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Abstract: Chromatography is widely used in biotherapeutics manufacturing, and the corresponding 
underlying mechanisms are well understood. To enable process control and automation, 
spectroscopic techniques are very convenient as on-line sensors, but their application is often limited 
by their sensitivity. In this work, we investigate the implementation of Raman spectroscopy to 
monitor monoclonal antibody (mAb) breakthrough (BT) curves in chromatographic operations with 
a low titer harvest. A state estimation procedure is developed by combining information coming 
from a lumped kinetic model (LKM) and a Raman analyzer in the frame of an extended Kalman 
filter approach (EKF). A comparison with suitable experimental data shows that this approach 
allows for the obtainment of reliable estimates of antibody concentrations with reduced noise and 
increased robustness. 

Keywords: Raman spectroscopy, downstream processing, chromatography, flow cell, extended 
Kalman filter 

 

1. Introduction 

The application of spectroscopic techniques to monitor chromatographic processes in the frame 
of the so-called process analytical technology (PAT) initiative is very promising due to its potential 
for gathering important on-line process information in a non-invasive way [1–5]. Available 
spectroscopic techniques range from UV/vis and Fourier transform infrared spectroscopy to dynamic 
light scattering [6]. Several applications of Raman spectroscopy have been reported in upstream 
processing [7–9], showing the potential of this technology, which often requires specific modeling 
techniques, such as partial least squares (PLS) regression, to extract the desired information from the 
measured spectra. Recently, a successful implementation of Raman spectroscopy for the on-line 
monitoring of monoclonal antibody (mAb) concentrations in downstream processing was reported 
by Feidl et al [10]. An ad hoc developed flow cell enabled the integration of the Raman technology 
into the capture (protein A) step of a mAb manufacturing process, providing accurate on-line 
estimates of mAb concentration. However, in spite of these results, the use of this technology remains 
limited due to the intrinsic weakness of the Raman signal [11–13]. 

In this work, we explore the possibility of overcoming these difficulties by combining estimates 
from the Raman signal with the predictions of a mechanistic model. This is particularly convenient 
in the chromatographic purification of mAbs because these processes are well understood and 
reliable mechanistic simulation models are available [14]. It has been already shown in many other 
areas that the combination of deterministic knowledge and on-line measurements can lead to more 
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accurate and reliable estimates [15–18], e.g., by using extended Kalman filtering (EKF) [19]. While a 
general introduction to Kalman filtering is given in [20], a more detailed description is provided in 
[21]. 

In this work, the implementation of an EKF for a chromatographic capture step to estimate 
antibody concentration is shown by combining the information of a deterministic chromatographic 
model with on-line information derived from Raman-based PLS estimates. In particular, the objective 
is to monitor the chromatographic breakthrough curves of a low-concentrated monoclonal antibody 
harvest. The beneficial effect of the combination of the two approaches with respect to the stand-
alone Raman and chromatographic model is discussed. 

2. Materials and Methods  

2.1. Raman Spectral Acquisition and Flow Cell 

Raman spectra were acquired with a Kaiser RamanRxn2 analyzer (Kaiser Optical Systems, Inc., 
Ann Arbor, MI), including a 785 nm laser at 400 mW and a cooled charged-coupled device (CCD) 
detector, measuring inelastic photon scattering across a 150–3425 cm−1 wavenumber range. A laser 
exposure time of 30 s was chosen to collect the single scan spectra. A flow cell with an optimized flow 
characteristic, signal enhancement, pressure tolerance, and a single use potential was developed. A 
schematic illustration of the flow cell is shown in Figure 1. It includes four main modules: (A) An 
analyzer adapter, which connects the flow cell to the Raman analyzer via a fiber cable; (B) a non-
contact objective to focus the laser beam within the flow path; (C) a flow path, which guides the 
sample longitudinally to the laser beam; and (D) a reflector, reflecting scattered and unscattered light 
to the analyzer via the flow path. In the application to chromatographic purifications, the inlet 
connection is coupled to the elution stream, and the outlet connection is linked to the sample 
fractionator. 

 

Figure 1. Schematic illustration of the developed flow cell. 

2.2. Cell Culture Supernatant 

Two cell culture supernatant pools containing a recombinant mAb with product concentrations 
between 0.30 and 0.60 mg/mL were obtained from a CHO cell perfusion process, as reported in [22]. 
Besides cell filtering through the perfusion hollow fiber module (0.5 µm pore size, Spectrum 
Laboratories, Netherlands), no other treatment was applied to the supernatant, which therefore 
contained a large quantity of impurities, e.g., media components, host cell proteins (HCP, 3 × 105 
ppm), DNA (4 × 104 ppm) and high molecular weight (HMW) species (1.1%). 
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2.3. Breakthrough Runs and Reference Analytic 

Fifteen breakthrough (BT) runs were performed on MabSelect SuRe columns (GE Healthcare, 
Uppsala, Sweden), prepacked by Repligen GmbH (Ravensburg, Germany, 0.5 × 5 cm), as described 
in [10]. The feed concentration, flow rate, and the fraction duration were changed between the 
different BT runs, as described in Table 1. Since several Raman measurements were acquired while 
collecting the sample of a single fraction (between 4 and 16 spectra per fraction), a spline approach 
was applied to interpolate missing reference measurements for each Raman spectrum. 

