
processes

Article

Structural Influence and Interactive Binding
Behavior of Dopamine and Norepinephrine on
the Greek-Key-Like Core of α-Synuclein Protofibril
Revealed by Molecular Dynamics Simulations

Yu Zou 1,†, Zhiwei Liu 2,†, Zhiqiang Zhu 2 and Zhenyu Qian 2,*
1 Department of Sport and Exercise Science, College of Education, Zhejiang University, 148 Tianmushan Road,

Hangzhou 310007, China; zouyu_1993@163.com
2 Key Laboratory of Exercise and Health Sciences (Ministry of Education) and School of Kinesiology,

Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China; liuzhiwei_1995@163.com (Z.L.);
zzq5819@163.com (Z.Z.)

* Correspondence: qianzhenyu@sus.edu.cn
† Y.Z. and Z.L. contributed equally to this work.

Received: 10 August 2019; Accepted: 11 November 2019; Published: 13 November 2019
����������
�������

Abstract: The pathogenesis of Parkinson’s disease (PD) is closely associated with the aggregation of
α-synuclein (αS) protein. Finding the effective inhibitors of αS aggregation has been considered as the
primary therapeutic strategy for PD. Recent studies reported that two neurotransmitters, dopamine
(DA) and norepinephrine (NE), can effectively inhibit αS aggregation and disrupt the preformed
αS fibrils. However, the atomistic details of αS-DA/NE interaction remain unclear. Here, using
molecular dynamics simulations, we investigated the binding behavior of DA/NE molecules and
their structural influence on αS44–96 (Greek-key-like core of full length αS) protofibrillar tetramer.
Our results showed that DA/NE molecules destabilize αS protofibrillar tetramer by disrupting the
β-sheet structure and destroying the intra- and inter-peptide E46–K80 salt bridges, and they can also
destroy the inter-chain backbone hydrogen bonds. Three binding sites were identified for both DA
and NE molecules interacting with αS tetramer: T54–T72, Q79–A85, and F94–K96, and NE molecules
had a stronger binding capacity to these sites than DA. The binding of DA/NE molecules to αS
tetramer is dominantly driven by electrostatic and hydrogen bonding interactions. Through aromatic
π-stacking, DA and NE molecules can bind to αS protofibril interactively. Our work reveals the
detailed disruptive mechanism of protofibrillar αS oligomer by DA/NE molecules, which is helpful for
the development of drug candidates against PD. Given that exercise as a stressor can stimulate DA/NE
secretion and elevated levels of DA/NE could delay the progress of PD, this work also enhances our
understanding of the biological mechanism by which exercise prevents and alleviates PD.

Keywords: amyloid protofibril; small molecules; protein–ligand interaction; inhibitory mechanism;
molecular dynamics simulation

1. Introduction

Peptide self-assembly into amyloid fibrillar aggregates is associated with several neurodegenerative
disorders, including Parkinson’s disease (PD), Alzheimer’s disease, and Huntington’s disease [1–3].
The main component of the amyloid-rich Lewy bodies found abundantly throughout the PD brain
is α-synuclein (αS) protein, whose fibrillation is crucially involved in PD [4,5]. The mature αS fibril
has a common amyloid feature of a cross-β spine with β-strands perpendicular to the fibril axis [6,7].
The formation of αS fibrils is characterized by a nucleation-elongation process, in which the fibrils
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grow rapidly through the addition of monomers once a nucleus is formed [8,9]. Although αS fibrils
are thought to be the toxic species responsible for PD, recent studies have shown that soluble small
oligomers are more cytotoxic than mature fibrils [10,11]. Thus, reducing the oligomeric species is
an effective way to prevent αS aggregation.

