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Abstract: There are many interference components in Fourier amplitude spectrum of a contaminated
fault signal, and thus the segment obtained based on the spectrum can lead to serious
over-decomposition of empirical wavelet transform (EWT). Aiming to resolve the above problems,
a novel method named improved empirical wavelet transform (IEWT) is proposed. Because the
power spectrum is less sensitive to the contaminated interference and manifests the presence of fault
feature information, IEWT replaces the Fourier amplitude spectrum of EWT with power spectrum
in segment acquirement, and threshold processing is also introduced to eliminate the bad influence
on the acquirement, and thus the best decomposition result of IEWT can be obtained based on
feature energy ratio (FER). The loose slipper fault signal of hydraulic pump is tested and verified.
The result demonstrates that the proposed method is superior and can extract the fault feature
information accurately.

Keywords: hydraulic pump; fault signal; feature extraction; empirical wavelet decomposition;
power spectrum density; feature energy ratio

1. Introduction

The hydraulic pump is a power source and supplies pressure energy to hydraulic systems.
The pump has been applied in many important industrial fields such as aeronautics, astronautics,
metallurgy, petrochemical engineering, and engineering machinery. The hydraulic system in
aforementioned fields possess the characteristics such as large-scale continuation, integration and
automation, and thus the working condition of pump facing some challenges as high temperature,
high pressure and high speed [1,2]. Unfortunately, these challenges accelerate the deterioration of
the health status of pumps, so it is very important to diagnose the faults for hydraulic pump [3,4].
The mechanical and fluid impact can cause the vibration of the pump, and vibration severity increases
once the pump is broken [5,6]. A lot of fault feature information is contained in the vibration signal,
and the signal is also contaminated by many interferences [7,8]. Recently, many scholars have applied
vibration signal to diagnose the faults in domestic and foreign. Lan et al. applied wavelet packet
transform (WPT), local tangent space alignment (LTSA), empirical mode decomposition (EMD) and
local mean decomposition (LMD) to process the fault signal of the pump to extract the eigenvectors,
and then the faults could be diagnosed by an extreme learning machine (ELM) [9]. Sun et al. calculated
cyclic autocorrelation functions (CAFs) of a fault signal of the pump, and the corresponding slices
were extracted from the CAFs and processed by fast Fourier transform (FFT), and then indicators were
extracted from the FFT spectra to diagnose the faults [10]. Considering that the early fault signal of the
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pump is a periodic weak signal, Zhao et al. proposed an intermittent chaos, sliding window symbol
sequence statistics-based method, and it was used to detect the early faults [11]. Du et al. presented
a new method based on the layered clustering algorithm to diagnose multiple faults of an aircraft
pump, and thus the faults could be diagnosed based on risk priority number and their severity layer by
layer [12]. Lu et al. applied ensemble empirical mode decomposition (EEMD) to decompose the fault
signal of the pump, and eigenvectors were extracted in time, frequency and time-frequency domains
as the input, and then the optimized support vector regression (SVR) model was used to diagnose the
faults [13].

Wavelet transform (WT) is an effective tool to process a nonlinear and non-stationary signal [14,15].
The time-domain signal can also be decomposed by WT into different frequency bandwidth
groups [16,17]. Compared with short-time Fourier transform (STFT), the basic difference between
WT and STFT is the basis function. The STFT only uses sine and cosine as basis functions. WT also
adopts many kinds of wavelet functions specifying a certain mathematical property. Furthermore,
WT fuses the principles of Fourier transform basis function and STFT window function to develop
a new oscillation and attenuation wavelet basis function. Thus, WT overcomes the shortcoming of
the fixed window, and the new function can change the resolution of time and frequency information
with the change of scale factor. Owing to the width adjustment of WT, the signal details can be
analyzed [18,19]. Currently, WT has been widely used to diagnose some faults at home and abroad.
Aiming at the typical faults of bearing, some researches proposed the method based on WT and
utilized it to diagnose the faults successfully [18,19]. Moreover, the method based on WT was used
by Kordestani et al. to diagnose the faults of spoiler system effectively [20]. Pointing at the faults of
planetary gearboxes, Zhao et al. also proposed a method based on WT, and proved the faults could be
diagnosed effectively [21].

