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Abstract: We considered the steady flow of Buongiorno’s model over a permeable exponentially
stretching channel. The mathematical model was constructed with the assumptions on curved
channels. After applying the boundary layer approximation on the Navier–Stocks equation, we
produced nonlinear partial differential equations. These equations were converted into a system of
non-dimensional ordinary differential equations through an appropriate similarity transformation.
The dimensionless forms of the coupled ordinary differential equations were elucidated numerically
through boundary value problem fourth order method. This method gains fast convergence as
compared to other method such as the shooting method and the Numerical Solution of Differential
Equations Mathematica method. The influence of the governing parameters which are involved
in ordinary differential equations are highlighted through graphs while Re1/2

s C f , Re1/2
s Nus , and

Re−1/2
s Shs are highlighted through the tables. Our interest of study was to analyze the heat transfer

rate of nanofluids. Surprisingly, for momentum boundary layer thickness, thermal boundary layer
thickness and solutal boundary layer thickness became larger when λ > 0, as compared to the case
when λ < 0.

Keywords: Buongiorno’s model; thermal slip effects; exponential stretching; numerical technique;
curved channel

1. Introduction

Analysis of stretching surfaces play a key role in the field of engineering and industrial due to its
practical applications. The boundary layer, defined as the viscosity effects, are important nearby the
surface. The boundary layer concept was highlighted by Ludwig Prandtl in 12 August 1904 at the 3rd
International Conference in Germany. He considered two regions for the fluid—where viscosity effects
are maximized inside the boundary, while viscosity effects are negligible outside the boundary. At the
continuous moving solid surface, a two-dimensional flow of a Newtonian fluid was highlighted by
Sakiadis [1]. He was the first one who discussed the boundary layer flow of Newtonian fluid. His
study developed great interest and attracted researchers to analyze boundary layer flow. Crane [2]
extended the idea of Sakiadis [1]. Crane [2] deliberated over the exact solution of quiescent fluid over a
linearly stretching sheet. The stagnation point within flow over a stretching surface has been studied
by Chiam [3]. Where he analyzed particular flow geometries. Lin et al. [4] considered two-dimensional
boundary layer flows with time dependent heat flux. Their study focused on a large boundary layer
and small Prandtl numbers using hypergeometric functions. Chen [5] studied the mixed convection
flow over a heated stretching surface. He emphasized the behavior of various physical parameters and
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designed figures (graphs) for skin friction and the local Nusselt number. Mahapatra and Gupta [6]
found the solution numerically over a stretching surface under the stagnation point. An influence
of buoyancy on boundary layer flow of a continuous stretching surface was highlighted by Ali [7].
Wang [8] investigated the flow toward a shrinking sheet under the stagnation point. He found that a
solution does not exist for high enough shrinking rates and when it does exist, it may not be unique in
two dimensions. Analysis of the viscous flow toward a shrinking sheet with suction and slip effects
was explored by Wang [9]. A power law fluid model over a stretching sheet under the stagnation point
was studied by Mahapatra et al. [10]. Mahapatra et al. [10] used numerical and analytical techniques
and presented a comparison of both solutions. Analysis of the unsteady flow of fluid over a stretching
cylinder was investigated by Tie-Gang et al. [11]. Wang [12] discussed the natural convection over
a vertical cylinder. Salahuddin et al. [13] discussed the flow of nanofluids on a stretching cylinder
near the stagnation region. Several researchers have explored the flow in a curved channel [14–16];
however, none have considered exponentially curved channel geometry.

Nanofluids have notable thermal characteristics and hence are useful for heat transfer applications.
A nanofluid is a combination of a homogeneous fluid (base) and nanomaterials. There are numerous
applications such as heat exchangers, automotive cooling applications, and technology plants. The
nanofluid concept was presented by Choi [17]. He projected an innovative class of heat transfer
fluid where an imaginative new class of heat transfer liquids can be built by suspending metallic
nanoparticles in conventional heat transfer fluids. The subsequent nanofluids show high thermal
conductivities in contrast with presently utilized heat transfer fluids and they epitomize the results
in the improvement of heat transfer fluid. Jang and Choi [18] proposed that Brownian Motion can
improve thermal conductivity. They showed that the Brownian movement of nanoparticles at the
nanoscale and molecular levels is a key system overseeing the thermal conduct of nanoparticle fluid
suspensions. Convective transport in nanofluids was pioneered by Buongiorno [19]. According to him,
the nanofluids are designed colloids made of a base fluid and nanoparticles (1–100 nm). Nanofluids
have a greater thermal physical phenomenon than that of simple fluid. Precisely, the heat transfer
coefficient expansion seems to go beyond the important thermal conductivity effect, and cannot be
foreseen by conventional pure fluid relationships, for example, Dittus–Boelter’s. He deliberated,
therefore, seven slip mechanisms: Inertia, Brownian diffusion, thermo phoresis, Magnus impact,
diffusion phoresis, fluid drainage, and gravity, and asserted while Brownian diffusion are significant
slip systems in nanofluids. Oztop and Nada [20] analyzed the natural convection of nanofluid due
to buoyancy forces in a partially heated rectangle. Numerical studies of laminar nanofluid flow by
two isothermally heated parallel plates were performed by Santra et al. [21]. Khan and Pop [22]
pioneered the nanofluid flow over a stretching sheet. Nadeem et al. [23] introduced the peristaltic flow
of nanofluid over curved channels. Several researchers have highlighted nanofluid flow on curved
channels influenced by several parameters [24–27].

