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Abstract: The objective of this article is to investigate the impacts of thermo-diffusion effect on
unsteady axisymmetric Casson flow over a time-dependent radially stretching sheet with a multi-slip
parameter and the force of chemical reaction. We employed an established similarity transformation to
this non-linear partial differential system to convert it into a system of ordinary differential equations.
The numerical results are attained for this system by using KELLER-BOX implicit finite difference
scheme. It has great reliability and accuracy even a very short time period for computational
simulation. The impacts of influential flow parameters on fluid flow are sketched through graphs
and the numerical results are thoroughly argued. The temperature, velocity and wall concentration
control parameters are analyzed. (i) It is witnessed that chemical reaction is not favorable to enhance
the velocity profile. (ii) Multi-slip parameters vary inversely with velocity profile. (iii) The fluid
concentration in its boundary layer decreases with the increase of heavier species, the parameter of
the reaction rate and the exponent of power law for fluids having Prandtl number = 10.0, 15.0, 20.0
and 25.0. Moreover, the skin-friction-coefficient factor and Nusselt-number are compared with the
published work. A strong numerical solution agreement is being observed.

Keywords: multi-slip; Keller-Box technique; casson fluid; thermo-diffusion; axisymmetric flow

1. Introduction

The knowledge of non-Newtonian fluids has great importance for their characteristics and
remarkable applications in industrial, medical products, and procedures to the researcher. These all
non-Newtonian type fluids have non-linear relation between stress and strain, whereas Newtonian
fluid model has a linear relations mode. Investigations of flow field and individualities in these fluids
are completely different as compare to Newtonian fluids. The Casson fluid model is popular for
good explanation of non-Newtonian fluids and their behavior, especially flow curves for blood. It
is recordable convincing fluid model because of important useful implications in our daily life as in
bio medical field and polymer processing. For practical purposes, it provides a convenient means
for evaluating the two characteristics; Cason viscosity and the apparent yield stress. A great number
of investigations have described about this chemical fields. In species research of mass and heat
transformations with chemical reactions are of extensive importance in specially hydrometallurgical
and chemical at the industrial level. Last past few decades, a basic “Penetration Theory” “Highie
1935” had been extensively practically applied to the time dependent diffusional problems without
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and with chemical reactions. As long we ascertain all about the results with chemical reactions
were found for the case of mid-infinite bodies of fluids, even though physically absorptions into a
determinate based film were measured. Several interesting phenomena were considered for analysis
of mass transformations liminal with forced convection and chemical reactions [1]. For the work about
vapor-deposition chemically fundamental results are obtained [2] . In diffusion model the chemical
effect on browning motion was carried out by [3]. Some of the others investigation was studied by
[4–7].

Until now, in the absence of Soret and Dufour impacts, all the above studies have been conducted.
In a flowing fluid, heat and mass transfer occurring simultaneously results in a complicated relationship
between the fluxes and the fluid’s flowing existence. Energy diffusion can be produced not only by
gradients of temperature, but also by gradients of composition. The temperature gradients that result
in Soret (thermo-diffusion) effect can create mass fluxes. At the other hand, the effect of the energy
fluxes causedby the gradients of composition is called Dufour (diffusion-thermo). Such fluxes play an
important role when there is a density difference in the flow regime.

The fluids of the boundary layer flow due to stretching /shrinking surfaces is a significant kind of
flow occurring in engineering and chemical industries flow processes. These include paper production,
liquid metal, glass fiber, and polymer sheet synthesis. The manufacture of non-newtonian fluids,
including lubricants, physiological liquids, paints, colloidal liquids, biological liquids, biopolymer, and
foodstuff, plays an important role in our daily lives. Bagh et al. [8] examined the influence of multiple
slip-on non-newtonian fluids and they described that the velocity profile decline due to increasing
in the hydrodynamic slip. Raza [9] analyzed the Casson fluid flow over a sheet and examined the
radiation effects on temperature. Ashraf and coauthors [10] have investigated the micro-polar fluid
flow toward a shrinking surface and also studied the radiation effects on thermal conductivity. Daniel
et al. [11] studied the numerical solution of mixed convection magnetohydrodynamic flow over a
sheet. Dhanai et al. [12] Several Magneto-hydro-dynamics (MHD) heat transfer fluid solutions were
achieved with viscous dissipation. The study of the unsteady axisymmetric flow of non-Newtonian
fluid over a radially stretch sheet has considered by Shahzad et al. [13]. They also studied the radiation
effects on the thermal boundary layer. Ashraf et al. [14] examined the magnetohydrodynamic flow
and heat transfer in a micro-polar fluid using a stretchable disk. Azeem et al. [15] analyzed the heat
transfer of an axisymmetric viscous fluid over a nonlinear radially stretching sheet.