Although WT has widely used in some fields, it has some imperfect aspects. Firstly, in matching
wavelet basis function with morphological features of a signal, there is no accuracy matching principle
and criterion to follow. Secondly, the signal possesses many kinds of features, but the wavelet basis
function is not changed when it works, and thus WT is not adaptive. Thirdly, if the basis function and
scale factor are selected, the resolution is fixed, and thus it does not have the adaptability. Thirdly,
although WT has the capability of multi-scale and multi-resolution, some parts of the signal contained
in the window must be approximate stationary (pseudo stationary) [22].

EMD was proposed by Huang in 1998, and it is good at processing the nonlinear and non-stationary
signal, and the signal is made up of some multi-component modes [23]. One single-component mode can
be separated adaptively from the signal based on its morphological feature information (local maxima
points), and the single-component mode is called intrinsic mode function (IMF) [24,25]. Thus far, a large
number of studies about EMD have been made by scholars on a global scale. EMD was effectively
applied to monitor the healthy condition of wind turbine [19]. Moreover, EMD was also employed to
process some fault signals such as gearbox [25], bearings [26–28], and so on.

Although EMD is widely applied, the cubic splines are employed in EMD to fit the lower and
upper envelopes in each sift, which can lead to two obvious defects [29]. One is mode-mixing,
and another is endpoint effect. In mode mixing, an IMF may be consisted of two or more component
modes, and thus it may lead to wrong decomposition. In the endpoint effect, the endpoints of an IMF
are divergent, and the divergence is gradually into the inside with the iteration of the decomposition.
If the iterative number becomes larger, IMF will be more distorted, then mode mixing and illusive
components happen.

Aiming to improve the shortcomings of WT and EMD, a method for processing the nonlinear
and non-stationary signal is proposed by Gilles, and the method is called empirical wavelet transform
(EWT) [30]. In EWT, Fourier amplitude spectrum of a multi-component mode signal is segmented,
and the wavelet orthogonal basis function is established based on each segment. Thus, the signal can
be decomposed by EWT into several AM-FM single-component modes, and each mode is compact,
supported, and centered on a specific frequency. If the signal is contaminated by interference
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components, there are also interference components in Fourier amplitude spectrum of the signal,
and the segment of EWT is determined by the spectrums of the signal and the interference components
together. Thus, the spectrum increase of interference component leads to many segments, which leads to
mode mixing and over-decomposition [31]. Dong et al. applied sparsity to improve EWT, and adopted
it to diagnose the faults of rolling element bearings [31]. Jiang et al. proposed a novel method based
on EWT and ambiguity correlation classifiers, and EWT was used to decompose the fault signal,
and ambiguity correlation classifiers was adopted to diagnose the faults of rolling element bearings [32].
Cao et al. used the EWT to decompose the signal of wheel-bearing, and the mode which was rich of
fault feature information was selected to analyze the spectrum, and then the faults were diagnosed [33].

In order to resolve the above problems, a new method named improved empirical wavelet
transform (IEWT) is proposed. Firstly, the power spectrum of the loose slipper fault signal is obtained.
Secondly, different threshold values are adopted to eliminate the power spectrum of the interference
components, and the bad influence of interference component on segment acquirement is largely
reduced. Then, the best segment number is obtained based on the feature energy ratio (FER). Thus,
the fault signal of hydraulic pump can be best decomposed by IEWT. The acquired results provide an
important basis for the application extension to faults diagnosis study of other rotating machinery.

The rest of the paper is organized as follows. In Section 2, the algorithms of FER and IEWT are
introduced, and then the flowchart of IEWT is presented. Section 3 depicts the EWT application in a
simulated signal and a hydraulic pump fault signal in detail. In Section 4, some conclusions of this
investigation are summarized.

2. Methodology

2.1. Feature Energy Ratio

Impact vibration is often caused by the faults of rotating machinery, and the impact vibration
energy is generated, and thus the energy is rich in fault feature information. The big value of feature
energy ratio (FER) signifies that the amount of fault feature information is large.

For the sake of measuring amount of fault features information in a signal, the FER is proposed in
reference [34]. It can be rewritten as

FER = (E1 + E2 + . . . + En)/E (1)

where E1, E2, . . . , En are respectively the energy, and they are respectively presented in fault feature
frequency and its harmonics, and E is the total energy of the signal.