A number of strategies of molecular intervention to reduce the toxic effects of these oligomeric
aggregates of αS have been proposed. Several potential inhibitors, including short peptides [12,13],
small molecules [14,15], antibodies [16,17], and nanoparticles [18,19], are reported to be able to impede
αS aggregation and dissociate preformed fibrils. Among these inhibitors, two neurotransmitters,
dopamine (DA) and norepinephrine (NE), have gained great attention due to their remarkable ability
to inhibit amyloid aggregation. In the brain, DA exerts its effect through DA receptors (D1–D5), and its
deficiency is the main feature of PD [20,21]. The release of NE exerts a potent neuromodulatory effect
on synaptic transmission, and the additional loss of NE neurons in the locus coeruleus is related to
the motor and non-motor deficits in PD [22,23]. In the last two decades, experimental researchers
have focused on the mechanisms by which DA/NE molecules inhibit αS aggregation or disrupt the
preformed αS protofibrils [24–37]. Conway et al. screened 169 drug-like compounds, and first found
that catecholamines (including DA/NE) have the ability to inhibit αS fibrillization [24]. Using the
combined methods of the thioflavin T assay, light scattering, electron microscopy, and atomic force
microscopy, Li et al. showed that micromolar concentrations of DA/NE can both prevent the formation
of αS fibrils and dissolve pre-existing fibrils [25]. Matera et al. reported that in the presence of DA/NE
molecules, the fibrillar content of αS is able to decrease to 20–40% of the initial amount compared to
the αS solution alone [32]. Illes-Toth et al. suggested that DA can induce the population of a highly
extended state of αS and modulate αS self-assembly [35]. In the cytotoxicity tests, Singh et al. proposed
that NE has a weak binding to the initial and intermediate states of the αS fibrillation pathway,
which may promote the production of cytotoxic species [37]. Morshedi et al. found that simultaneous
treatment of cultured PC12 cells with DA and early stage αS aggregates can significantly increase the
viability of cells in comparison with each treatment alone [38]. Despite these experimental studies,
the influence of DA/NE molecules on αS aggregation at the atomistic level is still elusive.

In this study, we carried out all-atom molecular dynamics (MD) simulations to investigate
the detailed interactions and underlying disruptive mechanisms of DA/NE molecules with αS44–96

protofibrillar oligomer. Previous study showed that the αS44—96 fragment is the ordered core region of
the full length αS fibril, and its structure adopts a β-serpentine arrangement with a β-sheet-rich
Greek-key-like topology [39]. It was reported that catecholamines could bind preferentially to
125YEMPS129 residues in the C-terminal region and non-amyloid component region [27,28,33,40–42].
As we are concerned mostly with the general properties of in-registry parallel β-sheet amyloids
rather than αS itself, the αS44–96 region (consisting of 53 residues) is chosen as our simulated model.
DA/NE molecules are simultaneously added around the αS protein in the same simulation system.
We did so because DA/NE molecules co-exist in the brain. They are synthesized from the same precursor
(amino acid tyrosine) and have high structural similarity. The concomitant loss of DA and NE could
promote aberrant motor and non-motor symptoms of PD, which suggests that the two compounds
are closely related in the brain [43–45]. Besides, experimental studies showed that DA/NE molecules
can both effectively inhibit the αS fibrillization and decrease the toxicity of αS aggregates [24,25,32,38].
It is interesting to examine the similarity and difference of the interactions of DA/NE molecules with
αS, as well as the interactivity of DA/NE. Our MD simulations show that DA/NE molecules can
destabilize αS protofibrillar tetramer by disrupting the β-sheet structure and destroying the intra-
and inter-peptide E46-K80 salt bridges. Both DA and NE molecules have a high binding affinity at
three sites of αS tetramer. The electrostatic and hydrogen bonding interactions play dominant roles in
DA/NE molecules disrupting αS protofibrils. The aromatic π-stacking helps DA and NE molecules
bind to αS protofibril interactively.
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2. Materials and Methods

2.1. αS44—96 Tetramer and DA/NE Molecules

The amino acid sequence of αS44–96 peptide is 44TKEGVVH50GVATVAEKTK60E QVTNVGGAV
70VTGVTAVAQK80TVEGAGSIAA90ATGFVK96. The initial coordinate of the αS tetramer was taken
from the αS fibril structure (PDB ID: 2N0A) resolved by solid-state nuclear magnetic resonance
(NMR) [39]. Residues 1–43 and 97–140 were removed from the original structure to construct the
Greek-key-like core region of αS (αS44—96). The structures of the DA/NE molecules were taken from the
ChemSpider database, and the topologies of the DA/NE molecules were obtained by the GlycoBioChem
PRODRG2 Server [46]. The geometry structures of DA/NE molecules were first optimized using
Spartan’10 [47] and then energy-minimized by GAMESS software [48]. The partial charges of DA/NE
atoms were generated by the Amber Tools REP package [49]. In aqueous solutions at a pH ≈ 7.0,
DA/NE molecules mostly adopt the protonated amino groups [50]. Therefore, positively charged
protonated DA and NE molecules were considered in our simulations. The cytotoxicity of NE bound
(in its oxidized form) αS oligomers remains controversial, which deserves further investigation [32,37].
The molar ratio of DA/NE molecules to αS peptide chains is 2:1, which is equal to that used in the
experimental study [32]. DA/NE molecules co-exist in the brain, and the concentration of NE is much
higher than that of DA [51,52]. For easy comparison, we took the αS tetramer system containing
an equal quantity of DA and NE molecules as a model system in our simulations. Two systems were
simulated: an isolated αS44–96 protofibrillar tetramer (named the tetramer system) and an αS44–96