The study of free convection flow is important in the electronics cooling process and heat
exchangers etc. Chen [16] examined the laminar mixed convection flow over a continuously stretching
sheet. Numerous researchers have been occupied with investigating the mixed convection flow
of non-Newtonian fluids [17–19]. Bhargava et al. [20] have analyzed the free convection flow of
magnetohydrodynamic micro-polar fluid. Elahi et al. [21] described the numerical solution of mixed
convection heat transfer over a stretching sheet. Asmat et al. [22] studied the effect of thermal
radiation on velocity and temperature over a stretching porous sheet. Hayat et al. [23] considered on
magnetohydrodynamic the flow of non-Newtonian nano-fluid flow with the convective condition.
They investigated the slip effects in the MHD flow of non-Newtonian by a stretching surface. They
also found radiation effects on velocity, temperature and concentration profile.

Baag et al. [24] have studied the stagnation point on magnetohydrodynamic non-newtonian fluid
subject to the chemical reaction and heat source. Singh [25] examined the effects of viscous on free
convection non-newtonian fluid in the presence of chemical reaction. Mabood et al. [26] discussed
steady non-Newtonian fluid with a chemical reaction through a porous medium. Hayat et al. [27]
are discussed non-Newtonian fluid with chemical aspects and they investigated a numerical solution.
Seth et al. [28] examined chemically reacting nanofluid over a permeable vertical plate.

Motivated by the above-mentioned studies in literature and a wide range of their applications,
the thermo-diffusion and multi-slip effects on an axisymmetric Casson flow over a time-dependent
radially stretching sheet in the presence of chemical reaction is presented which has not been discussed
yet. The focal point of the current study is to extend the recently published work of Azeem et al. [13].
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The governing nonlinear PDEs are transformed into a set of highly nonlinear ODEs with the aid of
suitable similarity transformations and the nonlinear coupled ODEs are solved numerically with most
popular Keller-Box technique. The effects of magnetic parameter M, Dufour parameter Ds, Schmidt
number parameter Sc, chemical reaction parameter R0, Soret parameter D f , Prandtl number Pr, slip
parameters (δ1, δ2), suction/injuction parameter S, Unsteadiness parameter α, thermal buoyancy λ,
and Casson parameter β on the fluid velocity, temperature, and concentration functions are examined
in detail. Additionally, a comparison is made for the skin friction coefficient and Nusselt number.
Good agreement is established which further authenticates the validity of our results.

2. Mathematical Formulation

Let us consider a steady magnetohydrodynamic flow of incompressible viscous flow with
thermo-diffusion are included over a radially stretching sheet, the sheet is placed at z = 0, and
is examined in the presence of chemical reaction effects. The flow of conducting fluid is assumed to
be linear along the radial direction Uw(r) = ar

1−ct , where a is a dimensional constant. Where Tw is the
wall temperature, T∞ is the ambient temperature respectively. (see Figure 1). It is supposed that the
B(r) = Bor variable magnetic field intensity acts along z-direction normal to the sheet. Under the
above conditions, the governing equations of continuity, momentum conservation, and conservation
can be expressed as (see [13,29]):

∂u
∂r

+
u
r
+

∂w
∂z

= 0, (1)

∂u
∂t

+ u
∂u
∂r

+ w
∂u
∂z

= ν f (1 +
1
β
)

∂2u
∂z2 −

σB2(r)u
ρ f

+ gβT(T − T∞) (2)

∂T
∂t

+ u
∂T
∂r

+ w
∂T
∂z

= α
∂2T
∂z2 + DTC

∂2C
∂2z

(3)

∂C
∂t

+ u
∂C
∂r

+ w
∂C
∂z

= D
∂2C
∂z2 − R∗(r, t)(C− C∞) + DCT

∂2C
∂2z

(4)

Figure 1. thermo-diffusion flow diagram.