2.2. Improved Empirical Wavelet Transform

The algorithm of IEWT is described as follows:

(1) Calculating power spectrum of signals

Different from the Fourier amplitude spectrum of EWT, IEWT is based on power spectrum.
Let x(t) = (x1, x2, . . . , xn) be a signal, and X(ω) is its Fourier amplitude spectrum in the frequency

domain, and then the power spectrum of the signal is denoted as P, and it is defined as

P = lim
T→∞

1
2T

∫ T

−T
x2(t)dt =

1
2π

∫
∞

−∞

lim
T→∞

1
2T

∣∣∣XT(ω)
∣∣∣2dω (2)

(2) Applying the threshold processing
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The step is also different from EWT, and the threshold processing is introduced into IEWT.
The threshold values are defined as

THVA = coefficient ×mean(P) (3)

where coefficient is an integer and equals to 1, 2, . . . , L.
Figure 1 demonstrates how the threshold processing works.Processes 2019, 7, x 4 of 20 
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Figure 1. Demonstration of threshold processing.

In Figure 1, the threshold value THVA is applied to eliminate the spectrums whose values are
smaller than the values (the eliminated spectrum values are set to 0), and thus a new spectrum
distribution Pcoefficient can be obtained. Thus, the bad influence of interference components on adaptive
segment acquirement is much reduced.

(3) Decomposing the Signals

Periodicity of a normalized Fourier axis is 2 π, and the discussion is restricted to ω ∈ [0, π] based
on Pcoefficient. It is supposed that the Fourier support [0, π] is segmented into N contiguous segments,
which means that there are N + 1 boundaries. However, 0 and π are always used in definition and
it is need to be found N − 1 extra boundaries. To find the boundaries, local maxima value of power
spectrum are selected, and the values are sorted in decreasing order (0 and π are excluded). It is
assumed that the algorithm found M maxima, and two cases can appear:

(1) M ≥ N: enough maxima are selected to define the wanted segment number, and then the first
N − 1 maxima are adopted.

(2) M ≤ N: the component mode number of a signal is smaller than expected, and all the selected
maxima are kept, and rest N to the appropriate value.

In Figure 2, each segments is defined as Λn = [ωn−1, ωn], and it can be found that UN
n=1 Λn = [0, π].

Centered around each ωn, a transition phase (the gray hatched areas on Figure 2) Tn of width 2τn

is defined.

Processes 2019, 7, x 4 of 20 

 

 

Figure 1. Demonstration of threshold processing. 

In Figure 1, the threshold value THVA is applied to eliminate the spectrums whose values are 
smaller than the values (the eliminated spectrum values are set to 0), and thus a new spectrum 
distribution Pcoefficient can be obtained. Thus, the bad influence of interference components on adaptive 
segment acquirement is much reduced. 

(3) Decomposing the Signals 

Periodicity of a normalized Fourier axis is 2 π, and the discussion is restricted to ω ∈ [0, π] 
based on Pcoefficient. It is supposed that the Fourier support [0, π] is segmented into N contiguous 
segments, which means that there are N + 1 boundaries. However, 0 and π are always used in 
definition and it is need to be found N − 1 extra boundaries. To find the boundaries, local maxima 
value of power spectrum are selected, and the values are sorted in decreasing order (0 and π are 
excluded). It is assumed that the algorithm found M maxima, and two cases can appear: 

(1) M ≥ N: enough maxima are selected to define the wanted segment number, and then the first 
N-1 maxima are adopted. 

(2) M ≤ N: the component mode number of a signal is smaller than expected, and all the selected 
maxima are kept, and rest N to the appropriate value. 

In Figure 2, each segments is defined as Λn = [ωn−1, ωn], and it can be found that ࢔܃ୀ૚ࡺ  Λn = [0, π]. 
Centered around each ωn, a transition phase (the gray hatched areas on Figure 2) Tn of width 2τn is 
defined. 

 

Figure 2. Segments of the Fourier axis. 

Based on construction of Littlewood-Paley and Meyer’s wavelets, some empirical wavelets of 
EWT are actually band pass filters on each Λn. Then ∀n > 0, it can be defined that the empirical scaling 
function and the empirical wavelets by expressions of Equations (4) and (5) respectively. 