Table 1. Chromatographic settings and Raman measurements availability of performed 
breakthrough curves. 

 Breakthrough 
curve ID 

Feed 
conc. 

(mg/mL) 

Feed flow 
rate 

(ml/min) 

Run 
duration 

(min) 

Fraction 
duration 

(min) 

Raman 
measurements 

Used for 
PLS and 

EKF 

BT#1 0.34 1.0 200 8 + 
BT#2 0.34 1.5 230 4 + 
BT#3 0.34 1.0 250 6 + 
BT#4 0.42 1.5 130 2 + 
BT#5 0.42 1.0 120 3.5 + 
BT#6 0.42 1.0 170 3.5 + 

       

Used for 
LKM 
fitting 

BT#7 0.43 1.0 240 4 - 
BT#8 0.43 1.5 160 4 - 
BT#9 0.43 0.5 480 4 - 
BT#10 0.30 0.5 690 10 - 
BT#11 0.30 1.5 230 10 - 
BT#12 0.30 1.0 340 10 - 
BT#13 0.60 0.5 200 3 - 
BT#14 0.60 1.5 80 3.5 - 
BT#15 0.60 1.0 120 3.5 - 

 
The mAb concentrations were determined off-line by HPLC with an analytical standard 

deviation of 0.01 mg/mL as described in [23]. The HMW, HCP, and DNA content of the harvest were 
determined as described in [10]. A schematic illustration of the experimental set-up is shown in 
Figure 2. 

 

Figure 2. Schematic illustration of the experimental set up to perform chromatographic breakthrough 
runs and collecting synchronized Raman measurements and breakthrough fractions. 

2.4. Chemometric Modeling Procedure 

All calculations were performed with MATLAB R2018a (Mathworks, Natick, MA, USA) using 
in-house developed routines, if not stated otherwise. The modeling procedure included Savitzky–
Golay smoothing with a second polynomial order and a frame size of 51 Raman shift wavenumbers 
[24], spectrum wise standard normal variate (SNV) processing [25], and Raman shift wavenumber 
wise mean centering on spectra and reference values [26]. The removal of spectral regions based on 
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the bioprocess modeling experience resulted in spectral ranges of 450–1820 cm−1, 1880–2530 cm−1 and 
2590–3100 cm−1 to eliminate interferences with the window material and water as well as non-
informative regions. No derivative, Raman shift wavenumber selection, or automated outlier 
removal tools were applied. The nonlinear iterative partial least squares (NIPALS) algorithm [27] was 
used to calibrate predictive PLS models, which regressed spectral data on HPLC reference values, 
including a threefold cross validation (CV) [28]. The optimal number of latent variables (LV) was 
determined based on the minimum CV error. 

After calibrating the model on five different BT runs, the model was tested on an external BT 
run, i.e., not included in the calibration. In order to evaluate the model performance, the root mean 
square error was calculated for both cross validation (RMSECV) and external prediction (RMSEP), 
using Equation (1), where 𝑦ො௜ is the predicted value of the i-th observation, 𝑦௜ is the corresponding 
measured value, and n is the total number of observations: 𝑅𝑀𝑆𝐸 = ටଵ௡ ∑ (𝑦௜ − 𝑦ො௜)ଶ௡௜ୀଵ    (1)

Furthermore, the coefficient of determination (𝑅ଶ) was calculated for the external prediction as 
follows: 𝑅ଶ = 1 − ∑ (𝑦௜ − 𝑦ො௜)ଶ௡௜ୀଵ∑ (𝑦௜ − 𝑦ത)ଶ௡௜ୀଵ  (2)

A rotational approach was used to judge upon the model transferability and data set similarity. 
Hence, sets were rotated in order to have every BT run in the external prediction set once, as shown 
in Table 2. As an example, to build the model for rotation 1 (ROT1), the data of BT#2–6 were used for 
model calibration and tested on BT#1 (for further details, see [10]).    

Table 2. Modeling procedure including the Raman-PLS (partial least squares) calibration, mechanistic 
model fitting, as well as the tuning, validation and perturbation of the extended Kalman filtering 
(EKF). 

