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Abstract: Unreinforced masonry walls are extensively used in the petrochemical industry and they are
one of the most vulnerable components to blast loads. To investigate the failure modes and improve
the blast resistances of masonry walls, four full-scale field tests were conducted using unreinforced
and spray-on polyurea-reinforced masonry walls subjected to gas explosions. The results suggested
that the primary damage of the unreinforced masonry wall was flexural deformation and the wall
collapsed at the latter stage of gas explosion. The presence of polyurea coatings could effectively
improve the anti-explosion abilities of masonry walls, prevent wall collapses, and retain the flying
fragments, which would reduce the casualties and economic losses caused by petrochemical explosion
accidents. The bond between the polymer and masonry wall was critical, and premature debonding
resulted in a failure of the coating to exert the maximum energy absorption effect. A numerical model
for masonry walls was developed in ANSYS/LS-Dyna and validated with the test data. Parametric
studies were conducted to explore the influences of the polyurea-coating thickness and spray pattern
on the performances of masonry walls. The polyurea-coating thickness and spray pattern affected the
resistance capacities of masonry walls significantly.
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1. Introduction

Most materials involved in petrochemical plants are flammable and explosive hydrocarbon liquids
and gases. Leakage can lead to vapor cloud or gas explosions, which creates a great hazard to existing
structures and factory staff. Meanwhile, for historical reasons, unreinforced masonry walls have been
extensively used in the petrochemical industry as non-load-bearing components in reinforced-concrete
frame buildings, and they are one of the most vulnerable components to blast loads. Most casualties
and injuries sustained during external explosions are not caused by the direct effect of the explosion,
but rather by the disintegration and fragmentation of a wall, which can be propelled at high velocities
by the blast [1]. To reduce the potential hazards to employee safety, it is necessary to study the
performances of masonry walls under explosions and find a cost-effective strengthening method.

Due to the potential threats of terrorist attacks and accidental explosions, many researchers
have focused on the behaviors and dynamic responses of masonry structures under blast loads.
Shi et al. [2] conducted a series of field experiments to investigate the failure mechanisms and fragment
characteristics of unreinforced masonry walls. The fragment size distribution was also analyzed, and
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the size distribution of the fine portion of the fragments followed a Weibull distribution. Keys and
Clubley [3] carried out two experimental trials using trinitrotoluene (TNT) explosives, which were
used to subject nine small masonry structures to blast loading. They described the structural geometry
as an array of simple modular panels and proposed a new method to predict the debris distribution
produced by masonry structures. Zapata and Weggel [4] conducted a blast test inside a building with
conventional walls. Based on the test data, a single degree of freedom (SDOF) model of a masonry wall
was established. The SDOF model was able to predict the deflections of the wall quite well if effective
input parameters were carefully considered. Solveig et al. [5] employed a full-scale experiment on a
three-story reinforced concrete building exposed to an air blast to evaluate their finite element (FE)
simulations. They concluded that the FE simulations with solid and structural elements could provide
an adequate representation of the global response of the building at minimum computational cost.

The resistance of a masonry wall to blast loads can be enhanced by increasing the equivalent
section and ductility of the wall with additional reinforcement materials, including a steel wire mesh,
spray-on polyurea, carbon, and glass fiber-composites [6–12]. However, it is important that upgrade
costs include not only construction costs but also the potential downtime costs due to the interruption
of operations. These costs can increase significantly if the upgrades affect the normal production
significantly. The application of stiff materials faces difficulties of high development costs and lack
of time-efficient methods for applying the reinforcement to the structure. The masonry wall tests
conducted by the Air Force Research Laboratory (AFRL) indicated that the spray-on polymer approach
could overcome these issues, and the ability of the material to absorb strain energy was a key factor in
the effectiveness toward preventing intrusion of wall fragments into occupant areas [13,14]. A series
of impact tests were performed by Wang et al. [15] to investigate the dynamic impact responses of
walls strengthened with spray-on polyurea. The test results suggested that the presence of a polyurea
layer could transform the collapse of an unreinforced wall into local mortar joint separation and the
development of flexure in the walls. The polyurea layer could effectively prevent the collapse and
structural failure of the wall and minimize the production of deadly wall fragments. Based on a series
of full-scale tests, Moradi [16] developed a single-degree-of-freedom equation to predict the response
of membrane-retrofitted concrete masonry walls to impulse pressure loads.

