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Abstract: Irregularity indices are usually used for quantitative characterization of the topological
structures of non-regular graphs. In numerous problems and applications, especially in the fields
of chemistry and material engineering, it is useful to be aware of the irregularity of a molecular
structure. Furthermore, the evaluation of the irregularity of graphs is valuable not only for
quantitative structure-property relationship (QSPR) and quantitative structure-activity relationship
(QSAR) studies but also for various physical and chemical properties, including entropy, enthalpy
of vaporization, melting and boiling points, resistance, and toxicity. In this paper, we will restrict
our attention to the computation and comparison of the irregularity measures of different classes of
dendrimers. The four irregularity indices which we are going to investigate are σ irregularity index,
the irregularity index by Albertson, the variance of vertex degrees, and the total irregularity index.

Keywords: molecular graph; irregularity indices; dendrimers

1. Introduction

The rapid growth in the field of medicine has resulted in the production of unknown
nanomaterials, crystalline materials, and drugs. To investigate the chemical properties of these
compounds, huge efforts of the pharmaceutical researchers are required and are being made. One way
to understand it is by using mathematics, and in mathematical chemistry many concepts of graph
theory are being used to formulate the mathematical models for chemical phenomena. Molecules and
molecular compounds can be considered as graphs if we correspond atoms to vertices and chemical
bonds to edges respectively. Such graphs are called molecular graphs. The notion of topological indices
(TIs) helps the pharmacists by providing some information based upon the structures of materials,
which reduce their workload. Computing the TIs of a compound may help in approximating its
medicinal behaviour [1]. With the passage of time, the idea of understanding compounds through
TIs gained significant importance in the field of medicine because it does not require chemical-related
apparatus to study [2]. TIs are being intensively studied for different graphs, especially for chemical
graphs, for example, see [3–6]. TIs can be separated into various classes, specifically distance-based
indices, degree-based indices, eigenvalue-based indices, and mixed indices. An important subclass
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of degree-based indices is the class of irregularity indices that measure the irregularity of the given
graph. A topological invariant TI(G) of a graph G is known as the irregularity index if TI(G) ≥ 0
and TI(G) = 0, if and only if, it is a regular graph. Before the article [7], it was considered that the
irregularity indices do not play a significant role to predict physico-chemical properties of organic
molecules. In [7] authors performed a regression analysis to check and evaluate the applications of
different graph irregularity indices for the estimation of physico-chemical properties of octane isomers.
They showed that there exist many irregularity indices by which four octane isomer properties such
as standard enthalpy of vaporization (DHVAP), Acentric factor (AcenFac), Entropy, and Enthalpy of
vaporization (HVAP) can be estimated with a correlation coefficient greater than 0.9. Before proceeding
further with the details related to irregularity indices, we include some important definitions.

Throughout the article, we denote vertex set of a graph G by V(G) and edge set by E(G). A regular
graph is a graph whose all vertices have the same degree, otherwise it is called the irregular graph.
A sequence c1, . . . , cn′ , where ci ∈ Z+ for all i = 1, . . . , n′, is called a degree sequence of a graph G,
if a graph G exists with the property that V(G) = {v1, . . . , vn′} and dG(vj) = cj. Let nj denotes the
number of vertices of degree j, where j = 1, 2, . . . , n− 1. Let e = uv ∈ E(G), the imbalance of e is
defined as imb(e) := |dG(u)− dG(v)|. In 1997, the term “irregularity of a graph G” was introduced by
Albertson [8]. It is denoted by irr(G) and defined as follows:

irr(G) = ∑
e∈E(G)

imb(e) (1)