For a given Rot i 
1. Raman-PLS calibration: 𝑃𝐿𝑆ோ௢௧ 𝒊   calibrate Raman-PLS on BT#1–6 except BT#i 

2. Mechanistic model fitting: 
LKM   fit LKM on BT#7–15 with respective process inputs (𝑃𝐼஻்#଻ିଵହ) 

3. EKF tuning: 𝐸𝐾𝐹ோ௢௧ 𝒊   tune EKF (Q, R, 𝑘ொோ௢௧ 𝒊) on BT#1–6 except BT#i  

for n = BT#1–6 except BT#i 
 𝑘ொ್೐ೞ೟௡ = 𝑚𝑖𝑛௞ೂ𝑅𝑀𝑆𝐸𝑃ா௄ி೙  

end for 𝑘ொோ௢௧ 𝒊 = average 𝑘ொ್೐ೞ೟௡  for all n 

4. EKF validation: 
Run 𝐸𝐾𝐹ோ௢௧ 𝒊 with inputs 𝐿𝐾𝑀, 𝑃𝐼ோ௢௧ 𝒊,  𝑃𝐿𝑆ோ௢௧ 𝒊 and 𝑘ொோ௢௧ 𝒊 

5. EKF perturbation: 
for n = 1–200 simulations 

         𝑃𝐼ோௌ = random sampling of 𝜀, 𝑐௜௡, 𝑄௙௟௢௪ from Gaussian probability distribution 
Run 𝐸𝐾𝐹ோ௢௧ 𝒊 with inputs 𝐿𝐾𝑀, 𝑃𝐼ோௌ,  𝑃𝐿𝑆ோ௢௧ 𝒊 and 𝑘ொோ௢௧ 𝒊 

  end for 
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2.5. Deterministic Modeling Procedure 

The chromatographic process was modelled using the lumped kinetic model (LKM)[14],[29]: 𝜕𝑐𝜕𝑡 = −𝑣 𝜕𝑐𝜕𝑥 + 𝐷௅ 𝜕ଶ𝑐𝜕𝑥ଶ − 𝜑 𝜕𝑞𝜕𝑡    𝑡 ∈ ሾ0, 𝑡௘௡ௗሿ, 𝑥 ∈ ሾ0, 𝐿஼௢௟ሿ (3)

𝜕𝑞𝜕𝑡 = 𝑘௠(𝑞∗ − 𝑞) (4)

where 𝑐 is the liquid phase concentration of the protein, 𝑡 is the time, 𝑡௘௡ௗ is the end of the BT run, 𝑣 is the interstitial velocity (𝑣 = ொ೑೗೚ೢ஺೎೚೗ ∙ ఌ), 𝑄௙௟௢௪ is the volumetric flow rate (see Table 1), 𝐴௖௢௟ is the 

column cross sectional area (𝐴௖௢௟= 0.196 cm2), 𝜀 is the bed porosity (𝜀= 0.36 [30]), 𝑥 is the coordinate 
along the column longitudinal axis, 𝐿஼௢௟ is the column length (𝐿஼௢௟= 5 cm), 𝐷௅ is the apparent axial 
dispersion coefficient, 𝜑 = (1 − 𝜀)/𝜀  is the phase ratio of the column, 𝑞  is the solid phase 
concentration of the protein, 𝑘௠  is the mass transfer coefficient, and 𝑞∗  is the equilibrium solid 
phase concentration of the protein. 

The following initial conditions were applied: 𝑐(𝑡 = 0, 𝑥) = 𝑐଴(𝑥)   (5)𝑞(𝑡 = 0, 𝑥) = 𝑞଴(𝑥)  (6)

They were then combined with the classical Danckwerts’ boundary conditions: 𝑐(𝑡 > 0, 𝑥 = 0) = 𝑐௜௡(𝑡) + 𝐷௅𝑣 𝜕𝑐𝜕𝑥൨௫ୀ଴   (7)

 𝜕𝑐𝜕𝑥൨௫ୀ௅೎೚೗ = 0 (8)

where 𝑐௜௡(𝑡) is the feed concentration (see Table 1). Both 𝑐଴(𝑥) and 𝑞଴(𝑥) are zero for all values of 𝑥. The apparent axial dispersion coefficient 𝐷௅  can be estimated from the reduced van Deemter 
equation [31]: 𝐷௅ = 𝐴 𝑑௣2 𝑣 (9)

where 𝐴 is the intercept of the reduced van Deemter equation, 𝑑௣ the average particle diameter 
(𝑑௣ = 85 µm). The van Deemter eddy diffusion coefficient 𝐴 was experimentally determined from 
pulse injection experiments at different flow rates with mAb under non-adsorbing conditions 
(𝐴 = 17.15; data not shown). An empirical correlation was used for the mass transfer coefficient 𝑘௠, 
approximating hindered mass transfer due to pore blockage and other effects [32]: 𝑘௠ = 𝑘௠௠௔௫ ቆ𝑆ଵ + (1 − 𝑆ଵ) ൬1 − 𝑞𝑞௦௔௧൰ௌమቇ  (10)

where 𝑘௠௠௔௫ is the maximum mass transfer coefficient, 𝑞௦௔௧ is the saturation capacity of the resin, 
and 𝑆ଵ is a maximum hindrance coefficient (0 <  𝑆ଵ ≤ 1). The coefficient 𝑆ଶ (with 𝑆ଶ > 0) accounts 
for the nonlinear increase of the hindrance. The protein adsorption process was described using a 
Langmuir isotherm, where 𝐻 is the Henry coefficient: 𝑞∗ = 𝐻 𝑐1 + 𝐻 𝑐𝑞௦௔௧ (11)

