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Abstract: Actual manufacturing enterprises usually solve the production blockage problem by 
increasing the public buffer. However, the increase of the public buffer makes the flexible flow shop 
scheduling rather challenging. In order to solve the flexible flow shop scheduling problem with 
public buffer (FFSP–PB), this study proposes a novel method combining the simulated annealing 
algorithm-based Hopfield neural network algorithm (SAA–HNN) and local scheduling rules. The 
SAA–HNN algorithm is used as the global optimization method, and constructs the energy function 
of FFSP–PB to apply its asymptotically stable characteristic. Due to the limitations, such as small 
search range and high probability of falling into local extremum, this algorithm introduces the 
simulated annealing algorithm idea such that the algorithm is able to accept poor fitness solution 
and further expand its search scope during asymptotic convergence. In the process of local 
scheduling, considering the transferring time of workpieces moving into and out of public buffer 
and the manufacturing state of workpieces in the production process, this study designed serval 
local scheduling rules to control the moving process of the workpieces between the public buffer 
and the limited buffer between the stages. These local scheduling rules can also be used to reduce 
the production blockage and improve the efficiency of the workpiece transfer. Evaluated by the 
groups of simulation schemes with the actual production data of one bus manufacturing enterprise, 
the proposed method outperforms other methods in terms of searching efficiency and optimization 
target. 

Keywords: flexible flow shop; limited buffer; public buffer; Hopfield neural network; local 
scheduling; simulated annealing algorithm 

 

1. Introduction 

With rapid development of information, advanced manufacturing, and artificial intelligence 
technology, Germany proposed “Industry 4.0” national strategy, which promotes progress in 
manufacturing industry and provides producing solution schemes for many complex industrial 
systems [1–3]. In the production of steel casting, assembly of heavy machinery, and other industries, 
a scheduling problem with non-deterministic polynomial hard (NP-hard) attributes [4–8], such as the 
flexible flow shop scheduling problem with the characteristics of customized production and parallel 
processing, was experienced [9,10]. During the actual production of the large equipment 
manufacturing workshop, only the buffer with limited capacity can be set in the workshop, owing to 
physical factors such as the workshop space and storage equipment capacity. When the required 
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capacity of the production task fluctuates in the workshop or the takt time between stages is 
inconsistent, the buffer capacity might reach the upper limit. Consequently, the completed 
workpieces that are ready to enter the limited buffer cannot enter the buffer for temporary storage; 
they are stagnant on their processing workstation while waiting for available space in the limited 
buffer, which effectuates production blockage, thereby delaying the production process [11–14]. In 
the actual production of a large equipment manufacturer, it is uncommon to configure the limited 
buffer with redundant capacity or to temporarily adjust the capacity of limited buffer to avoid the 
production blockage. The manufacturer often sets up the public buffer in the workshop to 
dynamically receive workpieces that cannot enter the limited buffer between the stages. This is 
equivalent to dynamically expanding the capacity of the limited buffer, which can reduce the 
production blockage and ensure fluent production process. In the actual workshop, the public buffer 
is often located at a designated position not adjacent to the workstation due to physical factors such 
as production space. Thus, the transit time between the workstation and public buffer cannot be 
neglected. It creates the transfer scheduling problem of the workpiece between limited buffer and 
public buffer, which further increases the uncertainty of the scheduling result and the difficulty of 
resolving the scheduling problem [15]. Consequently, it is necessary to explore an effective 
scheduling method for the flexible flow shop scheduling problem with public buffer (FFSP–PB) due 
to its role in reducing the production blockage and improving the utilization of production resources 
[16,17]. Therefore, it is of great theoretical and engineering value to solve this problem. 

The scheduling problem with the public buffer is derived from the limited buffer scheduling 
problem, which is closely related to actual engineering. The buffer between stages in the limited 
buffer scheduling problem is set to the upper limit of the capacity. Once the buffer capacity reaches 
the upper limit, the workpiece cannot enter this buffer [18]. Presently, the problem is systematically 
studied worldwide. Zhang et al. [19] proposed two rapidly generating heuristic algorithms with 
minimum makespan as the criterion. Rooeinfar et al. [20] proposed a novel optimization model and 
two types of solutions to resolve the uncertain flexible flow shop scheduling problem with limited 
buffers. Jiang et al. [21] developed an effective multi-objective optimization algorithm in the 
framework of a multi-objective evolutionary algorithm based on decomposition to solve the hybrid 
flow shop scheduling problem with limited buffer according to energy orientation. Zeng et al. [22] 
set forth a two-stage algorithm based on neighborhood search to resolve this issue in accordance with 
the job shop scheduling problem with limited output buffers. 

Investigators have carried out relevant research on the production blockage caused by limited 
buffer, while studying the scheduling problem with limited buffers. Since the production blockage 
decreases the production efficiency of enterprises and delays the production process, solving the 
problem of production blockage of limited buffer in flexible flow shop has been under intensive focus 
in recent years. Ribas et al. [23] proposed an iterative greedy algorithm to solve the problem of 
parallel blocking flow shop and distributed blocking flow shop by minimizing the total delay time of 
the workpiece. Chang [24] established a multi-state manufacturing system (MMS) model to study the 
reliability of parallel production line manufacturing system with limited-capacity buffer stations to 
avoiding blockage and starvation. Johri [25] studied the blockage and starvation of limited buffer by 
linear programming, thereby proposing a method by increasing the selectivity of buffer space to 
resolve the problem of capacity loss caused by the small capacity buffer. 

The above literature demonstrates that the current research on the limited buffer scheduling 
problem is mainly focused on the various types of workshops, with emphasis on the improvement 
of global optimization algorithm. However, only a few investigators have addressed the issue of 
solving the production blockage led by limited buffer stresses on adjusting the production plan and 
buffer space via alleviating the production blockage by setting the public buffer in the workshop. 
However, they have not explored the impact of transit time on the production process caused by the 
movement of the workpiece between public buffer and limited buffer among the stages. Herein, the 
flexible flow shop scheduling problem with public buffer was more complicated than the generally 
limited buffer scheduling problem. It considered not only the restricted capacity of limited buffer but 
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also the transfer scheduling problem of workpieces among workstation, limited buffer, and public 
buffer. 

As the research problems become more complicated, it is necessary to explore a global 
optimization algorithm that can effectively solve these complex problems. The majority of the swarm 
intelligence algorithms are based on a random search with slow optimization rate, which renders 
finding the global optimal value challenging. The Hopfield neural network (HNN) algorithm based 
on non-linear control theory has great advantages in global optimization speed and avoids the 
shortcomings of the random search of swarm intelligence algorithm [26]. However, the issues pertain 
small optimization range, easy to fall into, and difficult to break out of the local extremum. Therefore, 
the idea of a simulated annealing algorithm is introduced to HNN algorithm. During each generation 
training, neuron input adds random disturbance and Metropolis acceptance criteria controls whether 
the energy function value which is generated by disturbance input in the next generation of 
optimization. Thus, the HNN algorithm allows to accept the solution with poor fitness during 
asymptotic convergence, further changing the optimizing direction of HNN algorithm, expanding its 
optimizing range and enhancing the ability to jump out of local extremum. By comparison with 
analysis of groups of simulation schemes, combining the methods of the simulated annealing 
algorithm-based Hopfield neural network (SAA–HNN) algorithm and local scheduling rules to 
control the moving process of workpieces between public buffer and the limited buffer can be verified 
for the efficiency of solving the FFSP–PB. The SAA–HNN algorithm is applied to solve the flexible 
flow shop scheduling problem with public buffer by extending the application field of neural 
network algorithm. 