protofibrillar tetramer in the presence of four DA and four NE molecules (named the tetramer + DA/NE
system). In the initial state of the tetramer + DA/NE system, DA/NE molecules were simultaneously
placed around αS44–96 (αS for short) protofibrillar tetramer, with a minimum distance of >1.5 nm [32].
The initial states of simulated systems and the molecular structures of DA/NE are displayed in Figure 1.
The initial conditions of three MD runs for isolated αS tetramer were exactly the same except for the
initial velocities of atoms. The velocities were generated according to Maxwell’s distribution at 310 K.
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All MD simulations were performed in the isothermal-isobaric (NPT) ensemble using the 
GROMACS-5.1.4 software package [53] with the Amber 99SB-ILDN force field [54]. The systems were 
solvated in a 7.45 × 7.45 × 7.45 nm3 cubic box with TIP3P water molecules [55]. Na+ and Cl− ions were 
both added to neutralize the systems, providing an additional 0.1 M salt concentration. The net 
charges of the αS44–96 peptide and DA/NE molecules were separately +2 and +1/+1 at neutral pH; thus, 
more counterions (Cl−) were added to neutralize the two systems. Constraints were applied for bond 
lengths of peptides using the LINCS algorithm [56] and for the water molecules using SETTLE 
algorithms [57]. The pressure was kept at 1 bar using the Parrinello–Rahman method [58] with a 
coupling time constant of 1.0 ps. The temperature was kept at 310 K using the velocity rescaling 

Figure 1. (a,b) Initial states of αS tetramer and tetramer in the absence and presence of DA/NE
(dopamine/norepinephrine) molecules. DA and NE molecules are colored in red and blue, respectively.
The Cα-atom of the N-terminal residue T44 in each αS peptide is represented by a blue bead.
(c,d) Chemical structures of DA and NE molecules. Color codes: carbon atoms (cyan), oxygen atoms
(red), nitrogen atoms (blue), and hydrogen atoms (white).

2.2. MD Simulation Details

All MD simulations were performed in the isothermal-isobaric (NPT) ensemble using the
GROMACS-5.1.4 software package [53] with the Amber 99SB-ILDN force field [54]. The systems were
solvated in a 7.45 × 7.45 × 7.45 nm3 cubic box with TIP3P water molecules [55]. Na+ and Cl− ions were
both added to neutralize the systems, providing an additional 0.1 M salt concentration. The net charges
of the αS44–96 peptide and DA/NE molecules were separately +2 and +1/+1 at neutral pH; thus, more
counterions (Cl−) were added to neutralize the two systems. Constraints were applied for bond lengths
of peptides using the LINCS algorithm [56] and for the water molecules using SETTLE algorithms [57].
The pressure was kept at 1 bar using the Parrinello–Rahman method [58] with a coupling time constant
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of 1.0 ps. The temperature was kept at 310 K using the velocity rescaling coupling method with
a coupling constant of 0.1 ps. Long-range electrostatic interaction was described by the particle mesh
Ewald (PME) method [59] with a real space cutoff of 1.2 nm. The cutoff for van der Waals interactions
was 1.2 nm. Three independent 300 ns MD simulations were conducted for αS tetramer with DA/NE
molecules, and three 300 ns MD simulations without DA/NE molecules were performed as a control.

2.3. Analysis

MD trajectories were analyzed by the facilities of the GROMACS-5.1.4 software package and
in-house developed codes. The DSSP program [60] was used to calculate the protein secondary
structure. One hydrogen bond (H-bond) was taken as formed if the N···O distance was less than
0.35 nm and the N-H···O angle was greater than 150◦. Previous studies reported that an ion pair can
be defined as a salt bridge if the centroids of the side-chain charged-group atoms in the residues
(Asp or Glu with Arg, Lys, or His) lie within 4.0 Å of each other, and at least one pair of Asp or
Glu side-chain carbonyl oxygen and side-chain nitrogen atom of Arg, Lys, or His is also within this
distance [61–63]. This criterion has been widely used in many computational studies [64–67]. Therefore,
in this work, a salt bridge was considered to be formed if the minimum distance between the nitrogen
atom of side-chain NH3

+ group of K80 and the side-chain COO− group of E46 was less than 0.4 nm.
The binding affinity of DA/NE molecules to αS tetramer was characterized using contact probability.
Here, a contact was defined if the distance between the heavy atoms of DA/NE molecule and αS
tetramer lied within 0.54 nm [65,68]. All the representations of the simulated systems were drawn
with the VMD program [69].