The no-slip boundary condition is a foundational aspect within the fluid dynamics theory of
Navier–Stokes. The no-slip condition is insufficient for most non-Newtonian liquids and nanofluids, as
some polymer melt often demonstrates microscopic wall slip and is generally regulated by a nonlinear
and monotonous relationship between slip velocity and traction. The fluids showing limit slip have
applications in innovative issues, for example, the cleaning of artificial heart valves and inside cavities.
Slip condition on the boundary layer flow was introduced by Andersson [28]. He pioneered the
closed form results of the Navier–Stokes equations over stretching sheets with MHD flow. Using the
Andersson [28] idea, Wang [29] pioneered the closed form solution of the Navier–Stokes equations
over stretching sheets with a slip condition. Moreover, stagnation flow with a slip condition was
initiated by the Wong [30]. Fang et al. [31] found the exact solution of viscous flow over stretching
sheets having influence of slip and MHD. Several researchers are worked out the slip condition with
different aspects [32–35].

In this study we analyzed the impact of different physical significant parameters of hybrid
nanofluid over an exponentially stretching curved surface. Our mathematical model of flow consisted
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of a system of partial differential equations, which we then transformed into an ordinary differential
equation using similarity transformations. These equations were solved by the numerical bvp4c method.
We also highlighted the influence of the curvature parameter, thermal slip parameter, suction/injection
parameter, solid nanoparticle, and stretching parameter on the hybrid nanofluid. The expression of the
skin friction and Nusselt numbers were used to understand the flow properties. This analysis provides
innovative insight for applications and complements the existing literature.

2. Mathematical Formulations

We considered the Buongiorno fluid model over a permeable stretching channel. Arc length along
the flow direction is s and normal to tangent vector is r Figure 1a. The geometry of the stretching is
revealed in Figure 1b.
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The surface is stretched where vw = ce
s
a in the − direction and c is constant while, vw is

suction\injection parameter due to porous surface which represents two cases if vw < 0 and vw > 0
correspond to injection and suction, respectively. But we considered in our analysis vw > 0, such
as suction. Our mathematical model includes the following, having used the above assumptions,
boundary layer approximations, and governing equations for the flow,
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The following similarity transformations have been highlighted as below

T = Tw + cθ(ζ), ζ =
√

a
ν f

r, u = a
(
e

s
a
)
F′(ζ), v = − R

r+R

√
ν f
a

(
e

s
a
)
F(ζ),

C = Cw + cφ(ζ), P = ρa2
(
e

2s
a
)
p(ζ).

(7)

The dimensionless suitable similarity transformations are applied on the Equations (1)–(6). The
density, viscosity, thermal diffusivity of the fluid is noted as ρ f , µ f and α f respectively; p is a pressure,
R is the radius of curvature, T∞ is the ambient temperature and Tw is the wall temperature. The
partial differential equations are altered into ordinary differential equations by applying the similarity
transformation. The reduced system is
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Eliminating the pressure term, solving Equations (8) and (9)(
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Dimensionless boundary conditions take the form

F(0) = γ, F′(0) = λ+ S(F′′ (0) − F′(0)/K0), F′(∞) = 1,
F′′ (∞) = 0, NBφ′(0) + NTθ′(0) = 0,

Mθ′(0) + 1 = θ(0), θ(∞) = 0, φ(∞) = 0.
(15)

where in the case of, if γ < 0 is the suction and γ > 0 is the injection, β represents the stretching
parameter, M is the thermal slip parameter, k f be the thermal conductivity of fluid, the curvature
parameter is K0, the Brownian motion parameter NB, the thermophoresis parameter NT and R0 is the
dimensionless parameter. The physical features of the interest are the Nusselt number and skin friction
coefficients along the s direction, which are highlighted below