Figure 2. Segments of the Fourier axis.



Processes 2019, 7, 824 5 of 21

Based on construction of Littlewood-Paley and Meyer’s wavelets, some empirical wavelets of
EWT are actually band pass filters on each Λn. Then ∀n > 0, it can be defined that the empirical scaling
function and the empirical wavelets by expressions of Equations (4) and (5) respectively.

∅̂n(ω)


1 if |ω| ≤ ωn − τn

cos
[
π
2 β

(
1

2τn
(|ω| −ωn + τn)

)]
if ωn − τn ≤ |ω| ≤ ωn + τn

0 otherwise
(4)

and

∅̂n(ω)


1 if ωn + τn ≤ |ω| ≤ ωn+1 − τn+1

cos
[
π
2 β

(
1

2τn+1
(|ω| −ωn+1 + τn+1)

)]
if ωn+1 − τn+1 ≤ |ω| ≤ ωn+1 + τn+1

sin
[
π
2 β

(
1

2τn
(|ω| −ωn + τn)

)]
if ωn − τn ≤ |ω| ≤ ωn + τn

0 otherwise

(5)

where γ<minn [ωn+1 − ωn/ωn+1 + ωn], β(x) = 35x4
− 8x5 + 70x6

− 20x7.
The definition of IEWT is the same as EWT, and IEWT is defined in the same way as for the

classic wavelet transform. Detail coefficient Wε
f (n, t) is given by the inner products with the empirical

wavelets in Equation (6). Approximation coefficient Wε
f (0, t) is given by the inner products with the

scaling function in Equation (7).

Wε
f (n, t) = 〈 f ,Ψn〉 = ( f (ω)Ψ̂n(ω))

V
(6)

Wε
f (0, t) = 〈 f ,∅1〉 = ( f (ω)∅̂1n(ω))

V
(7)

The signal is reconstructed, and it is defined in Equation (8).

f (t) = Wε
f (0, t)∅1(ω) +

N∑
n=1

Wε
f (n, t)Ψn(t) = (Ŵε

f (0,ω)∅̂1(ω) +
N∑

n=1

Ŵε
f (n,ω)Ψ̂n(ω))

V

(8)

Thus the empirical modes are given in Equations (9) and (10)

F0(t) = Wε
f (0, t)∅1(t) (9)

Fk(t) = Wε
f (k, t)Ψk(t) (10)

(4) Selecting the best decomposition result based on FER

The step is very important and also different from EWT, and the purpose of the step is to find the
best decomposition.

Because coefficient = 1, 2, . . . , L, there are P1, P2, . . . , PL, and thus L decomposition results can
be got. Each result is comprised of some component modes, and the mode corresponding to the
biggest FER value FERcoefficient, max is compared with that corresponding to the second biggest FER
value FERcoefficient, max, and the comparison result is denoted in Equation (11).

Acoefficient = (FERcoefficient, max − FERcoefficient, secondmax)/FERcoefficient, secondmax (11)

Maximum value of Acoefficient is denoted as Amax, and thus Amax corresponds to the best
decomposition result, and the corresponding threshold value is the best decomposition value. Therefore,
the mode to FERcoefficient, max contains the richest fault feature information.
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2.3. The Flowchart of IEWT

Firstly, the power spectrum of the loose slipper fault signal is calculated. Secondly, the threshold
processing is applied to eliminate the power spectrum of the interference components, and segments
can be acquired. Thirdly, the signal can be decomposed by IEWT based on the segments. Lastly, the
best decomposition result can be selected by FER.

The flowchart of IEWT is shown in Figure 3.
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3. Results and Discussion

3.1. Simualtion Study

3.1.1. The Simulated Signal

In order to verify the superiority and effectiveness of IEWT, a simulated signal is defined as



Processes 2019, 7, 824 7 of 21

x(t) = x1(t) + x2(t) (12)

The signal consists of two component modes of x1(t) and x2(t). x1(t) is used to simulate an impact
signal caused by a fault, and it is an impact signal with periodic exponential attenuation, and its
periodicity is 16 Hz, and attenuation function is e−100tsin(510πt) in one periodicity. x2(t) is a cosine
signal, and its periodicity is 20 Hz, and x2(t) is used to simulate an interference signal of low frequency
harmonic. The sampling frequency is 10,240 Hz and sampling time is 1 s.