3. Results and Discussion

3.1. DA/NE Molecules Destabilize αS Protofibril by Disrupting the β-Sheet Structure and Destroying the Intra-
and Inter-Peptide E46-K80 Salt Bridges

In order to examine the effect of DA/NE molecules on the structural stability of αS tetramer,
we first calculated the root-mean-squared deviation (RMSD) of the Cα atoms of tetramer from the
initial structure in the isolated tetramer and tetramer + DA/NE systems as a function of simulation time.
It can be seen from Figure 2a,b that all of the MD simulations in the two systems reached equilibrium
after 250 ns. Therefore, the analytical parameters below were based on the last 50 ns of data of each
MD trajectory. We found that the average RMSD values in the three MD runs of the isolated tetramer
system during 250–300 ns were respectively 0.34, 0.32, and 0.32 nm; with the addition of DA/NE,
the values changed to 0.35, 0.69, and 0.41 nm. Previous computational studies also reported that
αS20/30-110 pentamer [70], αS61-95 pentamer [71], and αS29-98 decamer [72] could maintain the β-sheet
structures and display a stable conformation during the MD simulations. The increased RMSD value
of αS tetramers with DA/NE molecules compared to those without DA/NE molecules suggested that
the binding of DA/NE molecules led to a decreased structural stability of αS tetramer. Figure 2c shows
the snapshots of αS tetramer in Run 1 of the tetramer system and Run 2 of the tetramer + DA/NE
system, generated at t = 0, 150, and 300 ns. The isolated αS tetramer remained quite stable during
the simulation time of 300 ns. In contrast, the binding of DA/NE molecules to αS tetramer enhanced
the flexibility of the chains at the edge of the protofibril and led to the departure of the N-terminal
fragment of one edge chain. Note that the RMSD of αS44–96 cannot represent that of the full length αS,
because the N- and C-terminal regions of αS are highly structurally flexible. These results indicate that
DA/NE molecules disturb the structural stability of αS tetramer.
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Figure 2. Structural stability analysis of αS tetramer in the absence and presence of DA/NE molecules.
(a,b) The Cα-RMSD of αS tetramer in the tetramer and tetramer + DA/NE systems as a function of
simulation time. (c) Snapshots of the tetramer and tetramer + DA/NE systems at 0, 150, and 300 ns.
The representations are consistent with those in Figure 1.

To examine the influence of DA/NE molecules on the secondary structure of αS tetramer, we then
calculated the probabilities of different secondary structures (coil, β-sheet, β-bridge, bend, and turn) of
αS tetramer using the last 50 ns trajectory data. As shown in Figure 3a, with the addition of DA/NE
molecules, the average value of β-sheet probability decreased from 45.3% to 35.7%; the average value
of coil/bend probabilities increased from 32.9/13.1% to 36.3/15.1%; the probabilities of β-bridge and
turn did not change much. These demonstrate that DA/NE molecules can reduce the β-sheet content
of αS tetramer and convert part of the β-sheet structure into the random coil or bend conformation.
To identify the residues that contribute the most to the β-sheet reduction, we further calculated the
β-sheet probability for the individual residue of αS44—96 peptides in Figure 3b. It is shown that the
β-sheet probabilities of residues V52-V55, T72-V74, Q79-E83, and I88-V95 in the tetramer + DA/NE
system were strongly reduced compared to those in the isolated αS tetramer system. The previous
NMR study suggested that the fragments T44-V55, E61-G66, V70-A78, T81-E83, and I88-K96 adopt the
β-sheet in αS44—96 protofibril [39], and the innermost β-sheet of the core including residues 71–82 was
reported to be necessary for αS fibril formation [73,74]. These regions are involved in the reduction of
β-sheets observed in our simulations, which is supposed to go against αS fibrillation. Overall, DA/NE
molecules can serve as a β-sheet breaker to disrupt the β-sheet structures of αS44—96 protofibrils.
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Figure 3. Influence of DA/NE molecules on the secondary structure of αS tetramer. (a) Average
probabilities of different secondary structures for two simulated systems. (b) Residue based β-sheet
probability of αS tetramer with and without DA/NE molecules.