With the rise of Industry 4.0, customized production mode has become more popular among 
manufacturing enterprises, and the varieties of products that cater to customers’ needs have 
diversified. It is difficult for enterprises to control the takt, which leads to production blockage. This 
increases the importance of public buffer setting on the production line for relieving the production 
blockage and stabilizing the operation of the whole production line. Because intelligent 
transportation equipment such as automated guided vehicle (AGV) is widely used in the actual 
production workshop, it is more convenient for work in progress (WIP) to transport back and forth 
between the public buffer and the limited buffer, which plays the role of the public buffer. Therefore, 
the relevant scheduling optimization technology for automatic production lines with public buffer 
has an extensive application prospect, which would improve the intellectualization of the 
manufacturing automation technology. 

2. FFSP–PB Mathematical Model 

2.1. Problem Description 

As shown in Figure 1, the FFSP–PB could be described as follows: m  stages in the workshop 
and the processing queues of n  workpieces need to be processed in order with m  processing 
stages. At least one of the m  stages consists of two or more parallel workstations, and the processing 
times of the workpiece are the same on different parallel workstations at one stage. A buffer with 
limited capacity is set up between stages; if the limited buffer capacity between stages reaches the 
upper limit, production blockage is likely to occur. In order to alleviate production blockage, a public 
buffer is set up in the production workshop, and this area provides services for all stages. If the 
capacity of the limited buffer between the stages reaches the upper limit, the workpiece can be moved 
into the public buffer for temporary storage. All workpieces are processed online from the first stage, 
completing all stages sequentially. If the capacity of the limited buffer between stages reaches the 
upper limit, the newly completed workpiece is transferred to the public buffer. Under certain 
conditions, the workpiece during transfer can also be returned to the limited buffer. If the workpiece 
in the limited buffer is moved to the workstation of the next stage for processing, the limited buffer 
will have an available space. Subsequently, the workpiece in the public buffer that should have 
accessed the limited buffer is transferred back to the limited buffer. The transit time between limited 
buffer and public buffer cannot be ignored. Under preconditions of the online sequence of the 
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workpiece, the standard processing time for transferring the workpiece, the standard processing time 
of the workpiece at each stage and the online sequence is optimized by global optimization method, 
and the movement of the workpiece among the workstation, the limited buffer, and the public buffer 
is controlled by the local scheduling rules. Thus, the scheduling results of the processing 
workstations, the start time, and the completion time of all workpieces at each stage and the 
information of the transport process are obtained. 
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Figure 1. Mathematical model of flexible flow shop with limited buffer and public buffer. 

2.2. Parameters in the Model 

The parameters used in this study are as follows: 

n : Total number of workpieces to be processed; 
m: Total number of stages; 
iWp : Workpiece i , { }1,...,i n∈ ; 

jStage : Stage j , { }1,...,j m∈ ; 

jM : Total number of workstations in stage jStage , { }1,...,j m∈ ; 

,j lWS : Workstation l  of stage jStage , { }1,...,j m∈ , { }1,..., jl M∈ ; 

jLBu : Limited buffer of stage jStage , { }2,...,j m∈ ; 

jKl : Maximum buffer capacity in the limited buffer jLBu  of stage jStage , { }1,...,j m∈ ; 

,j kBl : Buffer position k  of limited buffer jLBu , { }2,...,j m∈ , { }1,..., jk Kl∈ ; 

( )jWAl t : At the t  time, the workpieces in the limited buffer jLBu ; 
PBu : Public buffer; 
Kp : Maximum buffer capacity in the public buffer PBu , { }1 min jKp n Kl≤ ≤ − ; 

,i jTs : The start time of the workpiece iWp  at stage jStage , { }1,...,j m∈ ; 

,i jTc : The completion time of the workpiece iWp  at stage jStage , { }1,...,j m∈ ; 

,i jTb : The standard processing time of the workpiece iWp  at stage jStage , { }1,...,j m∈ ; 

,i jTi : The entry time of the workpiece iWp  into stage jStage , { }1,...,j m∈ ; 

,i jTo : The departure time of the workpiece iWp  out of stage jStage , { }1,...,j m∈ ; 

,i jTli : The entry time of the workpiece iWp  into limited buffer jLBu , { }2,...,j m∈ ; 

,i jTlo : The departure time of the workpiece iWp  out of limited buffer jLBu , { }2,...,j m∈ ; 

,i jTpi : The entry time of the workpiece iWp  into public buffer PBu  at stage jStage , { }2,...,j m∈ ; 

,i jTpo : The departure time of the workpiece iWp   out of public buffer PBu   at stage jStage , 

{ }2,...,j m∈ ; 
Tbt : The standard processing time for transferring the workpiece; 

iRp : The workpiece iWp  is on the way from the workstation to the public buffer; 

iRl : The workpiece iWp  is on the way from the public buffer to the limited buffer; 

iRb : The workpiece iWp  is on the way back to the limited buffer; 
Cfp : The time for electric flat carriage to finish the current task and return to the public buffer; 
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, ( )i jTtw t : At the t  time, the transit time of the workpiece iWp  from the workstation of stage jStage  
to the public buffer. 

2.3. Constraints 

The variables used in this study and the constraints that exist between variables are as follows: 

2.3.1. Assumptions 
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2.3.2. General Constraint of Flexible Flow Shops Scheduling 

, ,
1

1
jM

i j l
l
At

=

= , { }1,...,i n∈ , { }1,...,j m∈  (6) 

, , ,i j i j i jTc Ts Tb= + , { }1,...,i n∈ , { }1,...,j m∈  (7) 

, 1 ,i j i jTc Ts− ≤ , { }1,...,i n∈ , { }2, ,j m∈   (8) 

Equation (6) indicates that the constraint that the workpiece iWp  can only be processed at one 
workstation of the stage jStage  during the processing. Equation (7) indicates the constraints that the 
completion time of the workpiece iWp  in the stage jStage  is equal to the sum of its start time and 
standard processing time in the stage jStage , which guarantees close machining between the 
workpieces. Equation (8) indicates the constraint that the workpiece iWp  needs to complete the 
processing task of the current stage before the processing task of the next stage. This constraint limits 
the processing sequence of each workpiece in all stages. Equations (6)–(8) ensure that the whole 
processing is in accordance with the processing characteristics of the flexible flow shop. 

2.3.3. Constraints of the Limited Buffers 

, , 1i j i jTli Tc −≥ , { }2,...,j m∈  (9) 
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Equation (9) indicates the constraint that time ,i jTli  for the workpiece to enter the limited buffer 

jLBu  cannot be less than the completion time , 1i jTc −  of this workpiece processed at the previous 
stage -1jStage . 

( ) ( ){ },= | 1j i i jWAl t J OAl t =  (10) 

Equation (10) indicates the constraint and the workpieces in the limited buffer jLBu  at the t  
time. 

( )( )j jcard WAl t Kl≤  (11) 

Equation (11) indicates the constraint that at any time, the total number of workpieces in the 
collection jWAl  waiting to be processed cannot be greater than the maximum buffer capacity jKl  
in the limited buffer. This constraint guarantees that the characteristics of the limited buffer 
correspond to the actual processing. 

, ,i j i jTlo Tli≥ , { }2,...,j m∈  (12) 

Equation (12) denotes that time for the workpiece to leave the limited buffer jLBu  cannot be 
less than the time for the workpiece to enter the limited buffer jLBu . 

2.3.4. Constraints of the Public Buffer 

, ,i j i jTpo Tpi≥ , { }2,3,...,j m∈  (13) 

Equation (13) indicates the time for the workpiece in the public buffer PBu  that should have 
entered the limited buffer jLBu  to leave the public buffer PBu  should not be less than the time for 
it to enter the public buffer PBu . This constraint ensures that the moving in and out of the public 
buffer conforms to the actual processing. 

( ) ( ){ },= | 1j i i jWAp t Wp OAp t =  (14) 

Equation (14) represents the collection of all workpieces contained in the public buffer PBu  at 
time t . 