The signals x(t), x1(t) and x2(t) are displayed in Figure 4.Processes 2019, 7, x 7 of 20 
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3.1.2. The Simulated Result Analysis Based on EWT

For demonstrating the superiority and effectiveness of IEWT, the simulated signal is also
decomposed by EWT. After the decomposition analysis, three modes can be obtained, which means
that there are three contiguous segments and four boundaries. Thus, there is over-decomposition,
and the decomposition result is shown in Figures 5 and 6.
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Figure 5a shows the wave of F3 in the time domain. Compared with the wave of x1(t) in Figure 4b,
it is shown that the wave of F3 is distorted. Thus, the periodic impact feature information of F3 is much
different from that of x1(t).

Figure 5b displays the wave of F2 in the time domain, and it is seriously interfered with. Compared
with the wave of x(t) in Figure 4a, the feature information of F2 is unexpectedly high similar with that of
original signal x(t), but it is known that F2 is just a mode obtained by EWT, and thus the decomposition
is wrong.

Figure 5c depicts the wave of F1 in the time domain, and its amplitudes are very small.
By comparing it with the waves of the three signals of x(t), no signal is the same as the F1, and its wave
is also seriously distorted.
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Thus, it is shown that only F3 is a little similar with the impact signal x1(t) among the three modes.
Figure 6 shows the spectrum of F3 in the frequency domain. The fault feature information at fault

feature frequency 16 Hz and its harmonics 32 Hz, 48 Hz, 64 Hz, 80 Hz and 96 Hz are all obvious.
It can be concluded from the above analysis that although the F3 is a little similar with the impact

signal x1(t) in the time domain, there are only two signals in the simulated signal x(t), and there are
three modes of F1, F2, and F3 in the decomposition result, and thus x(t) is over-decomposed by EWT.

3.1.3. The Simulated Result Analysis Based on IEWT

The power spectrum of the simulated signal is denoted as Pcoefficient, and threshold value THVA is
set as coefficient ×mean(Pcoefficient), where coefficient is an integer and mean (Pcoefficient) is mean spectrum
value of Pcoefficient.

The simulated signal is decomposed by IEWT in [1 122] of the coefficient range, and mode numbers
of 122 decomposition results based on different coefficients are displayed in Figure 7.
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It can be seen from Figure 7 that the signal can be effectively and correctly decomposed into only
two modes of F1 and F2 in each decomposition result, which means that there are two contiguous
segments and three boundaries. Thus, there is no over-decomposition and mode mixing, and it is no
need to compute comparison between the FERcoefficient, max and FERcoefficient, secondmax in Step 4.

In order to get the best decomposition result, FER of each mode is computed based on each of the
122 results. According to the above FER, it can be seen that the FER value of F2 (the highest-order mode)
is the biggest in each result, which means that each F2 contains the richest fault feature information.
FER value of each F2 in all decomposition results is revealed in Figure 8.
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Figure 8. The feature energy ratio (FER) value distribution diagram of all F2 based on the
simulated signal.

It can be known from Figure 8 that FER values in [1 122] of the coefficient range are all above 0.9,
and their trend tends to be stable in the range, and all of the biggest values are 0.936 in [61 122]. Thus,
the best decomposition result is in [61 122], and all of the results are the same in the range, so only the
best result based on coefficient = 61 is shown in Figures 9 and 10.
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Figure 9. The best decomposition results of the simulated signal based on IEWT in the time domain.
(a) F2; (b) F1.
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Figure 10. Power spectrum density of F2.

The wave of F2 is shown in Figure 9a, and it displays the periodic impact feature information in
the time domain. It is compared with the wave of x1(t) in Figure 4b, and there is nearly no difference
between them. Therefore, it is concluded that periodic impact feature information of F2 is high similar
with that of x1(t) in the time domain.

Figure 9b displays the feature information of cosine curve in F1, and it is contaminated by little
interferences. By comparing the wave of F1 with that of x2(t) in Figure 4c, it can be seen that feature
information of F1 is high similar with that of cosine signal x2(t) in the time domain.