As previous experimental and computational studies suggested that E46-K80 salt-bridges are
crucial for the stability of αS protofibril [39,75], we examined the influence of DA/NE molecules on
the E46-K80 salt-bridges. The probability density function (PDF) of intra- and inter-peptide E46-K80
distance between the side-chain COO− group of E46 and the Nζ atom of the side-chain NH3

+

group of K80 was calculated using the last 50 ns of data of all the MD runs. Figure 4a,b shows
the intra-peptide E46-K80 distance distribution. There existed a sharp peak centered at 0.15 nm in
the isolated tetramer system, indicating well preserved salt bridges, while the peak value became
much smaller in the tetramer + DA/NE system. Figure 4c,d shows the inter-peptide E46-K80 distance
distribution. Two peaks centered at 0.15 and 0.45 nm were observed in the isolated tetramer system,
while there was a significant reduction of the two peak values in the tetramer + DA/NE system,
especially for that at 0.15 nm. These results demonstrate that DA/NE molecules can destroy the intra-
and inter-peptide E46-K80 salt bridges, as a result destabilizing αS tetramer protofibril.
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Figure 4. Influence of DA/NE molecules on the intra- and inter-chain E46-K80 salt bridges of αS
tetramer. The probability density function (PDF) of the intra-chain (a,b) and inter-chain (c,d) E46-K80
distance in the two systems.
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3.2. DA/NE Molecules Destroy the Inter-Chain Backbone Hydrogen Bonds, and NE Molecules Form More
H-Bonds with αS Tetramer Than DA Molecules

As the backbone H-bonds’ formation is closely related to the structural stability and β-sheet
formation of αS protofibril, we calculated the distribution of the average inter- and intra-molecular
backbone H-bond number for two systems using the last 50 ns of data of each MD trajectory. As shown
in Figure 5a, the number of average inter-chain H-bonds was obviously reduced with the addition of
DA/NE molecules, and the peak location decreased from 95 to 86. The average intra-chain H-bond
number slightly increased with the peak location shifting from eight to 11. Previous MD study on
β-amyloid oligomer showed that the disturbance of the inter-peptide H-bonding network and the
increment of side-chain H-bonds may result in increased coil content and morphological diversity [76].
The reduction of inter-chain backbone H-bonds of αS protofibril induced by DA/NE molecules is
supposed to go against the structural stability of αS protofibril and the subsequent fibrillation. We also
calculated the number of H-bonds formed between individual residue and DA/NE molecules. Figure 5b
shows that DA and NE molecules mainly form H-bonds with the main chains of residues 55–68 in
αS tetramer. DA preferentially forms H-bonds with charged residues K60 and E83 and hydrophobic
residue V82; NE forms H-bonds mostly with charged residues K96, E57, and K58. On the whole, NE
is more likely to form H-bonds with αS protofibril compared to DA at the same concentration (here,
the molar ratio of DA:NE is 1:1).
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and DA/NE molecules. The results were averaged over the last 50 ns of data of all MD runs.

3.3. The Binding Sites and Interactive Binding Behavior of DA/NE Molecules on αS Tetramer

To identify the binding sites of each neurotransmitter (DA or NE) on αS tetramer, we respectively
calculated the residue based binding probability of DA and NE molecules to αS tetramer using the
last 50 ns of data of the simulations. As shown in Figure 6, DA molecules had the highest binding
probability with polar residues T59 and T64, negatively charged residues E61 and E57, and hydrophobic
residue V70; NE molecules had the highest binding probability with polar residue T59, negatively
charged E57 and E61, and positively charged K58 and K60. Both DA and NE molecules preferentially
bind to the charged residues E57 and E61 and polar residue T59, indicating the important role of
electrostatic interaction in the DA/NE–tetramer interaction. The aforementioned calculation of H-bond
number shows that the charged residues E57, K58, and K60, as well as the polar residue T59 have
a high affinity of forming H-bonds with DA/NE molecules. This reflects that H-bonding interaction
also plays a role in the binding of DA/NE molecules to αS tetramer. Small molecules carrying net or
partial charges may have a high binding probability with negatively and positively charged residues
at the same time [67,77,78]. Besides, we found that DA molecules have a high binding probability
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with hydrophobic residue V70. As DA has the polar part (two hydroxyl groups) and nonpolar part
(benzene ring), the benzene rings of DA molecules binding to residue V70 were found to be close to
the hydrophobic side-chain of V70 through the MD trajectory track, indicating a strong hydrophobic
interaction in between. However, NE molecules do not bind to V70 with a high probability, and this
difference might be attributed to the lower hydrophilicity of the DA molecule compared to NE, because
the DA molecule has one less hydroxyl group. Overall, these results indicate that the electrostatic and
H-bonding interactions play dominant roles in the binding of DA/NE molecules to αS tetramer.Processes 2019, 7, x FOR PEER REVIEW 9 of 13 
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ring of NE. (e) Representative snapshots of the π-stacking patterns of DA with NE molecules. The
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rings, respectively.