The masonry wall subjected to out-of-plane loads (static, high explosive loads, and gas explosions)
were studied by conducting field tests, numerical simulations, and theoretical analysis, as summarized
in Table 1. The above-mentioned studies focused on the performances of polymer-retrofitted masonry
walls under the blast loads generated by high explosives. Li et al. [17] only investigated the performances
of unreinforced masonry walls subjected to vented gas explosions. Studies of spray-on polyurea
reinforced masonry walls subjected to gas explosions are very limited in the literature.

Table 1. Summary of previous studies on the masonry wall strengthening. RC: reinforced concrete;
CMU: concrete masonry unit; AAC: autoclaved aerated concrete; SDOP: single degree of freedom; AEM:
applied element method; CFRP: carbon fiber reinforced polymer; GFRP: glass fiber reinforced polymer

Researchers Year Structures Strengthening
Material Experimental Numerical Theoretical

Zapata and Weggel [4] 2008 Brick walls − Explosive SDOF
Shi et al. [2] 2016 Clay brick walls − Explosive YES

Keys and Clubley [3] 2017 London brick
walls − Explosive AEM

Li et al. [17] 2017 Clay brick walls − Gas explosion LS-DYNA

Solveig et al. [5] 2018 RC walls, Leca
block walls − Explosive ConWep and

LS-DYNA

Valluzzi et al. [7] 2001 Brick masonry
vaults GFRP, CFRP Static YES

Davidson et al. [13,14] 2005 CMU walls Sprayed-on polymer Explosive DYNA3D
Alsayed et al. [8] 2016 CMU walls GFRP Explosive AUTODYN

Elsanadedy et al. [9] 2016 CMU walls GFRP Static YES
Wang et al. [15] 2016 Clay brick, AAC Sprayed-on polymer Explosive

chen et al. [10] 2019 AAC panels CFRP/sprayed-on
polymer Explosive
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In this study, a series of full-scale field tests on masonry walls subjected to gas explosions
were conducted. A simplified micro-model was also developed to predict the dynamic responses
of polymer-retrofitted masonry walls using ANSYS/LS-DYNA. The predictions from the numerical
simulations were compared with the test data to validate the numerical model. Parametric studies
were carried out to evaluate the effects of the polyurea layer thickness and the spraying pattern on the
responses of strengthened masonry walls subjected to gas explosions.

2. Experiments

A specially designed testing system was prepared for the gas explosion tests. The test system
consisted of a pipeline, wall specimens, data-recording instruments, and gas distribution instruments,
as shown in Figure 1.
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Figure 1. Schematic diagram of the testing setup. Figure 1. Schematic diagram of the testing setup.

2.1. Wall Specimens

One unstrengthened specimen and one rear-face-strengthened specimen were prepared. According
to the Chinese standard (GB50003-2011), MU 15 clay bricks and M 5.0 mortar were used for the clay
brick walls. The wall specimens with dimensions of 3 × 2 × 0.12 m were lumped with clay blocks with
dimensions of 240 × 115 × 53 mm and 10-mm-thick mortar in a “running” pattern, as shown in Figure 2.
Large wall dimensions were selected to avoid scale effects and to reflect the actual performance of a
reinforced masonry unit wall under blast loading [15].
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2.2. Gas Distribution Instruments

To maximize the explosion overpressure, ethylene with a volume concentration of 5.5% was
chosen as the combustible gas in the tests. The oxygen concentration in the mixture was measured by
an oxygen content analyzer, and the ratio of fuel gas to air was adjusted over time to ensure uniform
mixing of the flue gas and air.

