the fabricated cell, likely relating to the liquid phase sintering. Liou et al. [29]
studied the effect of CuO as sintering additives on CaTiO3 perovskite ceramics. Liquid phase sintering
at grain boundary is found at sintered sample at 1723 K for 6 h and increases significantly when
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increasing sintering temperature to 1743 K. However, liquid phase did not occur when increasing
sintering temperature up to 1773 K for 6 h, leading to less densification. Moreover, when sintering soak
time was increased to 8 h at 1723 K, liquid phase sintering significantly increases when compared with
6 h. A proper sintering temperature and soak time are important factors affecting the densification of
the sample.
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3.2. Phase Identification

XRD patterns of the SCGZ pellet sintered at 1673 K and the SCGZ with 0.5 wt% CuO pellet
sintered at 1523 K are shown in Figure 5. The XRD patterns included main peaks at (111), (200), (220),
(311), and (222) planes (COD Database ID: 1529100). Impurity phase was not detected. The XRD
patterns of two samples were identical in term of the peak positions. Shifting in peaks position of the
XRD patterns was not detected. This result could confirm that CuO did not form into a solid solution
with SCGZ but well-mixed with SCGZ as a composite form. This results corresponded to the previous
work [30]. It should be noted that CuO peaks were not detected, likely due to small amount of CuO in
the sample. The average crystallite sizes were 184 nm and 202 nm for SCGZ sintered at 1673 K and
SCGZ with sintering additive sintered at 1523 K, respectively, corresponding to the work that reported
higher densification provided a larger grain size leading to a larger crystallite size [31].
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3.3. Activation Energy of Conduction

The electrochemical performance of the SOEC was evaluated. Linear sweep voltammetry was
conducted from 873 K to 1173 K under a constant steam to hydrogen ratio (70:30). The I/V curves of the
cells having SCGZ electrolyte without and with CuO addition are shown in Figures 6 and 7, respectively.
The conductivity and activation energy of conduction are presented in Figure 8. It can be seen that the
conductivity increased with increasing operating temperature. The activation energy of conduction
(Ea) was 72.34 kJmol−1 and 74.93 kJmol−1 for SCGZ and SCGZ with CuO, respectively. In this study,
adding 0.5 wt% CuO did not significantly affect the conductivity of the electrolyte. The use of CuO as
sintering additive in various ceramic electrolytes has been reported differently. It was reported that
adding CuO can lead to ionic and electrical properties modification [25,32–36]. Zhang et al. [36] found
that addition of 1 wt% CuO improved the sinterability of Sm0.2Ce0.8O1.9 (SDC) electrolyte. The SDC
could be densified even at lower sintering temperature than 1273 K but the ionic conductivity was also
decreased as a result of microstructure alteration. On the other hand, 0.5 mol% of CuO as sintering
additive could provide high ionic conductivity and insignificant change in the activation energy of
conduction for gadolinium-doped ceria (GDC) electrolyte [37]. In this study, 0.5 wt% CuO was used
as a potential sintering additive for SCGZ electrolyte in SOEC, decreasing the sintering temperature
without any significant change in the activation energy of conduction.
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4. Conclusions

0.5 wt% CuO was employed as a sintering additive for SCGZ electrolyte in SOEC. Phase formation,
microstructure, relative density, and electrochemical performance of electrolyte-supported SOEC were
investigated. Adding 0.5 wt% CuO helped increasing the sinterability of the electrolyte which could
achieve 95% relative density with a large grain size at 1573 K. The average grain size was measured
at 5.11 µm when sintering temperature was 1573 K for SCGZ with CuO. Phase transformation and
impurity was not detected in the electrolyte after adding CuO. Neither peak shifting nor impurity peak
were detected in the XRD patterns. Without CuO addition, the SCGZ could not be densified although
sintering temperature was increased up to 1673 K. Adding CuO into SCGZ insignificantly affected the
electrochemical performance of the cell. The activation energy of conduction (Ea) of the SCGZ with
and without CuO was 74.93 kJ mol−1 and 72.34 kJ mol−1, respectively.
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