Coefficients  𝑘௠, 𝑆ଵ , 𝑆ଶ ,  𝑞௦௔௧  and 𝐻  were fitted on BT#7–15 using the corresponding process 
inputs (PI), such as 𝜀, 𝑐௜௡ and 𝑄௙௟௢௪, as shown in Table 2. The partial differential equations were 
discretized along the x coordinate using a first order central finite difference method, and the 
resulting system of ordinary differential equations was solved using 100 grid points. 
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2.6. Extended Kalman Filter Tuning, Validation and Perturbation 

A prerequisite for this technique is a general nonlinear time-invariant system in continuous time, 
which generates measurements at discrete time steps 𝑡௞ = 𝑘∆𝑡 [33,34]: 𝜕𝑥𝜕𝑡 = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑝) + 𝑤(𝑡) (12)

 𝑦(𝑡௞) = ℎ൫𝑥(𝑡௞)൯ + 𝑣(𝑡௞) (13)

where 𝑥 denotes the states, 𝑢 is the deterministic inputs, 𝑝 is the time-invariant parameters, and 𝑦 
is the measurements of the system. The nonlinear function 𝑓() describes the state dynamics, and ℎ() 
is the measurement function that relates state 𝑥 with measurement 𝑦. The process noise 𝑤 and the 
measurement noise 𝑣 are assumed to be uncorrelated zero-mean Gaussian random processes with 
covariances 𝑄(𝑡) and 𝑅(𝑡), respectively (𝐸 ≙ expectation operator): 𝐸ሾ𝑤(𝑡)ሿ = 𝐸ሾ𝑣(𝑡௞)ሿ = 0 (14) 𝐸ሾ𝑤(𝑡)𝑤்(𝜏)ሿ = 𝑄(𝑡)𝛿(𝑡 − 𝜏) (15)𝐸ሾ𝑣(𝑡௞)𝑣்(𝑡௞)ሿ = 𝑅(𝑡௞) (16)𝐸ሾ𝑤(𝜏)𝑣்(𝑡௞)ሿ = 0 (17)

Given such a system, the EKF can estimate states from noisy measurements through a recursive 
procedure, including two main steps [34,35]. In the first step (prediction step), the a posteriori state 
estimate 𝑥ො(𝑡௞ିଵା ) and covariance matrix 𝑃(𝑡௞ିଵା ) are propagated from 𝑡௞ିଵା  to 𝑡௞ି , leading to the a 
priori state estimate and covariance matrix (superscripts indicate values before (-) and (+) after 
measurement update): 𝑥ො(𝑡௞ି ) = 𝑥ො(𝑡௞ିଵା ) + ׬ 𝑓(𝑥ො(𝜏), 𝑢(𝜏), 𝑝)𝑑𝜏௧ೖష௧ೖషభశ   (18)

𝑦ො(𝑡௞ି ) = ℎ(𝑥ො(𝑡௞ି )) (19)

As well as the state covariance matrix: 𝑃(𝑡௞ି ) = 𝑃(𝑡௞ିଵା ) + න (𝑍(𝜏)𝑃(𝜏) + 𝑃(𝜏)𝑍்(𝜏) + 𝑄(𝜏))𝑑𝜏௧ೖష௧ೖషభశ  (20)

The EKF formulation uses linearized models of the nonlinear system for state estimation. Hence, 
the system is linearized at each time 𝑡௞ to obtain local state–space matrices: 𝑍(𝑡) = ൬𝜕𝑓𝜕𝑥൰௫ො(௧),௨(௧),௣ (21)

𝐶(𝑡௞) = ൬𝜕ℎ𝜕𝑥൰௫ො(௧ೖష) (22)

In the second step (update step), conducted as soon as a new measurement 𝑦(𝑡௞) becomes 
available, the Kalman filter gain 𝐾(𝑡௞) is calculated and used to update the a priori state estimates 
and covariance matrix to the a posteriori values: 𝐾(𝑡௞) = 𝑃(𝑡௞ି )𝐶(𝑡௞)்൫𝐶(𝑡௞)𝑃(𝑡௞ି )𝐶(𝑡௞)் + 𝑅(𝑡௞)൯ିଵ (23)

𝑥ො(𝑡௞ା) = 𝑥ො(𝑡௞ି ) + 𝐾(𝑡௞) ቀ𝑦(𝑡௞) − ℎ൫𝑥ො(𝑡௞ି )൯ቁ (24)𝑃(𝑡௞ା) = ൫𝐼 − 𝐾(𝑡௞)𝐶(𝑡௞)൯𝑃(𝑡௞ି ) (25)

The aim of the procedure is to obtain improved state estimates 𝑥ො(𝑡௞ା), characterized by small 
values of the covariance matrix P(𝑡௞ା). In order to achieve this for a specific application, the design 
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parameters of the EKF, such as the measurement noise covariance 𝑅, the initial state estimates 𝑥ො(𝑡଴ା) 
the corresponding covariance 𝑃଴, and the process noise covariance 𝑄 need to be carefully selected. 
To initialize the filter, a consistent pair of 𝑥ො଴ and 𝑃଴ needs to be selected to enable a fast convergence 
to the correct estimate [36]. 