C f =
τrs

ρ f u2
w

, Ns =
sqw

k f (Tw − T∞)
, Shs =

shm

DB(Cw −C∞)
, (16)

where τrs and qw is wall shear stress and heat flux, respectively, at the wall in s-direction. The expression
of the wall shear stress and heat flux are to be defined as
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Using Equation (18) in Equation (17), we get the dimensionless form as follows

Re−1/2
s C f =

(
F′′ (0) −

F′(0)
K

)
(18)

Re−1/2
s Nus = −Θ′(0) (19)

Re−1/2
s Shs = −φ

′(0) (20)

where Res =
(

ae
2s
a
ν f

)
is the local Reynolds number.

3. Results and Discussion

The steady flow of mixed convection over a curved channel is considered in this study. We
developed a mathematical model that we solved numerically using the bvp4c method. The physical
parameters which are involved in the fluid flow behavior have been highlighted through graphs
and tables. The impact of the Brownian motion parameter NB, the thermophoresis parameter NT,
non-dimensional parameter R0, micropolar parameter K0, thermal slip parameter M, suction parameter
γ, stretching or shrinking parameter λ, and velocity slip S on velocity profile, concentration profile and
temperature profile are revealed in Figures 2–17.
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3.1. Influence of Physical Parameters on Velocity Profile

Here we have shown the effects of the non-dimensional parameter R0, micropolar parameter K0,
suction γ, stretching/shrinking parameter λ, the Brownian motion parameter NB, the thermophoresis
parameter NT, and velocity slip S on velocity profile F′(ζ). Figure 2 shows the impacts of physical
parameter K0 on the velocity profile. It illustrates that the momentum boundary layer thickness
improves when the value of K0 increases. In the both cases of stretching or shrinking parameter λ,
the velocity profile increases but the stretching parameter gains higher momentum boundary layer
thickness when compared to shrinking parameter. Figure 3 displays the impact of R0 on the velocity
profile. The momentum boundary layer thickness increases as R0 increases. It is highlighted that
achieves of the momentum boundary layer thickness is more sensitive to the stretching parameter than
the shrinking parameter. The impact of velocity slip on the velocity profile is highlighted in Figure 4. It
is seen that velocity profile is increased with an increase in the velocity slip parameter in the case of
λ > 0 and declines the velocity profile when the velocity slip parameter is increased in case of λ < 0.
Figure 5 reveals the impact of the suction parameter on the velocity profile. It is observed that velocity
profile increases for the higher value of the suction parameter. In the both cases of the stretching or
shrinking parameter, the momentum boundary layer thickness increases for the higher values of the
suction parameter.

3.2. Effects of Physical Parameters on Temperature Profile

Figures 6–11 reveal the effects of physical parameters on the temperature profile. The influences
of K0 and R0 on the temperature profile is highlighted in Figures 6 and 7. It is noted that thermal
boundary layer thickness declines when the values of K0 and R0 increase. But in case of a stretching
surface, the values of the thermal boundary layer thickness increases when compared to a shrinking
surface. Figures 8 and 9 highlight the impact of M and NB on the temperature profile. The thermal
boundary layer thickness declines for larger values of M, but in case of stretching surface, the values of
the thermal boundary layer thickness achieves fastly when compared to a shrinking surface, while the
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opposite is observed for the effect of NB on the the temperature profile, shown in Figure 9. The impact
of γ and NT on the temperature profile is highlighted in Figures 10 and 11. The thermal boundary
layer thickness declines for the larger values of γ and NT. In case of a stretching surface, the values of
the thermal boundary layer thickness increases when compared to a shrinking surface, as highlighted
in in Figures 10 and 11.