According to the residue based binding probability, we identified the favorable binding sites of
DA/NE molecules to αS tetramer. DA molecules were found to have a preference to bind at three
sites: T54-T72, Q79-A85, and F94-K96. The binding sites of NE molecules on αS tetramer were similar
to those of DA, and the binding probability of each site of NE molecules was higher. This implies
that NE molecules have a stronger binding capacity to αS tetramer compared to DA at the same
concentration. To further confirm this conjecture, we calculated the PDF of the minimum distance
between DA/NE molecules and αS tetramer in Figure 6c. The minimum distance distribution displays
a sharp peak at a distance of 0.15 nm between NE molecules and αS tetramer, while the peak value is
reduced in the DA-tetramer PDF curve. These results indicate that more NE molecules are able to get
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closer to αS tetramer than DA molecules when interacting with αS protofibril, leading to a stronger
binding strength.

Since DA and NE molecules were reported to be able to interact with each other in the brain [43–45],
it is interesting to examine the DA–NE interactions in our simulation systems, and we found that
the aromatic-stacking interaction plays an important role in the DA–NE interplay. The PDF of the
centroid distance between the DA aromatic ring and the NE aromatic ring is presented in Figure 6d.
It can be seen that there is a sharp peak centered at 0.55 nm (labeled 1) and a smaller peak centered at
0.35 nm (labeled 2). The ring orientation calculation between the DA ring and NE ring (not shown) and
trajectory tracing indicate that when a DA ring couples with a NE ring, the two rings have a strong
preference to be a herringbone if located at a centroid distance of 0.45 < d < 0.65 nm; they prefer
a parallel ring organization if the centroid distance is less than 0.45 nm. The corresponding herringbone
and parallel π-stacking patterns between the aromatic rings of DA and NE molecules are shown in the
snapshots of Figure 6e. These results imply that DA molecules can bind to αS protofibril through two
means: DA is able to bind to the preferential region of αS tetramer directly (Way I), or it can adsorb to
the αS-bound NE molecules by π-stacking and bind to αS indirectly (Way II). In addition, DA displayed
a high similarity of binding sites to αS protofibril with respect to NE molecules, which means one site
would be energetically suitable for the adsorption of both DA and NE molecules. This allows DA and
NE molecules to always assist each other in adsorption to αS rather than compete. The situation is
the same when NE molecules bind to αS protofibril, and the difference lies in that NE has a stronger
binding capacity to αS. Thus, DA and NE molecules bind to αS protofibril interactively.

4. Conclusions

In summary, we investigated the structural influence and binding behavior of DA/NE molecules
on the preformed αS protofibrillar tetramer, as well as the underlying disruptive mechanism by
performing multiple MD simulations. The increased RMSD value of αS tetramer in the tetramer
+ DA/NE system shows that DA/NE molecules can disturb the structural stability of αS tetramer.
By calculating the secondary structure, we found that DA/NE molecules can disrupt the β-sheet
structure of αS tetramer by reducing the β-sheet content of residues V52-V55, T72-V74, Q79-E83,
and I88-V95. DA/NE molecules can also reduce the inter-chain H-bond number and destroy the E46-K80
salt bridges. The destabilization of αS protofibril resulting from DA/NE binding is supposed to prevent
the peptide–peptide association and inhibit the subsequent fibrillation. Three binding sites were
identified for both DA and NE molecules interacting with αS tetramer: T54-T72, Q79-A85, and F94-K96,
and NE molecules have a stronger binding capacity to these sites than DA. The binding of DA/NE
molecules toαS tetramer is dominantly driven by the electrostatic and H-bonding interactions. Through
aromatic π-stacking, DA and NE molecules may bind to αS protofibril interactively. Overall, our
work provides the molecular details of the disruptive effects of DA/NE molecules on αS protofibrillar
oligomer, which is helpful for developing new treatments (drug design or exercise therapy) against PD.
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