The velocity vector of flow is v = v(u, v), where u and v are component of velocity towards
r and z directions respectively. σ, ν f , ρ f , α,D, DCT , DTC, and R∗ are electrical conductivity, kinetic
viscosity, the viscosity of fluid, solutal, Soret, Dufour diffusities, and chemical reaction respectively,
The corresponding boundary conditions are (see [13,29]):

u = Uw + Us, w = W0, T = Tw = T∞ +
br

1− ct
+ Ts, C = Cw at z = 0 (5)

u→ 0, T → ∞, C → ∞ as z→ ∞, (6)
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where Us = D1
du
dr is the velocity slip, D1 is the velocity slip factor, Ts = D2

dT
dr is the thermal slip, D2 is

the temperature slip factor, and W0 = −2( νUw
r )

1
2 denotes the suction/injection of mass transfer rate at

the surface. Here a > 0, b > 0, and c > 0 are constant having dimension 1/time (t), where t stand for the
time such that product ct < 1 (see [29]).

The Equations (1)–(4), We consider the similarity transformations stated as (see [29]):

η =
z
r

Re
−1
2

r , w = −2UwRe
−1
2

r f (η), u = Uw f ′(η), θ(η) =
T − T∞

Tw − T∞
, and φ(η) =

C− C∞

Cw − C∞
(7)

In view of Equation (7), the system of partial differential Equations (2)–(5) transform into the
following system of coupled and non-linear ODE’s:

(1 +
1
β
)

d3 f
dη3 −M

d f
dη

+ 2 f
d2 f
dη2 − (

d f
dη

)2 − α[
d f
dη

+
1
2

η
d2 f
dη2 ] + λθ = 0, (8)

(
1

Pr
)

d2θ

dη2 − θ
d f
dη

+ 2 f
dθ

dη
+ Ds

d2φ

dη2 − α[θ +
1
2

η
dθ

dη
] = 0, (9)

(
1
Sc

)
d2φ

dη2 − φ
d f
dη

+ 2 f
dφ

dη
− α[φ +

1
2

η
dφ

dη
] + D f

d2θ

dη2 − R0φ = 0, (10)

and the transformed boundary conditions Equations (5) and (6) are:

f (η) = S,
d f (η)

dη
= 1 + δ1

d2 f (η)
dη

, θ(η) = 1 + δ2
dθ(η)

dη
, S(η) = 1, φ(η) = 1, at η = 0, (11)

d f
dη

(∞)→ 0, θ(∞)→ 0, φ(∞)→ 0, at η → ∞ (12)

where primes represent differentiation w.r.t the variable η. The parameters in Equations (8)–(10) are
described as:

M = σB2

ρ f a , Pr =
ν f ρcp

κ , Ds =
DTc(Cw−C∞)
ν f (Tw−T∞)

, D f =
DCT(Tw−T∞)

ν(Cw−C∞)
, α = a

c , R0 = (1−ct)2

a ,

where M is magnetic parameter, Pr is define as the Prandtl number, Ds is the Dufour parameter, D f is
the Soret parameter, Sc is determine as the Schmidt number, and R0 is the chemical reaction term.

The interested physical quantities are coefficient of skin-friction C f , local nusselt number Nu, and
Sherwood number Sh defined as:

C f =
τw

1
2 ρU2

, Nu =
rqw

K(Tw − T∞)
, and Sh =

Lqm

D(Cw − C∞)
(13)

whereas the skin-friction coefficient τw, the heat and mass transformation from the sheet qw and qm are
follow:

τw = µ
∂u
∂z
|z=0, qw = −κ

∂T
∂z
|z=0, and qm = −D

∂C
∂z
|z=0 (14)

The dimension free variables explained in Equation (7) and these quantities becomes as:

Re
1
2
r C f = (1 +

1
β
) f ′′(0), Re

−1
2

r Nu = −θ′(0), and Re
−1
2

r Sh = −φ′(0) (15)

where Rer =
rUw

ν is the local Reynolds number based on the radially stretching velocity Uw = ar
1−ct .

3. Results and Discussion

The main goal of the proposed study was to define the role of mass transformation factor,
heat transformation factor, chemical reaction and thermal radiation factors in the time-dependent
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axisymmetric boundary layer MHD flow of Casson fluid if multiple-slip,and thermo-diffusion effects
are employed over a stretching surface.