( )( )jcard WAp t Kp≤  (15) 

Equation (15) indicates the constraint that at any time, the sum of workpieces contained in the 
to-be-processed collection jWAp  is less than or equal to the maximum buffer capacity Kp  of the 
public buffer. This constraint guarantees that the characteristics of the public buffer conform to the 
actual processing. 

, ,( ) ( )i j i jTtw t t To= −  (16) 

Equation (16) shows that at time , the time for the workpiece iWp  to be transferred from the 
workstation of the stage jStage  to the public buffer is equal to the difference between the time for 
the workpiece iWp  to leave the workstation of stage jStage  at time t . 

, ( )i jTtw t Tbt≤  (17) 

Equation (17) indicates the constraint that at time t , the time for the workpiece iWp  to be 
transferred from the workstation of the stage jStage  to the public buffer should be less than the 
standard processing time for transferring the workpiece. 
  

t
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2.3.5. Other Constraints 

(1) Continuous processing constraint: If the workpiece has started the processing task of a certain 
stage, it cannot be interrupted until the task is completed. 
(2) Workstation uniqueness constraint: A workstation can only process one workpiece 
simultaneously. 
(3) Workstation availability constraint: All workstations are available at the scheduling time. 
(4) Time simplification constraint: Irrespective of the transit time of the workpiece between the 
limited buffer and workstation, only the processing time of the workpiece at each stage and the transit 
time of the workpiece on the electric flat carriage are considered. 

3. Research on FFSP–PB Local Scheduling Rules 

During production, when the limited buffer capacity of the current stage reaches the upper limit, 
the finished workpiece of the previous stage is directly transferred to the public buffer. The available 
workstation at this stage allows the processing of the workpiece in limited buffer at the current stage. 
Strikingly, there is available space in the limited buffer at this stage. If the workpiece is directly 
transferred from the public buffer to the limited buffer of the current stage, the available space would 
not be occupied by the finished workpiece of the previous stage during the period when the 
workpiece is transported back to the limited buffer of the current stage; otherwise, the workpiece 
transferred from the public buffer will collide with the completed workpiece of the previous stage 
while entering the available space. In order to prevent this conflict and as long as the workpiece in 
the public buffer starts to be transported to the available space in the limited buffer of the current 
stage, this space cannot be occupied, which might block the finished workpiece of the previous stage 
at its processing workstation. According to the above analysis, after adding the public buffer to the 
workshop, if the corresponding local scheduling rules are not established, the production blockage 
and completion time of gross workpieces cannot be reduced effectively. In order to play the role of 
public buffer and further alleviate the production blockage, the reentrant rules of the electric flat 
carriage and the workpiece transfer rules in the public buffer are designed. These local heuristics 
rules can control the transit of the workpiece among limited buffer, public buffer, and workstation. 
These rules exert the role of public buffer to reduce the production blockage. 

3.1. Reentrant Rules of Electric Flat Carriage 

At time t , if there is available space in the limited buffer +1jLBu  and workpieces that have 
completed the processing task of stage jStage  and transferred to public buffer PBu , the already-
spent transit time , ( )i jTtw t  of the workpiece in transit will be compared to the estimated minimum 

completion time ( ) ( ) ( ){ }, , ,min 0 0i j i j i jTc t Ts t Tc t− − ≤ − >,  of all workpieces at the current stage jStage . 

If the estimated minimum completion time is longer than the already-spent transit time of the 
workpiece, the electric flat carriage will begin to turn back, transporting the workpiece back to the 
limited buffer +1jLBu  of the next stage +1jStage . 

At time t , if ( )( ), +1 +1i j jcard OAl t Kl<  & ( ) ( ) ( ) ( ){ }, 1 , , , ,( ) min 0 0i j i j i j i j i jOAt t Ttw t Tc t Ts t Tc t+ ⋅ < − − ≤ − >,  

& ( )_ 3Pan Car t =  & ( ), 1 0i jOAt t+ ≠ , the workpiece begins to be transported, and the state of electric 
flat carriage becomes ( )_ 4Pan Car t = . 

3.2. Workpiece Transfer Rules in Public Buffer 

At time t , there is available space in the limited buffer +1jLBu  and workpieces in the public 
buffer that should have entered the limited buffer +1jLBu . If the electric flat carriage is in the public 
buffer ( )_ 2Pan Car t = , the standard processing time for transferring the workpiece Tbt  will be 

compared to the estimated minimum completion time ( ) ( ) ( ){ }, , ,min 0 0i j i j i jTc t Ts t Tc t− − ≤ − >,  of all 
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workpieces at stage jStage . If the estimated minimum completion time is longer than the standard 
processing time for transferring the workpiece, the workpieces currently in the public buffer PBu  
that should have entered the limited buffer +1jLBu  are transported back to the limited buffer +1jLBu ; 
however, if the estimated minimum completion time is short, the available space in the limited buffer 

+1jLBu  will remain idle until the workpiece with the estimated minimum completion time at the 
current stage is accessed. 

If the electric flat carriage is not in the public buffer, i.e., ( )_ 2Pan Car t ≠ , the sum of the standard 
processing time for transferring the workpiece Tbt  and the time Cfp  for electric flat carriage to the 
public buffer after completing the current task will be compared to the estimated minimum 
completion time ( ) ( ) ( ){ }, , ,min 0 0i j i j i jTc t Ts t Tc t− − ≤ − >,  of all workpieces at stage jStage . If the 

estimated minimum completion time is longer than that described above, the workpieces currently 
in the public buffer PBu  that should have entered the limited buffer +1jLBu  are transported back to 
the limited buffer +1jLBu . If the estimated minimum completion time is shorter than that mentioned 
above, the available space in the limited buffer +1jLBu  will remain idle until the workpiece with the 
estimated minimum completion time at the current stage is processed and accessed. 

At time t , if ( )( ), +1 +1i j jcard OAl t Kl<  & ( ) ( ) ( ) ( ){ }, 1 , , ,min 0 0i j i j i j i jOAp t Tbt Tc t Ts t Tc t+ ⋅ < − − ≤ − >,  & 

( )_ 2Pan Car t =  & ( ), 1 0i jOAp t+ ≠ , the workpiece begins to be transported, and the state of electric flat 
carriage becomes ( )_ 4Pan Car t = . 

At time t , if ( )( ), +1 +1i j jcard OAl t Kl<  & ( ) ( ) ( ) ( ){ }, 1 , , ,min 0 0i j i j i j i jOAp t Tbt Cfp Tc t Ts t Tc t+ ⋅ + < − − ≤ − >,  

& ( )_ 2Pan Car t ≠  & ( ), 1 0i jOAp t+ ≠ , the workpiece begins to be transported, and the state of electric 
flat carriage becomes ( )_ 2Pan Car t =  after time Cfp . 

4. Local Scheduling Rules for Multi-Queue Limited Buffers 

In this study, HNN is primarily used for optimization. The energy function in the continuous 
HNN is monotonically decreasing, and the gradually decreasing process of the energy function is the 
process of neural network optimization. The algorithm employs this feature to solve the optimization 
problem and search for the optimal solution [27]. 

When the standard HNN algorithm solves the NP-hard problem, it establishes a non-linear 
correlation between the input and output of the network, since the activation function of the analog 
neurons in the neural network is a non-linear transfer function. Moreover, the output of the problem 
solution is a non-linear space, which might encompass multiple poles, renders the algorithm as an 
optimal local solution in the event of failure to obtain the optimal global solution. Also, the algorithm 
cannot break after falling into local extremum, which makes the overall evolutionary trend 
irreversible. Thus, the simulated annealing algorithm is introduced into the standard HNN algorithm 
to prevent its premature convergence, expand the search ability of the feasible solution, and improve 
the global optimization effect. 