In this work, the in-built KF toolbox of MATLAB was used. The discretized lumped kinetic 
model served as state transition function 𝑓( ), and the Raman-PLS results were used as physical 
measurements of the outlet concentration of the column. The corresponding variance of the rotation 
specific RMSEP multiplied by the identity matrix was used as the error covariance matrix 𝑅. The 
time-varying process noise covariance 𝑄 was computed on-line at any given time 𝑡௞ using a Monte 
Carlo approach, as reported in [33]. This takes the knowledge from the LKM parameter identification 
step into account by using the nominal parameter values and its parameter covariance matrix, 
resulting in 𝑄ெ஼ . Additionally, a model mismatch factor 𝑘ொ  [34] was used and tuned for each 
rotation. 𝑄 = 𝑄ெ஼ 𝑘ொ (26)

For a certain rotation, as shown in Table 2, the EKF approach was separately applied to all n BT 
curves of the calibration set. For each BT curve, 𝑘ொ was optimized (𝑘ொ್೐ೞ೟௡ ) based on the respective 
prediction error (𝑅𝑀𝑆𝐸𝑃ா௄ி೙). Subsequently, the received 𝑘ொ್೐ೞ೟௡  of all n BT curves of the calibration 
set were averaged, resulting in the rotational specific model mismatch factor (𝑘ொோ௢௧ ௜). The EKF was 
applied to the external BT curve, which was included in neither the Raman-PLS calibration nor the 
EKF tuning, to externally validate its effect. In a perturbation study, 200 simulations of the 
mechanistic model were ran with random process input values (𝑃𝐼ோௌ) for bed porosity 𝜀, the feed 
concentration 𝑐௜௡ as well as the volumetric flow rate 𝑄௙௟௢௪ sampled from a Gaussian probability 
distribution with a standard deviation of 5% to compare the robustness of the LKM and EKF.  

3. Results and Discussion 

3.1. Partial Least Squares Raman Modeling 

The acquired Raman spectra of the BT curves are comparable with the spectra described in [10] 
and are shown in Figure S1A. Due to the high impurity content in the harvest, the spectral features 
of different species (i.e., target mAb, media components, HCPs, DNA and HMW) overlapped, 
leading to broad bands and no distinct peak profiles within single spectra. Hence, only small 
variations between different spectra could be observed, and a suitable data pretreatment and 
multivariate model calibration were needed to extract useful information, such as the target protein 
titer. This had an obvious influence on the spectral appearance shown in Figure S1B. The variable 
importance in projection (VIP), shown in Figure S1C, indicates the regions between 2300 and 2700 
cm−1 as well as between 2900 and 3000 cm−1 as very important. This is in line with the fact that proteins 
exhibit several Raman bands in the region between 2500–4000 cm−1 [37]. Results of the PLS modeling 
for different rotations are shown in Table 3. Though the number of observations in the calibration set 
varied slightly between rotations, the optimal number of selected latent variables (LVs) was 
consistent among rotations and was either 11 or 12. The RMSECV was constant around 0.040 mg/mL 
on a calibration range from 0 to 0.42 mg/mL and was thus almost independent of the rotation scheme. 
However, variations in the RMSEP between 0.045 and 0.072 mg/mL as well as varying values of R2 
between 0.70 and 0.86 indicated slight differences between the BT runs. 

Table 3. Data set information and PLS modeling results of all rotations. 

 Calibr.set 
(# Obs) 

Pred.set 
(# Obs) 

Opt. num. 
of LV 

RMSECV 
(mg/mL) 

RMSEP 
(mg/mL) 

R2 

ROT1 1755 398 12 0.042 0.051 0.80 
ROT2 1711 442 12 0.042 0.047 0.86 
ROT3 1656 497 12 0.040 0.061 0.78 
ROT4 1906 247 12 0.041 0.072 0.70 
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ROT5 1918 235 11 0.042 0.045 0.84 
ROT6 1819 334 12 0.041 0.055 0.82 

 
The prediction of titer as a function of time for ROT1 is exemplarily shown in Figure 3. The red 

dots represent the off-line HPLC titer measurements for each fraction, whereas the continuous blue 
line represents the Raman-PLS-based prediction. It can be seen that the trend of the BT curve was 
generally well captured by Raman. However, the predictions were clearly scattered around the 
reference values. It is worth mentioning that increasing the number of scans per Raman measurement 
could improve the signal-to-noise ratio. However, this would extend the measurement duration, 
which is critical in most of the downstream processing applications. 