The control model Equations (8)–(10) with boundary conditions Equations (11) and (12) were
solved numerically by Keller-Box finite difference method. The values of the velocity, temperature,
and concentration profiles are analyzed in the current section using the numerical technique. We have
graphically discussed the influence of these profiles on various parameters such as Casson, magnetic,
Prandtl number, Dufour parameter, Soret number, chemical reaction, Schidmt number, unsteadiness,
buoyancy, hydrodynamic, suction/injection parameter, and thermal slips. In order to validate the
numerical method in Table 1, presents the comparison of our work that of Azeem et al. [29] and an
excellent correlation is achieved which shows the authenticity of numerical solutions.

Table 1. Present results are Compared with [29] of− f ′′(0) and−θ′(0) for various values of α, S and Pr.

α S Pr Azeem et al. [13] KBM (Present Results)

− f ′′(0) −θ′(0) − f ′′(0) −θ′(0)

0.5 −1.0 1.0 0.620400 0.620400 0.620436 0.620436
−0.5 0.887200 0.887200 0.887247 0.887247
0.0 1.308999 1.308999 1.308670 1.308670
0.5 1.907999 1.907999 1.907973 1.907973
1.0 2.655999 2.655999 2.655591 2.655591

0.0 0.5 1.0 1.798999 1.798999 1.798668 1.798668
0.5 1.907999 1.907999 1.907973 1.907973
1.0 2.016999 2.016999 2.016665 2.016665
0.5 0.5 0.5 1.907999 1.119999 1.907973 1.118889

0.7 1.907999 1.450000 1.907973 1.467003
1.0 1.907999 1.907999 1.907973 1.907973

Figure 2a,b depict the influence of Casson parameter at velocity, temprature and concentration
profile. The velocity profile decreases with an increase in Casson fluid parameter (β) but opposite
behavior is observed in Figure 2a,b for the temperature and concentration functions. Figure 3a,b
shows the influence of the magnetic parameter M on the free dimension velocity, temperature, and
concentration profiles, It is noticed that the velocity distribution decline due to increment in the
magnetic field. It is clearly seen in Figure 3a increase in the value of M slow down the movementum
and hence a decline in radial velocity. Temperature, and concentration profiles are observed increases
near to the boundary wall. The escalation in the values of magnetic causes increment in thermal and
solutal boundary thickness. Physically, the magnetic parameter produced Lorentz force which slows
down the motion of the fluid.

In Figure 4a,b the influence of dimensionless unsteady parameter (α) on the velocity, temperature
and concentration profiles is shown. It is found that the velocity, temperature, and concentration
profiles decline as an increasing values of the unsteady parameter (α) whereas the temperature profile
is an increasing function near the boundary.
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Figure 2. Influence of β on velocity profile f ′, temperature profile θ, and concentration profile φ against
η.

Figure 3. Influence of M on velocity profile f ′, temperature profile θ, and concentration profile φ

against η.

Figure 4. Influence of α on velocity profile f ′, temperature profile θ, and concentration profile φ against
η.
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Figure 5a,b illustrates the profiles of dimension-less velocity, temperature, and concentration
for different values of buoyancy (λ). It is observed that velocity increases whereas the concentration
profile and temperature decreased with increasing values of buoyancy (λ) (see Figure 5a,b. The extra
force is added in fluid due to buoyant that’s why the velocity profile enhance.

Figure 5. Influence of λ on velocity profile f ′, temperature profile θ, and concentration profile φ against η.

Figure 6a,b depicts radial velocity and temperature profiles in which the boundary layer thickness
is reduced near the wall with the rise in Prandtl number Pr. Prandtl number effect on concentration
profile slightly differs form radially stretching velocity, and temperature profiles as we can see in
Figure 6b, which shows that it is slow rising effect away to the boundary and decreases closed to the
boundary layer with rising in Prandtl number. Casson fluids include in the present investigation it has
determined with great viscosity therefore, the Prandtl number is used to increase the rate of cooling in
conducting flows.This is due to the fact that Pr number is defined as the ratio between momentum and
thermal diffusivity. In present investigation Pr = 25 number is very suitable for cooling purposed.