4.1. HNN Algorithm 

4.1.1. Establishing the Permutation Matrix 

The permutation matrix is a bridge connecting the buffer dynamic capacity-increase problem in 
a flexible flow shop with public buffer and the improved HNN algorithm. This study applied the 
workpiece processing sequence in the first stage to construct the matrix. For example, the FFSP 
permutation matrix of the six workpieces to be processed is shown in Table 1. The permutation matrix 
in Table 2 indicates the processing sequence of the six workpieces { }2 1 5 3 4 6, ,Wp Wp Wp Wp Wp Wp, , , . 
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Table 1. FFSP permutation matrix of six workpieces. 

Workpiece 
Processing Sequence 

1 2 3 4 5 6 
1Wp  0 1 0 0 0 0 
2Wp  1 0 0 0 0 0 
3Wp  0 0 0 1 0 0 
4Wp  0 0 0 0 1 0 
5Wp  0 0 1 0 0 0 
6Wp  0 0 0 0 0 1 

4.1.2. Establishing the Energy Function 

As a major feedback of the network, the energy function can easily determine the stability of the 
system. 

(1) Energy function row constraint 

1

1
1 1 1

=0
2

n n n

xi xj
x i j i

AE V V
−

= = = +

=    (18) 

Equation (18) indicates that the sum 
1

1 1 1

n n n

xi xj
x i j i

V V
−

= = = +
  of all elements of n  rows multiplied by each 

other in order should be 0, i.e., each row in the FFSP permutation matrix only has one ‘1’, indicating 
that a workpiece can only be processed once at each stage. xiV  represents the element of the i  
column of the x  row of the FFSP permutation matrix, and A  is the coefficient. 

(2) Energy function column constraint 

1

2
1 1 1

=0
2

n n n

xi yi
i x y x

BE V V
−

= = = +

=    (19) 

Equation (19) denotes that the sum 
1

1 1 1

n n n

xi yi
i x y x

V V
−

= = = +
   of all elements of n  columns multiplied by 

each other in a specific order should be 0, i.e., each column in the FFSP permutation matrix only has 
one ‘1’, indicating that a workpiece can only be processed once at one stage, and B  is the coefficient. 

(3) Energy function overall constraint 

2

3
1 12

n n

xi
i x

CE V n
= =

 = − 
 
  (20) 

Equation (20) indicates that the sum 
1 1

n n

xi
i x

V n
= =

−  of all elements should be 0, i.e., there are n  ‘1’ 

in the FFSP permutation matrix, indicating that all workpieces are to be processed at one stage. In the 
Equation, C  is the coefficient, and the square value is used to conform to the expression of energy, 
as well as embody a punishment for not meeting the constraint. 

(4) Energy function target item 

Since the main optimization goal of the FFSP–PB is the makespan, the fourth item of the energy 
function needs to be expressed in combination with the makespan, as shown in Equation (21), and 
D  is the coefficient. 

4 max=
2
DE C  (21) 

Combining Equations (18)–(21), the energy function for constructing FFSP–PB is as follows: 
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( )21 1
= max1 2 3 4 1 1 1 1 1 1 1 12 2 2 2 2 2 2 2

− −
       = + + + + + − +
= = = + = = = + = =

n n n n n n n nA B C D A B C D
E E E E E V V V V V n Cxi xj xi yi xix i j i i x y x i x

 (22) 

According to a previous study [26], Equation (22) can be improved to: 
2 2

max
1 1 1 1

1 1
2 2

n n n n

xi xi
x i i x

A BE V V DC
= = = =

   
= − + − +   

   
     (23) 

To ensure the symmetry for the solution of HNN algorithm, the value of A  in Equation (23) 
needs to be equal to the value of B . 

4.1.3. Establishing HNN Dynamic Differential Equation 

According to another study [27], the connection weight coefficient is calculated as follows: 

xi

xi

du E
dt V

∂= −
∂

 (24) 

Equations (23) and (24) can derive HNN dynamic equation as follows: 

1 1
1 1

n n
xi

xi yi
i y

du A V A V
dt = =

  
= − − − −       

   (25) 

The correlation function between input xiu  and output xiV  of the simulating neuron in HNN 
algorithm is: 

( ) ( ) ( )0
0

0

1 1 tanh
2

xi
xi xi xi

u t
V t u

u
ϕ

  
= = +      

 (26) 

According to the HNN dynamic equation, the input bias xiuΔ  is: 

( )0 = xi
xi yj

duu t V
dt

Δ  (27) 

In the evolution process of HNN, the input is updated by the first-order Euler Equation, which 
is shown in Equation (28): 

( ) ( )0 0
0

xi
xi xi

t t

duu t t u t t
dt =

+ Δ = + Δ  (28) 

4.2. Improvement of the HNN Algorithm 

Since the energy function of the standard HNN algorithm decreases monotonically, the 
optimization range of the algorithm is narrow with a fixed optimization direction, which ultimately 
leads the algorithm to easily fall into a local extremum and is difficult to jump out. The idea of the 
simulated annealing algorithm exists between the given solution and the new solution is generated 
in the local area by the given solution. The solution with the better fitness is accepted by Metropolis 
acceptance criteria [28], while the solution with the poorer fitness is selected to expand the searching 
range of the solution space. Therefore, in the process of optimizing the standard HNN algorithm, the 
idea of the simulated annealing algorithm is introduced to expand the optimization range of the 
standard HNN algorithm and further achieve a better solution. 

After the standard HNN algorithm is introduced, the idea of the simulated annealing algorithm 
during each training process of the standard HNN algorithm causes the neuron input to increase the 
random disturbance in the HNN algorithm after energy function value, which is computed. The 
energy function value of the HNN after disturbance input is computed. Energy function value of the 
original input is compared to the energy function value of the disturbance input; if the energy 
function value is smaller, it indicates that the value is better. If the original energy function value is 
not smaller than the energy function value of the disturbance input, the energy function value of the 
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disturbance input is selected to replace the original energy function value, and then the HNN 
algorithm starts the next generation of optimization. If the original energy function value is smaller 
than the energy function value of the disturbance input, according to the Metropolis acceptance 
criteria, the energy value function of the disturbance input is compared to the original energy 
function value. If the Metropolis acceptance criteria are fulfilled, the energy function value of the 
disturbance input is chosen to replace the original energy function value, and then the HNN 
algorithm starts the next generation optimization. Otherwise, the original energy function value does 
not change and enters the next generation of optimization. After the above process of algorithm 
optimization is repeated several times, a part of the energy function does not show monotone 
decreasing characteristic during convergence. However, the global convergence trend of the energy 
function still shows a decreasing tendency and converges to the optimal equilibrium point. Finally, 
the ability of the standard HNN algorithm to jump out of local extremum is improved. 

The main steps for the HNN algorithm based on the simulated annealing algorithm for solving 
the scheduling problem are as follows: 

Step 1: Set the initial parameters 0 0, , , ,A D u t tΔ  of the HNN algorithm. 
Step 2: Set the maximum generation maxK  and the evolutionary generation = 0  K . 
Step 3: Set the initial value of 0( ) xiu t , whose value is within the interval [ ]1 1− ， . 
Step 4: Set the initial value of each element xiV  in the network initial permutation matrix to 0. 
Step 5: Calculate the output 0( ) V t  of each neuron according to Equation (26), and judge 

whether the permutation matrix at this time point is valid. The validity of the permutation matrix 
needs to be judged strictly by the energy function constraint. If the permutation matrix is legal, the 
output is obtained, maxC  is calculated, and continue to step 6; if not, return to step 2. 

Step 6: Calculate the energy ( )0 E t  of the network at this time point according to Equation (23). 

Step 7: Calculate xidu
dt

 according to Equation (24). 