This invariant is also known as the third Zagreb index. It follows immediately that a graph
has zero irregularity if and only if it is a regular graph. Albertson [8] showed that the irregularity
of any graph is an even number. Furthermore, he also proposed upper bounds for irregularity of
triangle-free graphs, bipartite graphs, and for trees. The relationships between the matching number
and irregularity of unicyclic graphs and trees were examined in [9]. Hansen et al. [10] characterized
the graphs with maximal irregularity. Abdo and Dimitrov [11] worked out for the irregularity of graph
operations. In 2014, Abdo et al. [12] defined the total irregularity measure of a graph G, which was
denoted and detailed as follows:

irrt(G) =
1
2 ∑

u,v∈V(G)

|dG(u)− dG(v)|. (2)

The relationship between irregularity measures, characterization of graphs with extremal
irregularity and the smallest graph with the same irregularity indices are explored in [13].
Fath-Tabar [14] set up some new bounds on the Zagreb indices using the irregularity of graphs. For the
detail discussions about these graph invariants, we refer [15,16]. Very recently, Gutman et al. [17]
introduced the σ irregularity index of a graph G, which is described as:

σ(G) = ∑
uv∈E(G)

(dG(u)− dG(v))2. (3)

Some properties of this index have been presented in [18,19]. If the order and size of G is n and m,
then the variance of G is defined as [20]:

Var(G) :=
1
n

n−1

∑
j=1

nj
(

j− 2m
n
)2

=
1
n

n

∑
j=1

d2
j −

1
n2

( n

∑
j=1

dj
)2. (4)

As for prerequisite, the reader is expected to be familiar with dendrimers. Recently, it has
been noticed that the highly branched macromolecules have exceptionally different properties from
the traditional polymers. Their structural properties have a huge impact on their applications.
These hyperbranched molecules are called dendrimers. Moreover, the linear growth in the size
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of dendrimers makes them the ideal delivery vehicle candidates for the study of effects of composition,
and size of polymer in the biological properties like cytotoxicity, blood plasma retention time,
lipid bilayer interactions, and filtration, see [21] and references therein. These molecules were first
discovered (and studied) by E.Buhleier [22], D. Tomalia [23], and G. R. Newkome [24]. There are
many known dendrimers with biological properties such as chemical stability, solubility, polyvalency,
electrostatic interactions, low cytotoxicity and self-assembling.

Although plenty of work has been executed on the distance and degree based indices of molecular
graphs, the analyses of irregularity measures for chemical structures still need attention. In [25–28],
the irregularity measures of various chemical structures were investigated. In this work, we are
interested in the irregularity indices of the molecular graphs of different types of dendrimers.
For some topological aspects of different complex dendrimers structures, we refer the interested
reader to [29–37]. We will restrict our attention to three dendrimers Polyamidoamine (PAMAM),
Poly(EThyleneAmidoAmine) (PETAA), and poly(PropylETherIMine)(PETIM) dendrimers.

2. Main Results

In this section, we will compute the irregularity indices of several classes of dendrimers.
Firstly, we describe the significance of PAMAM dendrimers. Furthermore, we will also compute
four irregularity indices for PAMAM dendrimers.

2.1. Irregularity Measures of PAMAM Dendrimers

The PAMAM dendrimers are a family of dendrimers which is made of repetitively branched
subunits of amide and amine functionality. PAMAM dendrimers have hydrophilic interiors and
exteriors, which play a role for its unimolecular micelle properties. Moreover, PAMAM-based carriers
increase the possibility of bioavailability of problematic drugs. Hence, PAMAM nanocarriers enhance
the potential of the bioavailability of drugs, which are not so soluble for efflux transporters, see [38,39].
Due to these properties, PAMAM dendrimers were extensively studied since their synthesis in 1985,
see [40,41]. Donald A. Tomalia brought in the PAMAM (polyamidoamine) as a novel class of polymers,
called starburst polymers [40]. From then on, the study of PAMAM dendrimers has remained the most
prominent topic of research due to its various applications in different fields, including biomedical
applications. For further detail and biomedical application, we refer [42].