Figure 6. Influence of Pr on velocity profile f ′, temperature profile θ, and concentration profile φ

against η.

similar behavior of Figure 6a,b is observed in Figure 7a,b for Dufour parameter as the profiles
of velocity, temperature, and Concentration. It is also noticed from Figure 7a,b that the increase
in the Soret parameter decreases the radially stretching velocity and temperature profile, while the
temperature profile decreases faster than the radial velocity near to the boundary layer. Figure 7b
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elucidates that the amassed value of the Soret parameter is enhancing in boundary layer thickness
with the slip effect parameter effect which is increasing the concentration profile away from the
boundary-wall.

Figure 7. Influence of Ds on velocity profile f ′, temperature profile θ, and concentration profile φ

against η.

Figure 8a,b exhibits the influence of Schmidt number Sc on velocity and temperature profiles.
Schmidt number is the ratio of momentum and mass diffusivity and is utilized to characterize fluid
flows for momentum and mass diffusion convection process. The rise in values of Sc reduces the
radially stretching velocity and temperature profiles at a slow rate. The same effect is observed in
Figure 8b which shows that increase in Schmidt number has a decreasing effect in concentration profile.

Figure 8. Influence of Sc on velocity profile f ′, temperature profile θ, and concentration profile φ

against η.

The Soret effect is where the temperature gradient separates light and heavy molecules. This
effect is usually important when there are more than one chemical species in a very large temperature
gradient, such as CVD problems and chemical reactors. Figure 9a,b shows the Soret effect of the
velocity, temperature, and concentration profiles on a radially stretching sheet. The greater value of
Soret parameter results in an increase of velocity, temperature, and concentration profiles away to the
boundary wall but closed to the wall little opposite effects can be seen.
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Figure 9. Influence of D f on velocity profile f ′, temperature profile θ, and concentration profile φ

against η.

A chemical reaction is a mechanism leading to the chemical change of one collection of chemicals
into another.Figure 10a,b elucidates the impacts of chemical reaction R0 in the fluid. It is depicted from
the graph that increasing values of chemical reaction creates some reaction in the fluid flow and slow
down the radially stretching velocity, temperature, and concentration profiles of the fluid. Increasing
the temperature profile closed to the wall also show that the boosting the value of chemical reaction
that the effect is diminutions the concentration profile away to the wall but closed to the wall it little
growing effect find-out.

Figure 10. Influence of Ro on velocity profile f ′, temperature profile θ, and concentration profile φ

against η.

A parallel crossposting trend is perceived in the velocity, temperature and concentration
distribution functions for the increment of Dufour parameter but the opposite behavior is observed
in the thermal boundary layer near the boundary. Figures 11 and 12 demonstrate the influence of
hydrodynamic and thermal slip on the velocity, temperature, and concentration profiles. It is clear from
the Figure 11a that, the consultant radially velocity decreases as the hydrodynamic slip increases but
the inverse trend is seen in the temperature and concentration functions (see Figure 11a,b). It is obvious
that the velocity, temperature and concentration profiles decrease by increasing the thermal slip value.
As the thermal slip parameter value increases, the thermal limit layer thickness decreases even when
a small amount of heat is transferred from the surface to the liquid. The velocity, temperature, and
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concentration boundary layer shrink due to enhancement in thermal slip which is cleary seen in the
Figure 12a,b.

Figure 11. Influence of δ1 on velocity profile f ′, temperature profile θ, and concentration profile φ

against η.

Figure 12. Influence of δ2 on velocity profile f ′, temperature profile θ, and concentration profile φ

against η.

The Figures 13a,b and 14a,b depicts the behavior of suction/injection on fluid velocity,
temperature, and concentration profile.The boundary layer of velocity is observed decreasing effect
when we enhance in the value of suction parameter S > 0 but inverse behavior is seen for velocity,
temperature, and concentration profiles when we increase in the values of injection parameter S < 0.
Figures 15a–c and 16a–c. described the influence of several parameters on the shear stresses, the heat,
and mass transfer rates , Figures 15a and 16a illustrate the influence of several parameters on the
skin friction factor, that indicate that friction increases with Chemical reaction ,and suction parameter,
are enhanced. In results weaker matrix resistance factors to thermo-diffusion flow behaviours in an
acceleration leading to increased shearing at the sheet surface and enhance the magnitudes of skin
friction factor. Figures 15b and 16b indicates that the variation effect on heat transfer rates for different
parameter. The amount of heat transfer rises as, the Chemical reaction ,and suction parameter both
are increased.In thermo-diffusion flow, a more inertial impact, obviously aggravates heat diffusion
from the radial sheet to the fluid. Figures 15c and 16c show the influence of different parameters on
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increases in Sherwood number i.e., Chemical reaction ,and suction parameter both are enhancing the
magnitude of Sherwood number.