 

Figure 3. Time evolutions of Raman-PLS predictions (blue) for rotation 1 (ROT1) compared to off-line 
HPLC measurements (red). 

As for other rotations, shown in Figure 4, one can observe a clear offset of the predictions at the 
initial phase (i.e., before breakthrough started). In spite of an optimized laser exposure time, signal 
enhancement through the flow cell and spectral pretreatment methods, the signal-to-noise ratio was 
rather small and probably close to the detection limit. Though the obtained averaged RMSEP of 0.05 
mg/mL and averaged R2 of 0.8 is remarkable, one must probably conclude that Raman-PLS is 
insufficient for a precise monitoring of a breakthrough at such small concentrations. 
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Figure 4. Titer predictions of Raman-PLS (grey), the LKM (green), the EKF model with tuned 𝑘ொ 
(black) and HPLC off-line measurements (red) for rotations 1–6 (A–F) 

3.2. Mechanistic Modeling 

As a next step, an additional set of nine BT runs (BT#7–15) were used to fit the LKM parameters 
by minimizing the RMSE with the measured concentration values in the breakthrough. The 
corresponding estimated values (along with 95% confidence intervals) are reported in Table 4 and 
contain the Henry coefficient 𝐻, saturation capacity 𝑞௦௔௧ , the maximum mass transfer coefficient 𝑘௠௠௔௫, maximum hindrance coefficient 𝑆ଵ, and the nonlinearity increase of hindrance coefficient 𝑆ଶ. 

Table 4. Fitting parameter of the lumped kinetic model (LKM) optimized on breakthrough (BT)#7–
BT#15 (𝜀 = 0.36; 𝐴 = 17.15; 𝑑௣ = 85 µm) 𝑯(-) 𝒒𝒔𝒂𝒕(mg/mL) 𝒌𝒎𝒎𝒂𝒙(min−1) 𝑺𝟏(-) 𝑺𝟐(-) 

449.3 ± 31.5 109.7 ± 4.7 8.37E - 04 ± 0.94E - 04  0.36 ± 0.24 1.76 ± 1.38 
 

The corresponding model predictions of the breakthrough together with the fitting data sets are 
shown in Figure 5. The red dots represent the HPLC titer measurements, whereas the continuous 
blue lines represent the predictions of the LKM. Additionally, the RMSE in fitting (RMSEF) is 
indicated. 
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Figure 5. Internal mechanistic model (LKM) predictions of titer for BT#7–15 (blue) and corresponding 
HPLC off-line measurements (red). 

It can be seen that the shapes of BT curves vary in steepness, inflection point and saturation level. 
This is due to the differences in feed concentration and loading flow rate. At complete column 
saturation, the asymptotic value of the outlet concentration in the BT tended to the feed concentration. 
Moreover, higher feed concentrations generally produced earlier breakthroughs. Similarly, larger 
flow rates not only reduced the residence time in the column but also increased the convection rate 
along the column with respect to the diffusion rate to the resin, thus producing faster and flatter BT 
curves. In most cases, the LKM was able to closely predict the trend of the reference measurements. 
The worst results were obtained in the case of BT#10–12, where RMSEF ranged from 0.016 to 0.026 
mg/mL. For such runs, which correspond to the smaller feed concentrations, the error was mostly 
due to a shift of the predicted BT time with respect to the measured one. In spite of this, it appears 
that the slope of the predicted BT curves in the inflection point was very similar to the measured one. 
This result could be explained by an underestimation of the effective column capacity. However, it is 
difficult to identify the exact origin of this disagreement. 

The model ability of predicting new runs was tested by applying the LKM to the first six BT 
curves (BT#1–6), which were not included in the fitting process of the LKM. The results of the 
predictions are shown in Figure 6, where the red dots represent HPLC measurements and the blue 
line the LKM predictions. 
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Figure 6. Mechanistic model (LKM) predictions of titer for BT# 1–6 with parameter values fitted on BT# 7–
15 (blue) compared to HPLC off-line measurements (red) 

It can be observed that the model was able to predict the shape of the BT curves and, in 
particular, the steepness, indicating a good estimation of the mass transport properties. Additionally, 
the saturation level seemed to be well predicted, since there is no significant mismatch between 
estimated and measured times for reaching saturation conditions. However, BT#1–4 showed a 
significant offset, leading to RMSEP values up to 0.039 mg/mL. This may be related to the fact that 
the model might not have precisely captured the adsorption mechanism at lower feed concentrations, 
which could also explain the offsets in Figure 5. Moreover, one can also observe a different behavior 
in the curves at early BT times. The measured BT curves seem sharper than what was predicted by 
the model. Again, this might be due to unaccounted differences in the feed composition, resin aging, 
column packing quality or a more complex behavior of the system than described by the model. Of 
course, more complex models could be introduced to improve the description of, particularly, the 
mass transfer process [31,38]. On the contrary, the good ability of the model to predict the shape of 
the BT curve well in spite of its generality and simplicity makes it a good candidate for its application 
in the frame of the EKF, where such inaccuracies could be corrected in real-time by experimental 
measurements. 