Step 8: Increase the random disturbance 0tΔ  to the input of neuron ( )0 xiu t , and the neuron 
input changes into ( )0 0 + Δxiu t t  at this time. ( )0 0 + Δxiu t t  is calculated according to Equation (28), 
and the permutation matrix ( )0 0 + ΔV t t  is updated by ( )0 0 + Δxiu t t . 

Step 9: Calculate the value of energy function in network ( )0 + ΔE t t  at this time. 
Step 10: If ( ) ( )0 0 0+Δ  ≤ E t t E t , then ( )0 0 0= ( )  + ΔE t E t t ; if not, then judge whether the result satisfies 

the Metropolis acceptance criteria. If the criteria are fulfilled, then ( )0 0 0= ( )  + ΔE t E t t ; if not, then 

( )0 0= ( )  E t E t . 
Step 11: If the permutation matrix output is legal at this time, then continue to step 12, otherwise 

return to step 5. At the same time point, evolutionary generation K  is processed as 1 = +K K . 
Step 12: If the iteration K  has reached the maximum generation maxK  and the permutation 

matrix output is legal at this time point, then output the result, otherwise return to step 3. 
The flowchart of the SAA–HNN algorithm is shown in Figure 2. 

4.3. Optimization Performance Testing on the SAA–HNN Algorithm 

In order to verify the effect of optimization performance of the HNN algorithm, which adds the 
idea of the simulated annealing algorithm in comparison to the optimization effect of the improved 
HNN algorithm and the typical algorithms of the swarm intelligence algorithm, four groups of small-
scale FFSP standard example data and six groups of large-scale FFSP instance data were used to test 
and analyze the SAA–HNN algorithm and its comparison algorithms. The comparison algorithms 
included ICA, CGA, and HNN. 

Four groups of small-scale FFSP standard example data and four groups of large-scale FFSP 
instance data were used to, respectively, test and analyze. Moreover, the SAA–HNN algorithm was 
compared to ICA, CGA, and HNN to verify the effect of optimization performance of HNN 
algorithm, which adds the idea of the simulated annealing algorithm. 
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Set the maximum generation Kmax and the evolutionary generation K=0
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 Set the initial value of each element in the network initial permutation matrix, Vxi =0

Calculate the output V(t0) of each neuron
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No
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No
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Figure 2. The flowchart of the SAA–HNN algorithm. 

The four groups of small-scale FFSP test data were from the standard examples [29,30] proposed 
by Neron and Taillard based on the standard FFSP, while six groups of large-scale FFSP test data 
adopted the actual production data. Each algorithm was run 30 times under each group of data, and 
the average makespan maxC  was applied as the main evaluation index to obtain the result. In 
addition, the maximum evolution of the four algorithms was 500 generations. The test results are 
shown in Table 2. 
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Table 2. Algorithm test result. 

Example LB 
ICA CGA HNN SAA–HNN 

maxC  ARE  Time  maxC  ARE  Time  maxC  ARE  Time  maxC  ARE  Time  
j15c5c1 85 91.3 7.4% 6.6 s 90.2 6.1% 6.3 s 97.3 14.5% 3.5 s 90.1 6.1% 4.1 s 
j15c5c2 90 102.1 13.5% 6.7 s 99.9 11.0% 6.4 s 109.6 21.8% 3.7 s 96.7 7.4% 4.6 s 
j15c5d1 167 206.4 23.6% 6.9 s 204.2 22.3% 6.6 s 242.1 45.0% 4.1 s 190.7 14.2% 4.8 s 
j15c5d2 82 101.3 23.6% 6.7 s 96.9 18.2% 6.4 s 111.8 36.4% 3.8 s 92.1 12.3% 4.5 s 

j80c4a1 — 1415.4 — 
24.3 

s 
1389.5 — 

29.5 
s 

1453.7 — 6.5 s 1375.9 — 7.7 s 

j80c4a2 — 1434.7 — 
21.1 

s 
1419.4 — 

24.5 
s 

1474.2 — 6.1 s 1408.3 — 6.2 s 

j80c8a1 — 2088.4 — 
24.2 

s 
2027.2 — 

26.4 
s 

2170.2 — 6.4 s 2011.2 — 7.5 s 

j80c8a2 — 1856.4 — 
24.5 

s 
1827.7 — 

24.4 
s 

1956.6 — 5.8 s 1811.1 — 7.5 s 

j120c20a1 — 3764.7 — 
44.6 

s 
3699.1 — 

48.3 
s 

3954.9 — 
13.9 

s 
3442.5 — 

14.8 
s 

j200c10a1 — 4953.2 — 
76.3 

s 
4787.8 — 

79.7 
s 

5211.5 — 
18.6 

s 
4364.9 — 

21.5 
s 

In Table 2, the ‘j15c5c1’ standard example is taken as an example. ‘j15’ indicates that the total 
number of processed workpieces is 15. ‘c5’ indicates that the total number of processing stages is 5, 
and since there is only one machine per stage, the total number of machines is also 5. ‘c1’ represents 
the difficulty of the standard example. The easy-to-solve examples include six j10c10c* classes, i.e., 
the total examples of ‘a’ class and ‘b’ class. The hard-to-solve examples include the other ‘c’ classes, 
i.e., the total examples of ‘d’ class and ‘e’ class. LB  is the lower bound of the makespan of the 
standard example whose value has been given in the literature [31,32], and ARE  represents the 
average relative error of the solution obtained by this algorithm as compared to the lower bound of 
the makespan. The smaller the ARE , the better the optimization effect of the algorithm. Time  means 
the average optimization time of the standard example; the smaller the Time , the better the 
optimization speed of the algorithm. 

According to the test results in Table 2, based on four groups of small-scale standard example 
data, in terms of optimization effect, ARE  between the ICA algorithm and the CGA algorithm is 
7.4% and 6.1%, respectively, under j15c5c1 standard example data. Therefore, its optimization effect 
is improved. The ARE  of the HNN algorithm under j15c5c1 standard example data is 14.5%, which 
increases to 7.1% and 8.4% in comparison to ICA and CGA, respectively. So the optimization effect 
is relatively poor. The ARE  of the SAA–HNN algorithm is 6.1% under j15c5c1 standard example 
data and is smaller than those of the other three algorithms, so the optimizing effect of the SAA–
HNN algorithm is relatively better. The other small-scale standard example data also show the same 
status. In terms of optimization time, ICA is similar to CGA in average optimization time, which is 
6–7 s time range. However, the average optimization time of HNN algorithm is 3–4 s time range and 
is shortened to about 50% as much as ICA and CGA with obvious improvement in the optimization 
speed. Although average optimization time of the SAA–HNN algorithm increases about 0.5 s as 
much as the HNN algorithm, it retains high optimization speed. In terms of four groups of large-
scale data, on the basis of optimization effect, the SAA–HNN algorithm increases about 4% as 
compared to the other three algorithms. However, in terms of optimization time, the optimization 
speed of the SAA–HNN algorithm accelerates about 70% as much as ICA and CGA. 

Based on the above tests using four groups of small-scale data and six groups of large-scale data 
for four algorithms, the SAA–HNN algorithm has faster optimization speed than the comparison 
algorithms, with significantly improved evaluation index under small-scale data. Also, under large-
scale data, the SAA–HNN algorithm still maintains a high speed of optimization, and the evaluation 
index is relatively better. Therefore, the SAA–HNN algorithm is suitable for solving large-scale and 
complicated scheduling optimization problems, and hence, has a broad applicability. 
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During the test, four algorithms were considered based on 30 simulation experiments with large-
scale data. The makespan maxC  obtained at each time point exhibited obvious fluctuation. Since the 
HNN algorithm can easily fall into local extremum, its maxC  may appear as a large outlier. In order 
to compare and evaluate the optimization effect of the four algorithms on large-scale data, j80c8a2 
data were considered as the example, and the maxC  values obtained by running four algorithms for 
30 times are drawn into a box plot (Figure 3). 