3.3. Effects of Physical Parameters on Concentration Profile

Figures 12–17 reveal the influence of physical parameters on concentration profile which illustrates
interesting results. The influence of the K0 and R0 on the concentration profile is highlighted in
Figures 12 and 13. The values of K0 increased while the concentration profile reduced, as highlighted
in Figure 12. In the case of a stretching surface, the values of solutal layer thickness increased when
it compared with a shrinking surface. Figure 13 highlights the influence of R0 on the concentration
profile. It is noted that the concentration profile increased the solutal layer thickness when the values
of R0 increased in case of a stretching surface, the values of solutal layer thickness increased when
it compared with shrinking surface. Figures 14 and 15 reveal the influence of γ and M on the
concentration profile. As γ increased, the concentration profile increased. It is very interesting that
the solutal layer thickness was raised as the values of γ while in case of a stretching surface, the
values of solutal layer thickness achieves fastly when compared with a shrinking surface, which is
shown in Figure 14. Figure 15 highlights the impact of M on the concentration profile. It is prominent
that the values of M increased while the solutal layer thickness increased and after the intersection
point, the opposite behavior was seen in the case of the stretching surface; the values of solutal layer
thickness increased when it compared with the shrinking surface. The impact of NB and NT on the
concentration profile is highlighted in Figures 16 and 17. The concentration profile reduced as the
values of NT rose. The solutal layer thickness increased for the higher values of NT but after the point
of the intersection, the solutal layer thickness changed the behavior for NT as reduce for the larger
values of NT. Figure 17 reveals the influence of NT on the concentration profile. It is seen that the
concentration profile increased for greater values of NT while in case of stretching surface, the values
of solutal layer thickness increased when compared to the shrinking surface.

3.4. Numerical Results

Table 1 displays the impact of physical parameters namely, non-dimensional parameter R0,
curvature parameter K0, thermal slip parameter M, suction parameter γ, stretching or shrinking
parameter λ, the Brownian motion parameter NB, the thermophoresis parameter NT, and velocity slip
S, as highlighted on the Re1/2

s C f , Re1/2
s Nus , and Re−1/2

s Shs. The values of Re1/2
s C f rises for the higher

values of R0 in case of λ < 0 but reduces in case of λ > 0. The values of Re1/2
s Nus and Re−1/2

s Shs

enhances for larger values of R0 in both cases of λ > 0 and λ < 0. The values of K0 rises with the
declining of Re1/2

s C f , Re1/2
s Nus , and Re−1/2

s Shs in case of λ > 0 while reduces the values of Re1/2
s C f

and increases the values of Re1/2
s Nus and Re−1/2

s Shs for large values of physical parameter K0 in case
of λ < 0. It is noted that the values of Re1/2

s C f decline in case of λ > 0 while increase the values of
Re1/2

s C f in case of λ < 0 for the larger values of λ. Also highlighted are the effects of λ on the Re1/2
s Nus

and Re−1/2
s Shs. The values of Re1/2

s Nus and Re−1/2
s Shs rises with the rising values of λ in both cases of

λ > 0 and λ < 0. The numerical values f Re1/2
s Nus and Re−1/2

s Shs decline for the greater values of M
in both cases of λ > 0 and λ < 0. The numerical values of Re1/2

s Nus and Re−1/2
s Shs decline for the

greater values of NB in both cases of λ > 0 and λ < 0. The numerical values f Re1/2
s Nus and Re−1/2

s Shs

increase for the greater values of NB in both cases of λ > 0 and λ < 0. The numeral values of Re1/2
s C f ,

Re1/2
s Nus and Re−1/2

s Shs decline for the higher values of S in the case of λ > 0. It is also interesting that
the values of Re1/2

s C f decline and the values of Re1/2
s Nus and Re−1/2

s Shs increase for higher values of S.
Table 2 shows the comparison with different method to find the solution. It is observed that the BVP4C
method finds to best agreement as compared to other methods.
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Table 1. Numerical results of physical parameters for Re1/2
s C f , Re1/2

s Nus , and Re−1/2
s Shs.