2.3. Device Main Body

The device main body included a pipeline and flaring, as shown in Figures 3 and 4, respectively.
The pipeline was used to store gas. Its diameter and length were 500 mm and 50 m, respectively.
To create a more uniform explosion load on the wall surface, the flaring, with dimensions of 2 × 2 m,
was installed at the end of the pipeline.
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Figure 4. Flaring.

2.4. Data-Recording Instruments

The data-measuring system was used to record the explosion overpressure, displacements, and
wall failure modes. It was composed of a synchronous trigger instrument, data acquisition instrument,
piezoelectric pressure sensors, displacement sensor, and high-speed cameras. The pressure sensors
were used to measure the peak overpressure and positive pressure acting time of the explosion
shockwaves, as shown in Figure 4. The measurement range was 0–10 MPa. The displacement sensor
was used to measure the displacement of the central points of the test walls, as shown in Figure 5, with
a measurement range of −5 to +5 cm. High-speed cameras were arranged on the left and right sides
of the test walls to record the failure process of the wall during the test, and the speed of high-speed
cameras were 6400 frames. The signals from the pressure sensor and displacement transducers were
logged by the data acquisition instrument.
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2.5. Test Procedure

The supporting structure was designed to fix the test walls on the ground. All the specimens were
mounted 1 m away from the flare. The pressure sensors were installed at the end of the pipeline, and
the displacement sensor was arranged at the center of the rear surface of the wall. The spark igniter
was installed on the pipe inlet flange, which meant that the igniter was at the edge of the gas cloud.
The ignition voltage of spark igniter was 1000 V. The ethylene was pumped from the cylinder gas tank
to the pipeline and flaring until the target concentration was reached. Finally, the gas mixture was
ignited by a high-voltage power source. The data acquisition system and high-speed cameras were
triggered to record data simultaneously.

3. Testing Results and Discussion

3.1. Unreinforced Wall

Explosion tests of the unreinforced masonry wall were conducted to analyze the failure mode and
anti-explosion capacity of the wall. The test results of the masonry wall without an explosion-resistant
coating under the first explosion (test 1) are shown in Figure 6. As shown in Figure 6a, large-area
concave deformations appeared on the explosion face of the unreinforced wall, and the deformation
was almost symmetric. The compression failure of the unstrengthened masonry wall was caused by the
high reflected peak pressure. A ⊥-shaped penetrating crack appeared in the upper half of the wall, as
shown in Figure 6b. The fracture lengths in the horizontal and vertical directions were approximately
1.8 and 1.4 m, respectively, and the widths of cracks were about 25 mm. Bricks almost fell from the
central area of the back blasting surface, and cracks developed radially from the center of the wall to the
surrounding area. The wall was severely damaged, which indicated that the explosive load was close
to the ultimate load-bearing capacity of the unreinforced wall. The blast load time histories were also
recorded during the test, and Figure 7 shows that the peak overpressure of the explosive shockwave
was about 5.5 MPa. However, no displacement data were obtained due to the mechanical failure.
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To study the distribution of wall debris under explosive loading, subsequent tests were carried
out on the wall. The peak overpressure of the explosive shockwave was about 5.2 MPa, as shown in
Figure 8. The failure process of the unstrengthened wall specimen during the second explosion (test 2)
is shown in Figure 9. Compared with the tests of high explosives in Table 1, the peak pressures from
gas explosions were lower but the duration of pressure waves were longer, which lead to different
structural responses. Local damages such as spalling or punching damage were more likely to occur
when the masonry walls were under close-in TNT explosions as compared to the overall flexural
deformations in gas explosions. The test results were similar to those carried out by Li et al. [17], wall
specimens experienced damage modes of flexural deformation and a through crack occurred at the
middle of the walls. The crack developed with the rise of pressure and the wall specimens collapsed at
the latter stage of gas explosion.