 

Figure 3. Box-plot of four algorithms for large-scale data j80c8a2. 

A box-plot is a statistical graph for describing the discrete degree of a group of data. The stability 
of the optimization effect can be reflected by the box-plot. The interquartile range IQR  was used to 
measure the discrete degree of the data in the box-plot. 

As can be seen from Figure 3, the HNN algorithm generates three large outliers of 2033, 2047, 
and 2056, respectively, in the 30 running times of the algorithm, indicating that the HNN algorithm 
easily falls into the local extremum. The median of box-plot produced by the SAA–HNN algorithm 
is 1815, and other medians of box-plot produced by other algorithms are 1854, 1828, and 1956, 
respectively. Therefore, the box-plot of the SAA–HNN algorithm is in the lowest position, which 
indicates that the overall quality of the solution generated by the SAA–HNN algorithm is better than 
the other three algorithms. Besides, the IQR  of the box-plot generated by the SAA–HNN algorithm 
is 23, and the IQR  of the box-plot generated by the other three algorithms are 25, 46, and 38, 
respectively, indicating that the SAA–HNN algorithm produces the smallest discrete degree, and the 
stability of the scheduling results under large-scale data was optimal among the four algorithms. 

Based on the above analysis, the SAA–HNN algorithm is better than the ICA, CGA, and HNN 
algorithms, and it also maintains fast optimization of the HNN algorithm in terms of optimization 
speed while solving the scheduling problem of small-scale and large-scale data. This indicates that 
the idea of the simulated annealing algorithm overcomes the HNN algorithm for falling into local 
extremum, and the SAA–HNN algorithm has a strong ability of continuous evolution. 

5. FFSP–PB Instance Test 

Taking a bus manufacturer in actual large-scale equipment manufacturing enterprises as an 
example, simulation data similar to the production operation of the body shop and paint shop for the 
bus manufacturer were constructed. The body shop of the bus manufacturer was a rigid flow shop 
with multiple production lines that could be simplified into one production stage. The paint shop 
could be simplified into three stages. Therefore, the simulation data included four stages: 
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{ }1 2 3 4, , ,Stage Stage Stage Stage . The parallel workstation of these four stages was { }jM ={ }3,3,3,3 =. A 

limited buffer occurred between each stage, and the maximum capacity of each limited buffer was 
{ }2 3 4, ,LBu LBu LBu ={ }2,2,2 . In addition, a public buffer was set on the production line, and the standard 
processing time for transferring the workpiece TBt  was 5. The maximum buffer capacity in the 
public buffer was 3. 

The simulation test first analyzed the impact of the relevant local scheduling rules for FFSP–PB 
on the scheduling results, and discussed the role of the public buffer and local scheduling rules for 
the public buffer in alleviating the production blockage and improving the scheduling results. Finally, 
the SAA–HNN algorithm and other global optimization algorithms were combined with the local 
scheduling rules, respectively, to solve the FFSP–PB problem under different data scales, which 
verified the optimization performance of the SAA–HNN algorithm with respect to the complex 
scheduling problems. Thus, the efficiency of the combination of the SAA–HNN algorithm and local 
scheduling rules for solving the FFSP–PB problem was assessed. 

5.1. Evaluation Index of Scheduling Results 

In order to better analyze and study the scheduling results during the scheduling process, we 
employed the makespan maxC  as the optimization goal, establishing other evaluation indexes related 
to the actual production, including the total workstation idle time TWIT , the total plant factor TPF , 
and total workpiece blockage time TWBT . Except for TPF , the smaller the value, the better the other 
evaluation indexes: 

(1) Makespan 

{ },maxmax i mC Tc= , { }1,..i n∈  (29) 

In Equation (29), makespan maxC  indicates the maximum value of all workpieces that completed 
processing at the last stage. 

(2) Total workstation idle time 

{ } { }( ) ( ), , , , , , , , ,
1 1 1

max min
M jm n

i j i j l i j i j l i j i j l
j l i

TWIT To At S At Tb At
= = =

 
= ⋅ − ⋅ − ⋅ 

 
   (30) 

In Equation (30), TWT  represents the sum of the idle time for the workstation between the start 
time of the first processed workpiece and the completion time of the last processed workpiece. 

(3) Total plant factor 

( )

{ } { }( )

,
1 1

, , , , , ,
1 1 1

max min

m n

i j
j i

M jm n

i j i j l i j i j l
j i l

Tb
TPF

To At S At

= =

= = =

=

⋅ − ⋅




 (31) 

In Equation (31), TPF  represents the total plant factor of all workstations, which is the ratio of 
the effective processing time of all workstations to the occupied period of all workstations. This 
period starts from the first workpiece processed on the workstation at each stage to the last workpiece 
that leaves the workstation after completion [33]. 

(4) Total workpiece blockage time 

( ), 1 , 1
1 2

n m

i j i j
i j

TWBT To C− −
= =

= −  (32) 
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In Equation (32), TWBT  indicates the sum of blockage time of all workpieces stuck on the 
workstations since the limited buffer is full and the electric flat carriage is in transit during the 
production. 

5.2. Instance Test of FFSP–PB Local Scheduling Rules 

5.2.1. Simulation Scheme 

In order to verify the efficiency of the public buffer in reducing the production blockage during 
the process of buffer dynamic capacity-increase in flexible flow shop and analyze the role of the 
relevant local scheduling rules for the public buffer, three groups of simulation schemes were 
designed to solve the flexible flow shop scheduling problem with the limited buffer. Scheme 1: There 
is no public buffer and no reentrant rules of electric flat carriage or workpiece transfer rules in the 
public buffer. Scheme 2: There is a public buffer and no reentrant rules of electric flat carriage or 
workpiece transfer rules in the public buffer. Scheme 3: There is a public buffer, reentrant rules of 
electric flat carriage, and workpiece transfer rules in the public buffer. 

5.2.2. Simulation Results and Analysis 

To obtain a better evaluation of the scheduling results, 30 different online sequences were 
randomly generated, and the values of the evaluation index were obtained through simulation tests. 
Moreover, the average values of each evaluation index for each scheme based on 30 different online 
sequences were calculated (Table 3), and Equation (33) was established. ( )IR A B  indicates the 
improvement range of A  with respect to the designated evaluation index of B , and the meanings 
of A  and B  would be modified according to the actual situation. 

( ) [( ) ] 100%IR A B A B B= − ×  (33) 

Table 3. Comparison of evaluation indexes for the three scheme scheduling results. 

Scheme 
Evaluation Index 

maxC  TWIT  TPF  TWBT  
1 182.6 40.4 0.924 26.3 
2 168.5 37.1 0.951 18.4 
3 159.3 22.5 0.978 5.9 
(2/1)IR  7.72% 8.17% 2.92% 30.04% 
(3 1)IR  12.76% 44.31% 5.84% 77.57% 
(3 1)IR  5.46% 39.35% 2.84% 67.93% 

As is shown in Table 3, the main evaluation index makespan maxC  and the total workpiece 
blockage time TWBT  of Scheme 2 with the public buffer decreases to 14.1 and 7.9, respectively, as 
compared to that of Scheme 1 without the public buffer, and the improvement is 7.72% and 30.04%, 
respectively. If production line has a public buffer but does not establish corresponding local 
scheduling rules, it might lead to new production blockage. Thus, the reentrant rules of electric flat 
carriage and workpiece transfer rules in the public buffer are established. The main evaluation index 
makespan maxC  and total workpiece blockage time TWBT  of the reentrant rules of electric flat 
carriage in Table 3 and workpiece transfer rules in the public buffer of Scheme 3 decreases to 9.2 and 
12.5, respectively, as compared to that of Scheme 2 with the public buffer but without the 
corresponding local scheduling rules, and the improvement is 5.46% and 67.93%, respectively. 
Meanwhile, the other evaluation indexes are also improved. The above analysis indicates that the 
public buffer adds in the flexible flow shop and relevant local scheduling rules can be established in 
order to relieve the production blockage effectively. 
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5.2.3. Gantt Chart Analysis of the Scheduling Result 