Figure 13. Influence of S on velocity profile f ′, temperature profile θ, and concentration profile φ

against η.

Figure 14. Influence of −S on velocity profile f ′, temperature profile θ, and concentration profile φ

against η.

Figure 15. Influence of S on f ′, θ, and φ.
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Figure 16. Influence of S on f ′, θ, and φ.

In Table 2 we analysis the variation of physical parameters M, λ, Pr, α, and β, on skin friction
co-efficient − f ′′(0), Nusselt number −θ′(0), and Sherwood number −φ′(0).

The following results are concluded from the Table 2. (i) The Skin-friction coefficient is increasing
while reducing the local Nusselt and Sherwood numbers through improvement in the increment
of Magnetic parameter. (ii) The increment in thermal buoyancy parameter λ, cause decreasing the
Skin-friction coefficient while increasing the factor of Nusselt number, and Sherwood number. (iii)
With the increasing unsteadiness parameter σ, the Skin-friction , local Nusselt, and Sherwood numbers
are also increasing. (iv) The Skin-friction coefficient is increasing with the increment in Prandtl number
also increasing the local Nusselt number but opposite trend is observed for Sherwood number. (v) The
Skin-friction coefficient and Sherwood number are decreasing with the increasing Casson parameter
and increment in the local Nusselt number.

Table 2. Influence of some parameters on − f ′′(0), −θ′(0), and −φ′(0) when Sc = 10, Ds = D f =

0.5, Ro = 1.0, δ1 = δ2 = 0.2, S = 0.

α β M Pr λ f ′′(0) −θ′(0) −φ′(0)

0.5 0.3 1.0 10.0 1.0 −2.93927 2.51714 0.97907
1.0 −3.11489 2.65722 1.15877
1.5 −3.27767 2.77597 1.32801
0.5 1.0 −1.87877 2.48897 0.88058

3.0 −1.48554 2.48759 0.81457
5.0 −1.40157 2.48426 0.79476
0.3 2.0 −3.36540 2.50392 0.94527

4.0 −4.02817 2.48569 0.89369
6.0 −4.54380 2.47292 0.85671
1.0 15.0 −2.94933 2.56412 0.88783

20.0 −2.95470 2.58853 0.84059
25.0 −2.95780 2.60340 0.81173
10.0 2.0 −3.08296 3.12406 1.14151

3.0 −3.08036 3.51020 1.32529
3.5 −3.07908 3.86004 1.48219

4. Conclusions

The thermo-diffusion and multi-slip effects on an axisymmetric Casson fluid flow over a
time-dependent radially stretching sheet with in the presence of chemical reaction is presented. The
governing nonlinear PDEs are transformed into a set of highly nonlinear ODEs with the aid of suitable
similarity transformations which are solved numerically by utilizing the Keller-Box technique. The
computations have been performed for velocity, temperature, and solutal functions for various values
of physical parameters. The key conclusions of this work are as follows:
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• The velocity profiles are observed to be decreased with increasing values of the Casson,
unsteadiness, magnetic, Prandtl number, Dufour, Soret number, chemical, Schmidt number and
slips parameters,but the effect of increasing buoyancy parameter values and injection parameters
is the opposite.

• Increments in unsteadiness, magnetic field, buoyancy, Prandtl number, Soret, thermal slip,
Dufour, and chemical parameters decline the fluid temperature. However, the opposite effect is
observed with increasing values of Schmidt number, magnetic, Casson, suction/injection, and
hydrodynamic slip parameters.

• The concentration profle are found to be reduced with increasing values of the unsteadiness,
buoyancy, Soret, Schmidt number, thermal slip, Prandtl number, chemical reaction, and suction
parameters. But the concentration profile are enhanced by increment in the magnetic field, Casson,
Prandtl number, Dufour, injection, and hydrodynamic slip parameters.

• The obtained results are presented in graphical and tabular formats. An excellent agreement of
our numerical results is obtained with the existing literature which assists with the authenticity of
proposed study.

• Destructive chemical reactions are favorable in order to enhance the mass transfer rate.
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