Processes 2019, 7, 863 7 of 19 

 

[17], wall specimens experienced damage modes of flexural deformation and a through crack 
occurred at the middle of the walls. The crack developed with the rise of pressure and the wall 
specimens collapsed at the latter stage of gas explosion. 

 

Figure 8. Pressure-time histories in test 2. 

  

  
  

Figure 9. Failure process of unstrengthened wall specimen in test 2. 

The fragment distributions of the wall specimen after the gas explosions are shown in Figure 10. 
The wall collapsed and broke along the bottom, top, and left joints of the frame, with only a 0.4-m-
wide wall remaining on the right side. The debris was dispersed in an area of approximately 7.6 m in 
length and 5 m in width. Masonry walls are often used as filling walls of frame structures. The debris 
produced by a masonry wall under a blast wave can cause severe injuries to indoor personnel. 

Figure 8. Pressure-time histories in test 2.



Processes 2019, 7, 863 7 of 18

Processes 2019, 7, 863 7 of 19 

 

[17], wall specimens experienced damage modes of flexural deformation and a through crack 
occurred at the middle of the walls. The crack developed with the rise of pressure and the wall 
specimens collapsed at the latter stage of gas explosion. 

 

Figure 8. Pressure-time histories in test 2. 

  

  
  

Figure 9. Failure process of unstrengthened wall specimen in test 2. 

The fragment distributions of the wall specimen after the gas explosions are shown in Figure 10. 
The wall collapsed and broke along the bottom, top, and left joints of the frame, with only a 0.4-m-
wide wall remaining on the right side. The debris was dispersed in an area of approximately 7.6 m in 
length and 5 m in width. Masonry walls are often used as filling walls of frame structures. The debris 
produced by a masonry wall under a blast wave can cause severe injuries to indoor personnel. 

Figure 9. Failure process of unstrengthened wall specimen in test 2.

The fragment distributions of the wall specimen after the gas explosions are shown in Figure 10.
The wall collapsed and broke along the bottom, top, and left joints of the frame, with only a 0.4-m-wide
wall remaining on the right side. The debris was dispersed in an area of approximately 7.6 m in
length and 5 m in width. Masonry walls are often used as filling walls of frame structures. The debris
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3.2. Polymer-Retrofitted Wall

Test 3 was carried out to investigate the effectiveness of the polyurea layer and the performance
of a polymer-retrofitted wall subjected to gas explosions. The thickness of the polyurea layer on the
rear face was 6 mm. The dynamic response of the rear-face-strengthened wall specimen is shown in
Figure 11.
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Figure 12 shows photos of the damage of the rear-face-strengthened wall after the explosion.
The wall was concave and deformed slightly, with X-shaped cracks appearing in the central area of the
front face. The maximum plastic deformation at the bottom was about 0.06 m. The polyurea coating
on the back blasting surface was intact, and no cracks formed. This suggested that the presence of the
polyurea layer could effectively improve the blast resistance of the unreinforced wall and reduce the
wall failure to local bending deformation.Processes 2019, 7, 863 9 of 19 
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As shown in Figures 13 and 14, the peak overpressure in tests 3 and 4 was 6.0 and 5.5 MPa,
respectively. The peak pressures in all the tests were basically the same, which indicated that the
gas mixture was relatively uniform during each test. Figure 15 shows photographs of the damage
to the masonry wall after test 4. The reinforced brick wall collapsed. However, compared to the
unreinforced wall, the traveling distance of the debris was significantly reduced, and the debris
was almost completely distributed in the framework of the supporting body. The polyurea coating
peeled off along the left, right, and lower edges of the frame. The coatings sprayed on the upper
part of the frame were partially torn, whereas the remaining coatings were basically intact. The
polyurea layer could absorb the explosive energy, thereby reducing the kinetic energy of the debris
and preventing high-speed wall fragments from harming indoor personnel. However, in this test,
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premature debonding of the coating occurred, and the wall failed to produce the maximum effect of
the coating. The temperature on the day of coating spraying was 9–12 ◦C, the wind force level was
4–5, and the humidity was about 52%. This may have been due to the low temperature of the outdoor
spraying operation, causing the coating to not adhere to the frame well. The spraying operation
should be carried out under suitable temperature and humidity conditions to improve the adhesion of
the coating. Furthermore, steel angle can also be used to reinforce the coating around the frame to
maximize the energy absorption effect of the coating. In order to avoid the loss of displacement data
during violent explosion, non-contact digital image correlation (DIC) technology can be used to carry
out the real-time monitoring of the surface displacement of the wall in future experiments.
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4. Numerical Model