Figure 4 shows the Gantt chart of the scheduling result of Scheme 3. The abscissa is the time axis, 
while the ordinate indicates the workstation of each stage, the limited buffer, and the public buffer. 
The violet part in the figure represents the time for the workpiece that is temporarily stored in the 
limited buffer; the red part indicates that the electric flat carriage transfers the workpiece from the 
workstation to the public buffer; the blue part indicates the time for the electric flat carriage that 
transfers the workpiece back to the limited buffer when transporting the workpiece from the 
workstation to the public buffer; the yellow part denotes that the workpiece is stored temporarily in 
the public buffer; the green part denotes that the electric flat carriage transports the workpiece from 
the public buffer to the limited buffer; the orange part in the figure represents the blockage time of 
the workpiece in the stage. Figure 4 demonstrates that restricted by Equation (6), the workpiece in 
each stage is processed only once at one workstation, and hence, the processing route of the 
workpiece 5Wp  is { }1,2 5 5 2,1 2,1 3,2 3,1 5 5 4,1 4,1, , , , , , , , , , ,WS Rp PBu Rl Bl WS Bl WS Rp Rb Bl WS , i.e., the processing route is 
represented by the connecting lines between the blocks in the figure. 

 
Figure 4. Gantt chart of scheme 3 scheduling result. 

At time t  = 40, the workpiece 5Wp  completed the manufacturing task at workstation 1,2WS  of 
stage 1Stage . Simultaneously, restricted by Equation (11), the limited buffer 2LBu  reached the upper 
limit of its capacity ( ) { }2 3 840 ,WAl Wp Wp= ; thus, the workpiece 5Wp  started to be transferred to the 
public buffer. At time t  = 45, the workpiece 5Wp  entered the public buffer. At time t  = 50, the 
workpiece 10Wp  completed the manufacturing task at workstation 2,2WS  of stage 2Stage , and then 
left the workstation. The workpiece 2Wp  entered the workstation 2,2WS  of stage 2Stage , the space 

2,1Bl  in the limited buffer 2LBu  was available, and the workpiece 5Wp  in the public buffer that 
should enter the limited buffer 2LBu  existed. Therefore, the workpiece transfer rules in the public 
buffer took effect. Since the electric flat carriage was at the position of the public buffer 

( )_ 50 2Pan Car = , the standard processing time for transferring the workpiece  = 5Tbt  was 

compared to the estimated minimum completion time ( ) ( ) ( ) { }{ },1 ,1 ,1min 0 0, 1,9,11i i iTc t Ts t Tc t i− − ≤ − > ∈,  

= 6 for all workpieces at stage 1Stage . Since the standard processing time for transferring the 
workpiece was less than the estimated minimum completion time for all workpieces of stage 1Stage , 
the electric flat carriage transfered the workpiece 5Wp  from the public buffer to the space 2,1Bl  in 
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the limited buffer 2LBu . At time t  = 55, the workpiece 5Wp  entered the space 2,1Bl  of the limited 
buffer 2LBu . 

At time t  = 144, the workpiece 5Wp  completed the manufacturing task at workstation 3,1WS  
of stage 3Stage . In addition, restricted by Equation (11), the limited buffer 4LBu  reached the upper 
limit of its capacity ( ) { }4 1 3144 ,WAl Wp Wp= , following which, the workpiece 5Wp  started to be 
transferred to the public buffer. At time t  = 146, the workpiece 6Wp  completed the manufacturing 
task at workstation 4,1WS  of stage 4Stage  and left the workstation. When the workpiece 3Wp  
entered the workstation 4,1WS  of stage 4Stage , the space 4,1Bl  in the limited buffer 4LBu  was 
available and the workpiece 5Wp  was still in transportation ( )4 31_ 6Pan Car = , so the reentrant rules 
of the electric flat carriage took effect. Also, the already-spent transit time 5,3(146)Ttw  = 2 for 
transporting the workpiece 5Wp  from the workstation of stage 3Stage  to the public buffer was 
compared to the estimated minimum completion time ( ) ( ) ( ) { }{ },4 ,4 ,4min 0 0, 9i i iTc t Ts t Tc t i− − ≤ − > ∈,  = 8 

for all workpieces at stage 3Stage . Since the already-spent transit time of the workpiece 5Wp  was 
less than the estimated minimum completion time for all workpieces of stage 3Stage , the electric flat 
carriage returned the workpiece 5Wp  to space 4,1Bl  in the limited buffer 4LBu . Thus, at time t  = 
148, the workpiece 5Wp  entered the space 4,1Bl  of the limited buffer 4LBu . Based on the above 
analysis, restricted by Equation (17), the already-spent transit time 5,3(146)Ttw  for transporting the 
workpiece 5Wp  from the workstation of stage 3Stage  to the public buffer should be less than the 
standard processing time for transferring workpiece. 

From the above specific analysis of the Gantt chart about scheduling results, the reentrant rules 
of the electric flat carriage designed for the public buffer state that, when the workpiece is transferred 
to the public buffer, it should enter the available space in the limited buffer, following which, the 
workpiece reenters and is stored in the limited buffer to reduce its storage time in the public buffer 
and the total transfer time. Based on the workpiece transfer rules in public buffer, and in the event of 
available space in the limited buffer and that the workpiece transfers from the public buffer to the 
limited buffer and the previous stage of the limited buffer does not have the the completed 
workpiece, the workpiece in the public buffer is transferred to the available space in the limited 
buffer. This avoids competition for the available space in the limited buffer, which in turn, effectively 
reduces the new production blockage caused by the increase in the public buffer. 

5.3. Instance Test of FFSP–PB Global Optimization Algorithm 

5.3.1. Parameter Settings of the Optimization Algorithm 

ICA, CGA, HNN, and SAA–HNN were utilized as global optimization algorithms. Moreover, 
these algorithms were combined with the reentrant rules of electric flat carriage and workpiece 
transfer rules in the public buffer designed for the public buffer to solve the FFSP–PB, which are 
optimal for comparing and analyzing the optimization performance and verifying its efficiency with 
local scheduling rules to resolve FFSP–PB. The parameter settings of the four global optimization 
algorithms are shown in Table 4. 
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Table 4. Swarm evolutionary algorithm parameters. 

Optimization Algorithm Algorithm Parameter 

ICA 
Maximum evolutional generation Gen  = 500; number of imperialist 
countries dN  = 5; number of colonial countries zN  = 25; colonial impact 
factor K  = 0.15; similarity threshold α  = 0.3. 

CGA 
Maximum evolutional generation Gen  = 500; number of populations NP  
= 4; adjustment override of the learning rate β  = 0.08. 

HNN 
Maximum evolutional generations Gen  = 500; A  = 1.5; D  = 1; 0u  = 0.02; 
tΔ  = 0.1 

SAA–HNN 

Maximum evolutional generations Gen  = 500; A  = 1.5; D  = 1; 0u  = 0.02; 
tΔ  = 0.1; initial temperature maxT ; end temperature minT ; cooling coefficient 

b . 

5.3.2. Simulation Results and Analysis 

(1) Evaluation Index of Scheduling Results 

Each of the four algorithms were tested on the small-scale, medium-scale, and large-scale data. 
The total number n  of the processed workpieces was set to 12 in small-scale data, 40 in medium-
scale data, and 80 in large-scale data. 

1) Small-scale data 

The four algorithms were run 30 times for small-scale data, and the average values of the 
evaluation indexes obtained from 30 simulations are summarized in Table 5. 

Table 5. Comparison of the evaluation indexes of four algorithms’ scheduling results (small-scale 
data). 