3.3. Extended Kalman Filter Tuning 

Before applying the EKF concept, the filter design parameters 𝑅, 𝑥ො(𝑡଴ା), 𝑄 and 𝑘ொ needed to be 
carefully selected and tuned. For this, the variance of the Raman-PLS model (𝑅𝑀𝑆𝐸𝐶𝑉௉௅ௌଶ) was used 
as the measurement noise 𝑅, while the process noise 𝑄 was computed on-line at any given 𝑡௞, as 
described in Section 2.6. Since mismatches between the LKM predictions and external data set were 
expected, a rotation specific mismatch factor 𝑘ொ was applied. In the following, the determination of 𝑘ொ for ROT1 (𝑘ொோ௢௧ ଵ) is described: The EKF was applied for each BT curve of the calibration set of 
ROT1, i.e., BT#2–6, using the Raman-PLS calibrated for ROT1, LKM predicting the distinct BT curve 
and varying 𝑘ொ in a range between 10 and 1 × 106. The resulting 𝑅𝑀𝑆𝐸𝑃ா௄ி as a function of 𝑘ொ for 
each BT curve of the training set is shown in Figure 7.  
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Figure 7. Error in the EKF prediction of the monoclonal antibody (mAb) concentration as a function 
of the model mismatch factor 𝑘ொ for each of the BT curves of the calibration set of ROT1 

It can be seen that a minimal 𝑅𝑀𝑆𝐸𝑃ா௄ி could be obtained by selecting 𝑘ொ around 1 × 104 for 
all BT curves. Note that 𝑘ொ can be regarded as a measure of the confidence in Raman measurements 
versus the confidence in the mechanistic model. The higher 𝑘ொ, the more the EKF relied on Raman-
PLS, while for small 𝑘ொ, the LKM was considered as more trustworthy. It is also important to note 
that the absolute value of 𝑘ொ depended strongly on the absolute values of the estimation of both 
measurement and process noise. The presence of the minimum in the middle of the investigated 𝑘ொ 
range indicates the beneficial effect of considering both types of information in producing the 
estimates, thus indicating that this approach is better than using only the LKM (small 𝑘ொ) or the 
Raman-PLS model (large 𝑘ொ). It can be assumed that by further increasing 𝑘ொ above 1 × 106, even 
higher RMSEP could be obtained, since the filter would singly rely on Raman-PLS. In contrast, when 𝑘ொ tended towards 10, it singly relied on the LKM. This procedure was repeated for all rotations, and 
the resulting rotation-specific model mismatch factors (𝑘ொோ௢௧ ௜) are summarized in Table 5. It can be 
seen that the values of 𝑘ொோ௢௧ ௜  were similar for all rotations, thus indicating a robust confidence 
balancing between Raman-PLS and LKM predictions. 

Table 5. Rotational specific model mismatch factor 𝑘𝑄𝑅𝑜𝑡 𝒊 for all rotations 

 ROT1 ROT2 ROT3 ROT4 ROT5 ROT6 𝑘ொோ௢௧ 𝒊 1.35E + 04 1.92E + 04 1.92E + 04 2.15E + 04 1.92E + 04 1.07E + 04 

3.4. Extended Kalman Filter Validation 

To externally validate the EKF, the rotational approach explained in Section 2.6 and Table 2, was 
applied for all rotations. In Figure 4 A–F, the final results of Raman-PLS, the LKM and EKF for ROT1-
6 are shown, respectively. 

The red dots represent the off-line HPLC measurements; the continuous grey and green lines 
represent the Raman-PLS and LKM predictions, respectively; the black line represents the results of 
the EKF. As mentioned above, the Raman-PLS predictions showed significant noise, although they 
captured the trend of the actual BT curve. A significant prediction offset can be seen in ranges at the 
beginning of the breakthrough. Here, the Raman-PLS prediction was rather untrustworthy, which 
might be explained through difficulties in training the model on samples which did not contain the 
target molecule or contained a very small amount of it, close to the limit of detection. On the other 
hand, the LKM was able to smoothly predict the shape of the BT curve, although it showed a constant 
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and significant error. As also noted before, the LKM tended to anticipate the onset of breakthrough, 
which appeared sharper in the experiments. The line of the EKF seemed, as expected, to be a 
combination of the curves above, with the beneficial effect of eliminating the mechanistic model 
offsets on one hand and smoothening the high noise of the Raman predictions on the other. The EKF 
was particularly reliable in the region of the incipient breakthrough, where its predictions relied 
mostly on the LKM results, thus eliminating the negative concentration values predicted by the 
Raman-PLS. On the other hand, at concentration values of 0.1 mg/mL, the offset with respect to the 
off-line measurements was eliminated and simultaneously reduced the noise. This same pattern 
exists in all other rotations, as seen by the data summarized in Table 6, where the errors in terms of 
RMSEP for Raman-PLS, LKM and EKF predictions are compared for all considered rotations.  