Figure 10 shows the spectrum of F2 in the frequency domain. The amount of the fault feature
information at fault feature frequency 16 Hz and its harmonics 32 Hz, 48 Hz, 64 Hz, 80 Hz and 96 Hz is
very large, thus the fault feature information is extracted effectively, and there are nearly no interference
components in other frequencies.

It can be known that F2 got by IEWT and F3 got by EWT are modes which contain the most of fault
feature information, thus the two are compared with each other in the time and frequency domains.
The similarity between time waves of F2 and that of x1(t) is higher than that between time waves of F3
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and that of x1(t) in the time domain; the fault feature information amount of F2 is larger than that of F3

in the frequency domain.
From the above analysis, it is concluded that the segment can be set according to Fourier power

density spectrum in the effective way, and the right mode number can be got, and then one mode
which contains the richest feature information can be selected based on FER, and thus the simulated
signal can be best decomposed by IEWT. Moreover, there is no over-decomposition and mode mixing,
so IEWT performs much better than EWT.

3.2. Application to Fault Signals of Hydraulic Pump

3.2.1. Experimental Scheme

An experiment was performed to swash plate axial plunger pump whose type was 10MCY14-1B.
Its rotational speed was set as 1470 r/min, and outlet pressure of the pump was set as 15 MPa.
The signals of loose slipper fault are sampled by accelerometer az at frequency of 50 kHz. The two
kinds of fault feature frequency are 171.5 Hz [35]. The experimental system is displayed in Figure 11.
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Figure 11. The experiment system of the swash plate axial plunger pump. (a) Schematic diagram;
(b) swash plate axial plunger pump; (c) data acquisition equipment.

The length of the loose slipper fault signal is 0.2 s, and the signal is shown in Figure 12.
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Figure 12. The loose slipper fault signal.

3.2.2. The Application to the Loose Slipper Fault Signal Based on EWT

In order to validate the superiority and effectiveness of IEWT, the loose slipper fault signal is
firstly decomposed by EWT, and 58 modes can be obtained, so there is serious over-decomposition.
The F13 corresponds to maximum FER value, thus the mode contains the largest amount of fault feature
information, and F13 is displayed in Figure 13.
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Figure 13. F13 got based on EWT. (a) Time domain wave; (b) power spectrum density.

In Figure 13a, the wave of F13 is displayed, and the periodic impact feature information is a little
obvious, but the periodicity and amplitude information is very irregular. The fault feature information
of F13 in Figure 13a is low, similar with that of the original loose slipper fault signal in Figure 12.

The spectrum of F13 is displayed in Figure 13b. In the frequency domain, the fault feature
information at fault feature frequency 171.5 Hz and some of its harmonics is obvious, and there are
some noises in the other frequencies.

3.2.3. The Application to the Loose Slipper Fault Signal Based on IEWT

IEWT is also applied to decompose the signal in [1 22] of the coefficient range, where the power
spectrum of the loose slipper fault signal is denoted as Pcoefficient, the threshold value THVA is set as
coefficient ×mean (Pcoefficient), coefficient is an integer, and mean (Pcoefficient) is mean value of Pcoefficient.

The mode number of each decomposition result is obtained based on the different coefficients,
as displayed in Figure 14.
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From Figure 14, the mode number decreases with the increase of coefficient in all results. There are
36 modes in the case of coefficient = 1, which means that there are 36 contiguous segments and
37 boundaries. All of the results have six modes in the case of coefficient = 19–21. Thus, 36 modes mean
that there is over-decomposition, and six modes indicate that there is mode mixing.

For the sake of obtaining the best decomposition result, FER of each mode is computed in each of
all 22 results and the FER value of the highest-order mode is the biggest in each result. The FER value
of each highest-order mode in all decompositions is displayed in Figure 15.
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fault signal.

In the case of coefficient ≥ 5, FER values change little and maintain at the maximum in Figure 15.
Thus, the reasonable decomposition result is in [5 22].

In order to get the best decomposition result, it is necessary to figure out whether there ia
over-decomposition and mode mixing in each result. FERcoefficient, max of the highest-order mode is
compared with FERcoefficient, secondmax of a certain mode in each result. If the above two FERs are very close,
there is a real possibility that there is over-decomposition and mode mixing in this result. Comparison
result of FERcoefficient, max and FERcoefficient, secondmax in each result is demonstrated in Figure 16.
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Figure 16. The comparison distribution diagram of FER based on the loose slipper fault signal.