Algorithms 
Evaluation Indexes 

maxC  TWIT  TPF  TWBT  
ICA 176.54 46.42 0.931 27.42 
CGA 157.89 39.56 0.952 22.17 
HNN 189.55 47.32 0.927 33.30 

SAA–HNN 129.92 22.59 0.978 9.89 
-( )SAA HNNIR
ICA

 26.41% 51.34% 5.04% 63.93% 

-( )SAA HNNIR
CGA

 17.71% 42.90% 2.73% 55.39% 

-( )SAA HNNIR
HNN

 31.46% 52.26% 5.50% 70.3% 

From the simulation results of small-scale data in Table 5, during the solving of FFSP–PB, the 
main evaluation index makespan maxC  of the SAA–HNN algorithm decreases to 46.62, 27.97, and 
59.63 in comparison to the ICA, CGA, and HNN algorithms, respectively, and the improvement is 
26.42%, 17.71%, and 31.46%, respectively. Moreover, the total workpiece blockage time TWBT  of the 
SAA–HNN algorithm decreases 17.53, 12.28, and 23.41 in comparison to the other three algorithms, 
respectively, and the improvement is 63.93%, 55.39%, and 70.3%, respectively. The total plant factor 
TPF  and total workstation idle time TWBT  also improves, thereby indicating that using the SAA–
HNN algorithm as the global optimization algorithm to solve the FFSP–PB problem improves each 
evaluation index and reduces the production blockage in small-scale data simulation. 
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2) Medium-scale and large-scale data 

The four algorithms were run 30 times for medium-scale and large-scale data, respectively, and 
the average values of the evaluation indexes obtained from the 30 simulations under the two data 
scales are listed in Tables 6 and 7. 

Table 6. Comparison of the evaluation indexes of four algorithms’ scheduling results (medium-scale 
data). 

Algorithms 
Evaluation Indexes 

maxC  TWIT  TPF  TWBT  
ICA 834.15 269.26 0.885 92.46 
CGA 801.37 243.16 0.916 67.71 
HNN 893.32 312.55 0.881 99.21 

SAA–HNN 704.85 197.87 0.979 16.94 
-( )SAA HNNIR
ICA

 15.50% 26.51% 10.62% 81.68% 

-( )SAA HNNIR
CGA

 12.04% 18.63% 6.88% 74.24% 

-( )SAA HNNIR
HNN

 21.10% 36.69% 11.12% 82.93% 

Table 7. Comparison of the evaluation indexes of four algorithms’ scheduling results (large-scale 
data). 

Algorithms 
Evaluation Indexes 

maxC  TWIT  TPF  TWBT  
ICA 1794.39 687.21 0.879 145.22 
CGA 1650.60 582.57 0.899 106.06 
HNN 1943.35 706.02 0.837 160.42 

SAA–HNN 1379.16 462.18 0.982 25.15 
-( )SAA HNNIR
ICA

 23.14% 32.75% 11.72% 82.68% 

-( )SAA HNNIR
CGA

 16.44% 20.67% 9.23% 76.29% 

-( )SAA HNNIR
HNN

 29.03% 34.54% 17.32% 84.32% 

From the simulation results in Tables 6 and 7, under medium-scale data, the main evaluation 
index makespan maxC  of the SAA–HNN algorithm decreases to 129.3, 96.52, and 188.47 in 
comparison to the ICA, CGA, and HNN algorithms, respectively, and the improvement is 15.50%, 
12.04%, and 21.10%, respectively. Under large-scale data, the main evaluation index makespan maxC  
of the SAA–HNN algorithm decreases to 415.23, 271.44, and 564.19 in comparison to the ICA, CGA 
and HNN algorithms, respectively, and the improvement is 23.14%, 16.44%, and 29.03%, respectively. 
Under medium-scale data and large-scale data, other evaluation indexes of the SAA–HNN algorithm 
also improve. The SAA–HNN algorithm performs optimally and has perfect adaptability during the 
solving of the FFSP–PB of medium-scale and large-scale data. 

Based on the comprehensive analysis of the simulated results in the FFSP–PB of different data 
scales, it can be concluded that the SAA–HNN algorithm combines the reentrant rules of the electric 
flat carriage and workpiece transfer rules in the public buffer which are designed for the public 
buffer, effectively solves the FFSP–PB, and reduces the production blockage. 
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(2) Scheduling Evolutionary Process Analysis 

The correlation between the makespan maxC  and the iterations of four algorithms under actual 
production data are shown in Figure 5. 

 

Figure 5. Correlation between makespan maxC  and the iterations of four algorithms. 

Figure 5 shows that the HNN algorithm converges rapidly in the initial stage of evolution but 
falls into local extremum prematurely due to the monotonous decrease in the energy function; it 
stagnates evolving in the 31st generation when maxC  converges to 252 eventually. The ICA and CGA 
algorithms have the ability of rapid optimization and convergence in the initial stage; however, they 
display integral convergence after evolving for a specific number of generations, making them easy 
to fall into local extremum. These phenomena stagnate evolving in the 221st and 185th generations, 
respectively, and their maxC  finally converge to 246 and 245, respectively. The SAA–HNN algorithm, 
which maintains the fast optimization feature of the HNN algorithm, converges rapidly in the initial 
stage of evolution, but falls into local extremum in the 127th generation. By introducing the idea of 
the simulated annealing algorithm, the ability of the SAA–HNN algorithm to jump out of local 
extremum is enhanced. Also, the SAA–HNN algorithm reactivates the evolutional process in the 
278th generation, whose maxC  converges to 233 eventually. 

From the above analysis of the scheduling evolutionary process, the SAA–HNN algorithm not 
only maintains the fast optimization characteristics of the HNN algorithm, but also jumps out of the 
local extremum and continues evolution in the process of solving the FFSP–PB problem with the 
improved local scheduling rules. Also, the SAA–HNN algorithm has better optimization effect than 
the ICA and CGA algorithms. 

6. Conclusions 

The present study investigated the FFSP–PB problem. Since the standard HNN algorithm easily 
falls into local extremum and is difficult for continuous evolution, this study proposed the SAA–
HNN algorithm for global optimization. It adopts the Metropolis acceptance mechanism of the 
simulated annealing algorithm, such that the HNN algorithm can accept the non-optimal solution. 
Thus, the evolutionary vitality of the HNN algorithm is enhanced, rendering it the ability to jump 
out of the local extremum. Consecutively, considering the influence of the public buffer on the 
scheduling process, the reentrant rules of the electric flat carriage and workpiece transfer rules in the 
public buffer for controlling the movement of the workpiece are designed according to the transit 
time-cost of the workpiece among the workstation, the limited buffer, and the public buffer, as well 
as the processing status of the workpiece during the production. This phenomenon reduces the 
production blockage and improves the utilization of production resources. Finally, the simulation 
experiment proves that the SAA–HNN algorithm, combined with the improved local scheduling 
rules, can solve the FFSP–PB problem. 



Processes 2019, 7, 681 22 of 23 

 

The actual production process has some local scheduling rules, such as setup time rules, process 
specification rules, and customer specification rules. If these local scheduling rules coexist with the 
relevant local scheduling rules established for the public buffer in the present study, the complexity 
of the whole scheduling optimization process would increase, and certain conflicts would occur 
between some of the local scheduling rules. Since the problem of conflict resolution between local 
scheduling rules are beyond the scope of this study, the main directions of future work are divided 
into the following: 

(1) Since the complex scheduling problem was investigated, the methods in the field of artificial 
intelligence should be explored to further improve the optimization effect and intellectualization 
of production scheduling algorithms. 

(2) Various local scheduling rules conflict with each other in the actual production system, 
necessitating that the method of effectively eliminating the conflicts between various local 
scheduling rules is explored further. 
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