4.1. Material Parameters

The anisotropic material model *Mat _96 (MAT BRITTLE DAM-AGE) in LS_DYNA has been used
and validated in many studies to model a variety of brittle materials under explosions. Therefore, it was
adopted for the clay bricks and mortar in this study. The parameters of the blocks and mortar used in
the numerical simulations are listed in Table 2 [15,17–20]. The MAT PIECEWISE LINEAR PLASTICITY
material model was used for the polyurea coating. As provided by the supplier, the composite material
had a tensile strength of 15.4 MPa, breaking elongation ratio of 200%, and tear resistance of 105 N/m.
The mechanical properties of the composite material are summarized in Table 3 [21].

Table 2. Material parameters for brick and mortar.

Density
(kg/m3)

Young
Modulus

(MPa)

Poisson’s
Ratio

Tensile
Strength

(MPa)

Shear
Strength

(MPa)

Compressive
Yield Stress

(MPa)

Fracture
Toughness

(N/m)

Shear
Retention

Factor

Brick 1800 15,400 0.15 1 0.5 19.4 120 0.03

Mortar 2100 4450 0.25 0.297 0.9 8.9 140 0.03

Table 3. Material parameters of blast-resistant polyurea coating.

Density
(kg/m3)

Elasticity Modulus
(MPa)

Poisson’s
Ratio

Tensile Strength
(MPa)

Tear Resistance
(N/m)

Elongation
(%)

1000 100 0.4 15.4 105 200

4.2. Geometric Model

The simplified micro-models for the masonry walls were developed in LS-DYNA, and the mortar,
blocks, and polyurea layer were modeled separately. The nodes on their interfaces were merged. The
wall model dimensions were a thickness of 120 mm, height of 2 m, and width of 3 m to match the tests
described above, as shown in Figure 2. The sizes of blocks were 240 × 115 × 53 mm, and the thicknesses
of the mortar and polyurea layer were 10 and 6 mm, respectively, identical to the thicknesses in the test
specimens. The three-dimensional solid element SOLID164 was used to discretize the geometrical
model. Considering the computational accuracy and efficiency, the combination of a 20-mm mesh
size for the blocks and one layer for the mortar joint and polyurea coating was adopted for the
numerical model.

4.3. Numerical Model Calibration

In the tests, the pressure sensor was located at the end of the pipeline. To obtain the explosion
overpressure value at the wall, after the tests, a pressure sensor with a range of 0–1 MPa was also
arranged at a distance of 1 m from the flaring. The sensor was destroyed in the first measurement
and reached the maximum range in the second measurement, but it was not destroyed. According
to the information provided by the supplier, the damage pressure of the sensor was 2 MPa, and the
positive-pressure-action time measured by the sensor at the end of the pipeline was about 2 ms. These
were used as the explosion loads in the numerical simulations.

Figure 16 shows the comparison between the numerical simulation and the experimental results
of the unreinforced masonry wall in test 1. A large depression area and deformation appeared on the
face of the explosion. The numerical simulation predicted depressions caused by the blast wave, as
shown in Figure 16a. The destruction area of the front surface of the wall was basically symmetric, and
the edge of the area was arc shaped. A ⊥-shaped crack penetrated the wall in the test. The calculation
results showed that the same main crack penetrated to the back of the masonry wall, as illustrated in
Figure 16b, and the brick in the center of the wall almost fell out. The fracture lengths in the horizontal
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and vertical directions were 1.78 and 1.5 m, respectively, and the widths of cracks were about 23 mm.
The values of the three parameters in the test were 1.8 m, 1.4 m, and 25 mm respectively. The results of
the simulation are basically consistent with the experimental data.
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Figure 16. Failure pattern predictions of unreinforced specimen under the first explosion. (a) front face
and (b) rear face.