In the case of coefficient = 8, it can be found that Amax = 46.89% in Figure 16, and it can be also seen
that F11 is the highest-order mode in Figure 14, which means that there are 11 contiguous segments
and 12 boundaries in the result. FER8, max corresponding to F11 is 0.5644, and FER4, max corresponding
to F4 is 0.3842. FER8, max is 46.90% bigger than FER4, max, and thus there is a real possibility that there is
no over-decomposition and mode mixing in the case of coefficient = 8. The best decomposition result of
IEWT can be obtained, as displayed in Figures 17 and 18.

It can be seen from Figure 17 that periodic impact feature information of the highest-order mode
F11 is more obvious than that of F1–F10, and that of F11 is high similar with that of the original loose
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slipper fault signal in Figure 12. The spectrum of F11 is shown in Figure 18a, the amplitudes at fault
feature frequency 171.5 Hz and its harmonics are all obvious; in Figure 18a–k, the amplitudes at the
above frequencies are not all extracted in the spectrum of F1–F10, and there are many interference
components in other frequencies. Thus, F11 contains the largest amount of fault feature information.

Compared with F13 got by EWT in Figure 13a, the periodic impact feature information of F11 got
by IEWT is very obvious and regular in Figure 17a, and the amplitudes of F11 are also much higher
than those of F13. By comparing with F13 got by EWT in Figure 13b, it can be seen that the amplitudes
of F11 got by IEWT at the fault feature frequency and its harmonics are all extracted, and the amount of
fault feature information is much larger than that of F13.

It can be concluded from the above analysis that the right segment can be obtained according
to Fourier power density spectrum, and then the effective mode number is obtained. Based on the
mode number, the best decomposition of the loose slipper fault signal can be got by IEWT in the case
of coefficient = 8, and then the mode which contains the richest fault feature information can be selected
based on FER. Moreover, it performs better than EWT.
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frequency domain. (a) F11; (b) F10; (c) F9; (d) F8; (e) F7; (f) F6; (g) F5; (h) F4; (i) F3; (j) F2; (k) F1.

4. Conclusions

When the hydraulic pump works, it is often faced with of high pressure and high speed working
conditions. The vibration of the hydraulic pump is usually caused by mechanical and fluid impact,
and the vibration is intensified if it is broken, and thus the fault vibration signal is contaminated by a
lot of noises. The Fourier amplitude spectrum is sensitive to the noises, and the segment is got based
the above spectrum of the contaminated fault signal in EWT, and thus the signal is decomposed in the
wrong way.

Aiming to resolve the shortcomings of EWT, an improved method IEWT is proposed, and IEWT
replaced the Fourier amplitude spectrum of EWT with power spectrum in acquiring the segment,
and thus the bad influence of the interference on the segment acquirement is much reduced. Based on
the right segment, the loose slipper fault signal can be decomposed by IEWT in the best way, and the
mode that contains the most amount of the fault feature information can be selected based on FER.
Therefore, mode-mixing and over-decomposition can be eliminated as much as possible, and IEWT
performs much better than EWT.
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Nomenclature

IEWT improved empirical wavelet transform
EWT empirical wavelet transform
FER feature energy ratio
WT wavelet transform
STFT short-time Fourier transform
EEMD ensemble empirical mode decomposition
SVR support vector regression
CAFs cyclic autocorrelation functions
WPT wavelet packet transform
ELM extreme learning machine
LMD local mean decomposition
LTSA local tangent space alignment
FFT fast Fourier transform
IMF intrinsic mode function
EMD empirical mode decomposition
THVA threshold value
Pcoefficient a new spectrum distribution got after threshold processing
FERcoefficient, max the biggest FER value in case of the coefficient in a decomposition result
FERcoefficient, secondmax the second biggest FER value in case of the coefficient in a decomposition result
coefficient an integer and equals to 1, 2, . . . , L
Acoefficient comparison result between FERcoefficient, max and FERcoefficient, secondmax
Amax maximum value of Acoefficient
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