Table 6. Prediction errors of the Raman-PLS, the LKM and EKF model for all rotations. 

 
Raman-PLS RMSEP  

(mg/mL) 
LKM RMSEP  

(mg/mL) 
EKF RMSEP 

(mg/mL) 
ROT1 0.051 0.038 0.019 
ROT2 0.047 0.023 0.021 
ROT3 0.061 0.030 0.035 
ROT4 0.072 0.030 0.024 
ROT5 0.045 0.037 0.028 
ROT6 0.055 0.045 0.029 
Mean: 0.055 0.034 0.026 

 
As can be observed in Table 6, the RMSEPPLS and RMSEPLKM could be reduced by applying the 

EKF. The only exception to this trend was ROT3, where the LKM was slightly better. In this case, both 
the Raman-PLS and the LKM both largely anticipated the BT time. Nevertheless, the advantage of 
using an EKF estimator appears very clear from this table, especially in significantly reducing the 
error of those rotations exhibiting a large Raman-PLS model error. 

3.4. Extended Kalman Filter Perturbation 

One of the major drawbacks of the LKM approach is its sensitivity to the input process 
parameters. This is illustrated in Figure 8 with reference to ROT1, where the effect of a 5% Gaussian 
distributed perturbation in feed concentration and flow rate, as well as bed porosity on the 
predictions of the LKM and the EKF, is compared for 200 simulations. The selected perturbed process 
parameters are representative of the variables that are actually subject to perturbations in real 
applications. 
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Figure 8. Effect of 5% Gaussian distributed perturbations in feed concentration and flow rate, as well 
as bed porosity on the predictions of the LKM (mean = dark red; standard deviation interval = light 
red) and the EKF (mean = dark blue; standard deviation interval = light blue) of ROT1 in 200 
simulations. 

The solid line indicates the mean of the predictions of all 200 simulations using the LKM (red) 
and EKF (blue), whereas the shaded areas show the corresponding 68% confidence intervals, 
respectively. While the red shaded area is broad and clearly deviates from the reference off-line HPLC 
measurements, the blue shaded area is rather narrow and distributed around the reference values. It 
can be concluded that the LKM was strongly affected by perturbations of its input parameters, while 
this sensitivity was reduced for the EKF predictions due to the influence of the Raman-based 
estimates. 

4. Conclusions 

In this work, an EKF estimator of the monoclonal antibody concentration at the outlet of a 
chromatographic column was developed. Its predictions considerably improved with respect to the 
use of the single Raman-PLS or the LKM. This was demonstrated for the case of a low titer harvest 
(mAb conc. < 0.42 mg/mL), which is typical for perfusion bioreactors. In general, the PLS-based 
predictive Raman models were able to capture the shape of the breakthrough curves, but the obtained 
results were too noisy for practical applications—for example, in the direction of process control. On 
the other hand, the mechanistic LKM, properly tuned on an external data set, was able to capture the 
qualitative shape of the breakthrough curves, but it exhibited deviations that were too large with 
respect to the off-line reference measurements. The proper application of the EKF requires the 
preliminary estimation of the parameter 𝑘ொ, which is responsible for weighting the contribution of 
the Raman-PLS and the LKM predictions in the final estimate of the filter. By applying the tuned EKF 
to an external data set, its superiority as compared to Raman-PLS and LKM became obvious. While 
the LKM predictions served as a solid backbone for the EKF, the Raman-PLS real-time information 
updated the state estimates and significantly reduced the LKM offset. Though the LKM showed, in 
some cases, comparable prediction errors, the perturbation analysis showed the additional benefit of 
EKF through the increased robustness with respect to the model input parameter values. It is worth 
noting that the RMSE-EKF of 0.026 mg/mL on a range of 0–0.42 mg/mL is very close to the analytical 
standard deviation of the reference off-line HPLC measurements (0.01 mg/mL). However, it needs to 
be mentioned that the low detection limit of Raman spectroscopy becomes critical at very low protein 
concentrations. Here, the LKM could of course be of help, and the EKF predictions should rely mostly 
on these values. To fully benefit from the LKM, it should be specifically tuned in the region of low 
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concentrations, which is at the incipient breakthrough. Nevertheless, the EKF performance reported 
in this work is already sufficient for the implementation in the frame of the control of a capture 
chromatographic step, where the range of interest is around 70% of the breakthrough value [39]. It 
can be concluded that the EKF is a powerful tool for smart sensors and should be considered more 
often for monitoring and control within bioprocesses. In the future, this approach might be extended 
to other applications where deterministic knowledge is available, like in the monitoring of protein 
aggregation [40], crystallization [41] or in-line buffer preparation. At the same time, research activities 
on the different components of a Raman analyzer towards increased signal intensities should be 
continued to further increase the prediction accuracy and reduce the measurement duration. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: Acquired 
Raman spectra of the calibration set of ROT1 
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