Figure 17 shows the numerical simulation results of the polymer-retrofitted masonry wall in test 3.
In Figure 17a, the deformation area of the central area of the wall was approximately 0.12 m2, and the
numerical simulation predicted a value of approximately 0.14 m2. In Figure 17b, the coating on the
back burst surface remained intact, and the calculated results showed that the coating was also intact,
with slight arching in the center of the coating. Therefore, the numerical model developed in this study
yielded acceptable predictions and could be used to predict the performances of polymer-retrofitted
masonry walls against gas explosions.
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5. Numerical Simulations

The masonry walls of petrochemical buildings are larger than the specimens used in this study, and
most are 240 mm thick. Therefore, based on the calibrated models, numerical models with dimensions
of 4 m × 3 m × 240 mm were established according to the pattern shown in Figure 18. In the simulation
calculations, the peak overpressure was 69 kPa, and the positive-pressure time was 20 ms [22,23].
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According to the Chinese standard (GB50779-2012) [22], the peak reflected pressure can be
calculated as follows:

Pr = (2 + 0.0073Pso)Pso, (1)

where Pr is the peak reflected pressure (kPa). The stagnation pressure can be expressed as

Ps = Pso + Cdqo, (2)

where Ps is the stagnation pressure (kPa), and Cd is the drag coefficient. The drag coefficient depends
on the shape and orientation of the obstructing surface. For a rectangular building, the drag coefficient
may be taken as +1.0 for the front wall and −0.4 for the side and rear walls and the roof.

The duration of the equivalent triangle was calculated as follows:

tc = 3S/U < td, (3)

te = 2Iw/Pr = (td − tc)Ps/Pr + tc, (4)

Iw = 0.5(Pr − Ps)tc + 0.5Pstd, (5)

where Iw is the positive pressure impulse, S is the clearing distance, which is the smaller of H or B/2(m),
te is the duration of the equivalent triangle (s), and tc is the duration of the reflected overpressure effect
(s). The calculated front wall loading is shown in Figure 19.
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Figure 19. Wall loading.

5.1. Unreinforced Wall

Figure 20 shows the structural response of an unsprayed wall. According to the figure, the brick
wall collapsed. Selecting the center point of the wall as the observation point, the displacement curve
is shown in Figure 21. In the range of 0–0.2 s, the displacement tended to increase significantly, and the
maximum displacement was 0.7 m, which was larger than the thickness of the clay brick wall. The
velocity curve is shown in Figure 22. As shown in the figure, the wall velocity increased first, after
which it remained basically constant, reaching a maximum velocity of 3.84 m/s at 0.028 s.
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Figure 20. Structural response of the clay brick wall without sprayed blast-resistance coating. (a) front
view and (b) side view.
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Figure 21. Displacement-time history curve of the unreinforced wall.
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Figure 22. Velocity-time history curve of the unreinforced wall.

5.2. Coating Thickness

Masonry walls strengthened at the rear face with layer thicknesses of 3, 6, and 8 mm were
considered. Figure 23 shows the response of the strengthened wall with a 6-mm coating. The mortar
and bricks were damaged by the blast loading, but the coating remained intact and effectively reduced
the formation of wall debris.