For λ > 0 For λ < 0

R0 K0 γ M NB NT S Re1/2
s Cf Re1/2

s Nus Re−1/2
s Shs Re1/2

s Cf Re1/2
s Nus Re−1/2

s Shs

0.1 0.3 0.4 0.4 0.5 0.5 0.4 −0.6559 1.0014 −1.0014 1.1634 0.9934 −0.9934

0.2 −0.6056 1.1639 −1.1639 1.2110 1.1527 −1.1527

0.3 −0.5417 1.2764 −1.2764 1.2710 1.2635 −1.2635

0.4 −0.4584 1.3642 −1.3642 1.3488 1.3502 −1.3502

0.3 0.1 −0.9736 1.4909 −1.4909 1.2485 1.4890 −1.4890

0.2 −0.7471 1.3385 −1.3385 1.2516 1.3315 −1.3315

0.3 −0.5417 1.2764 −1.2764 1.2710 1.2635 −1.2635

0.4 −0.3472 1.2454 −1.2454 1.3062 1.2264 −1.2264

0.3 0.0 −0.5593 1.1712 −1.1712 1.2537 1.1572 −1.1572

0.2 −0.5507 1.2244 −1.2244 1.2622 1.2109 −1.2109

0.4 −0.5417 1.2764 −1.2764 1.2710 1.2635 −1.2635

0.6 −0.5324 1.3269 −1.3269 1.2802 1.3146 −1.3146

0.4 0.0 −0.5417 2.5835 −2.5835 1.2710 2.5312 −2.5312

0.2 −0.5417 1.7104 −1.7104 1.2710 1.6873 −1.6873

0.4 −0.5417 1.2764 −1.2764 1.2710 1.2635 −1.2635

0.6 −0.5417 1.0175 −1.0175 1.2710 1.0093 −1.0093

0.4 0.1 −0.5417 1.3110 −6.5549 1.2710 1.2980 −6.4898

0.3 −0.5417 1.2991 −2.1652 1.2710 1.2861 −2.1435

0.5 −0.5417 1.2764 −1.2764 1.2710 1.2635 −1.2635

0.7 −0.5417 1.2449 −0.8892 1.2710 1.2322 −0.8801

0.5 0.1 −0.5417 1.1503 −0.2301 1.2710 1.1385 −0.2277

0.3 −0.5417 1.2438 −0.7463 1.2710 1.2311 −0.7387

0.5 −0.5417 1.2764 −1.2764 1.2710 1.2635 −1.2635

0.7 −0.5417 1.2985 −1.8179 1.2710 1.2855 −1.7997

0.5 0.0 −1.9708 1.2864 −1.2864 4.6233 1.2388 −1.2388

0.2 −0.8498 1.2786 −1.2786 1.9939 1.2582 −1.2582

0.4 −0.5417 1.2764 −1.2764 1.2710 1.2635 −1.2635

0.6 −0.3976 1.2754 −1.2754 0.9328 1.2659 −1.2659
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Table 2. Comparison equeaBVP4C with shooting method and ND solve method.

Parameter BVP4C Method Shooting Method ND Solve Method

M NB NT Re1/2
s Nus Re−1/2

s Shs Re1/2
s Nus Re−1/2

s Shs Re1/2
s Nus Re−1/2

s Shs

0.0 0.5 0.5 2.5835 −2.5835 2.5835 −2.5765 1.9865 −2.4689

0.2 1.7104 −1.7104 1.6812 −1.7011 1.5864 −1.6841

0.4 1.2764 −1.2764 1.2584 −1.2698 1.1981 −1.2963

0.6 1.0175 −1.0175 1.0115 −1.0109 0.9987 −1.0115

0.4 0.1 1.3110 −6.5549 1.2986 −6.4986 1.0982 −6.3124

0.3 1.2991 −2.1652 1.2869 −2.0985 1.1978 −2.0258

0.5 1.2764 −1.2764 1.2689 −1.1989 1.2114 −1.0638

0.7 1.2449 −0.8892 1.2334 −0.7995 1.1983 −0.6987

0.5 0.1 1.1503 −0.2301 1.1369 −0.1968 1.0953 −0.1657

0.3 1.2438 −0.7463 1.2589 −0.7328 1.1896 −0.6985

0.5 1.2764 −1.2764 1.2765 −1.2654 1.2546 −1.1896

0.7 1.2985 −1.8179 1.2893 −1.7691 1.2789 −1.7361

4. Conclusions

We considered the steady flow of Buongiorno’s model over a permeable exponentially stretching
channel. This is the first mathematical model to focus on an exponentially stretching, curved channel.
The mathematical model was solved numerically through a BVP4C scheme. The influence of the
governing parameters which were involve in ordinary differential equations were highlighted through
graphs while Re1/2

s C f , Re1/2
s Nus , and Re−1/2

s Shs were highlighted through the tables. The following
interesting results were obtained given the assumptions: Momentum boundary layer thickness, thermal
boundary layer thickness, and solutal boundary layer thickness grow larger when λ > 0 as compared
to the case when λ < 0. Numerical values are compared with three methods, namely, the BVP4C
method, the shooting technique, and the ND solve technique in Table 2. It is noted that the BVP4C is a
much better technique when compared to the shooting technique and the ND solve method.
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Nomenclature

Physical parameters
Pr Prandtl number Tw Wall temperature
γ Suction/Injection T∞ Ambient temperature
M Thermal slip νf Fluid kinematic Viscosity
K0 Curvature parameter κf Thermal conductivity of fluid
R0 Stretching parameter λ Stretching or shrinking parameter
Θ Temperature profile S Velocity slip
F Velocity profile NB Brownian motion parameter
ρ Density NT Thermo-phoresis parameter
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