The displacement histories at the centers of masonry walls are shown in Figure 24. The notation
0–3, 0–6, and 0–8 represent the polyurea coatings with corresponding thickness (mm) sprayed on
the rear surface of clay brick wall and no coating on the front surface. The displacement of all the
reinforced walls increased first and subsequently decreased gradually. The maximum displacements
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of the 0–3, 0–6, and 0–8 walls were 0.29, 0.21, and 0.19 m, respectively. With the increase in the coating
thickness, the maximum displacement of wall decreased, which indicated that the anti-explosion ability
was significantly improved. The kinetic and internal energies of the coatings are shown in Figures 25
and 26, respectively. The internal energy absorbed by the coating was much greater than the kinetic
energy. With the increase in the coating thickness, the amount of wall deformation decreased, the
internal energy of the coating decreased, and the wall absorbed more explosive energy through the
destruction of the mortar or brick.
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5.3. Spray Pattern

To study the effect of the spraying method on the explosion resistance of the reinforced walls,
3-mm-thick explosion resistant coatings were sprayed on the front (3–0), back (0–3), and both sides of
the clay brick walls (3–3).

The coatings of the walls strengthened using three different spray patterns were not damaged
under explosive loading. The side views of the reinforced walls are shown in Figure 27. When the
polyurea was sprayed only on the front face of the masonry wall, debris was launched from the back
of the wall.

The displacement curves of the different spraying methods are shown in Figure 28. The maximum
displacements of the 3–0, 0–3, and 3–3 walls were 0.55, 0.29, and 0.11 m, respectively. This suggested
that the masonry wall with the double-side reinforcement exhibited the best explosion resistance. For
the 3–3 wall, the thickness of the coating on the front side was the same as that on the back side. The
kinetic and internal energies of the coating on the front side were larger than the corresponding values
of the back side, as illustrated in Figures 29 and 30, which showed that the energy absorption effect of
the front face coating was better than that of the back face coating.
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Figure 29. Kinetic energy of the 3–3 wall coating.
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Figure 30. Internal energy of the 3–3 wall coating.

The displacements of the walls strengthened with the same thicknesses are shown in Figure 31.
The maximum displacements of the 0–6, 3–3, and 2–4 walls were 0.21, 0.11, and 0.09 m, respectively. The
explosion resistances of the masonry walls could be further improved by optimizing the combination
of the coating spraying method and thickness.
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6. Conclusions

In this study, the dynamic impact responses of walls strengthened with polyuria layers were
investigated through a series of impact tests under the blast loads generated by gas explosions instead
of high explosives. The calibrated numerical model was conducted on parametric studies. The
conclusions are summarized as follows:

(1) The wall damage modes under gas explosions were analyzed, the masonry walls experienced
bending damage and then collapsed. The presence of the polyurea coatings could effectively
improve the anti-explosion abilities of masonry walls, prevent wall collapses, and retain the flying
fragments. Excellent reinforcement effect and no influence on normal production make polyurea
coating an alternative method to strengthen existing petrochemical buildings.

(2) The bond between the polymer and masonry wall is critical for the reinforcement effectiveness.
Premature debonding results in a failure of the coating to exert the maximum energy absorption
effect. Spraying operations should be carried out under suitable temperature and humidity
conditions to improve the adhesion of the coating. Furthermore, steel angle can also be used to
reinforce the coating around the frame.

(3) When polyurea was sprayed only on the front face of a masonry wall, debris was still launched
from the back of the wall. The blast-resistant ability of the front polyurea-coated wall was not
significantly enhanced, and it was weaker than the rear and double-side polyurea-coated walls.

(4) Compared with the rear polyurea-coated wall, the blast-resistant ability of the double-side
polyurea-coated wall improved significantly. Double-sided reinforcement should be used in
building reinforcement to improve the wall explosion resistance. Rear-face reinforcement can
be selected when construction conditions are limited. In addition, the explosion resistance of
masonry walls can be further improved by optimizing the combination of the spray method and
coating thickness

Subsequent tests can be carried out to investigate characteristics of wall fragments, proposing
an analytical model to accurately predict the debris distribution at low computational cost. Several
other parameters can be included in future tests such as elongation, tensile strength, tear strength,
and hardness of polyurea coating. The performance criteria for coatings could be optimized to better
blast reinforcement.
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