Let D1(n) be the molecular graph of this dendrimers, where n represents the generation stage
of D1(n). The molecular graph of PAMAM dendrimer has four branches, and the central core
has four vertices. The total number of vertices in each branch is 13 × 20 + 13 × 21 + · · · + 13 ×
2n−1 + 3 × 2n + 5 = 16 × 2n − 8. Hence, the total number of vertices in this molecular graph is
4(16× 2n − 8) + 4 = 64× 2n − 28. In [43], it is shown that for a given tree graph G (Tree is a connected
graph which has no cycle), it follows that |E(G)| = |V(G)| − 1. Since PAMAM dendrimer is a tree
graph, the total number of edges is 64× 2n − 29. The chemical structure of this dendrimer is shown in
Figure 1.

Theorem 1. Let D1(n) be the molecular graph of PAMAM dendrimer, where n ≥ 0 is the generation. Then the
irregularity indices are given by

irr(D1(n)) = 48× 2n − 22,

irrt(D1(n)) = 552× 4n − 476× 2n + 102,

σ(D1(n)) = 64× 2n − 30,

Var(D1(n)) =
384× 4n − 328× 2n + 69)

4(16× 2n − 7)2 .



Processes 2019, 7, 662 4 of 14

Proof. The order and size of D1(n) are 64× 2n − 28 and 64× 2n − 29, respectively. Let V3
i (n) be the

set of vertices of degree i in D1(n). We can classify the vertices of V(D1(n)) into three partite sets,
the orders of these sets are |V3

1 (n)| = 12× 2n − 4, |V3
2 (n)| = 40× 2n − 18 and |V3

3 (n)| = 12× 2n − 6.
Now, let E3

jk(n) ⊂ E(D1(n)) be the set of edges that have end vertices of degrees j and k. We make
partition of the edge set E(D1(n)) on the basis of degrees of end vertices of each edge which yields
four subsets. The cardinalities of these partite subsets are |E3

12(n)| = 4× 2n, |E3
13(n)| = 8× 2n − 4,

|E3
22(n)| = 24× 2n − 11, and |E3

23(n)| = 28× 2n − 14.
Followed by the above information and the expressions of irregularity indices manifested in

Equations (1)–(4), the explicit formulas of these indices can be obtained in the following way:

irr(D1(n)) = ∑
uv∈E(D1(n))

|dD1(n)(u)− dD1(n)(v)|

=

 ∑
uv∈E3

12(n)

+ ∑
uv∈E3

13(n)

+ ∑
uv∈E3

23(n)

 |dD1(n)(u)− dD1(n)(v)|

= 48× 2n − 22.

irrt(D1(n)) =
1
2 ∑

u,v∈V(D1(n))
|dD1(n)(u)− dD1(n)(v)|

=
1
2

(
(12× 2n − 4)(40× 2n − 18) + (12× 2n − 4)(12× 2n − 6)

+ (12× 2n − 6)(40× 2n − 18)
)

= 552× 4n − 476× 2n + 102.

σ(D1(n)) = ∑
uv∈E(D1(n))

(dD1(n)(u)− dD1(n)(v))
2

=

 ∑
uv∈E3

12(n)

+ ∑
uv∈E3

13(n)

+ ∑
uv∈E3

23(n)

 (dD1(n)(u)− dD1(n)(v))
2

= 64× 2n − 30.

Var(D1(n)) =
1
n′ ∑

v∈V(D1(n))
d2

D1(n)
(v)− 1

n′2

 ∑
v∈V(D1(n))

dD1(n)(v)

2

=
1
n′

 ∑
v∈V3

1

d2
D1(n)

(v) + ∑
v∈V3

2

d2
D1(n)

(v) + ∑
v∈V3

3

d2
D1(n)

(v)


− 1

n′2

 ∑
v∈V3

1

dD1(n)(v) + ∑
v∈V3

2

dD1(n)(v) + ∑
v∈V3

3

dD1(n)(v)

2

=
1

64× 2n − 28
((1)2(12× 2n − 4) + (2)2(40× 2n − 18)

+ (3)2(12× 2n − 6))− 1
(64× 2n − 28)2 (((1)(12× 2n − 4))

+ (2)(40× 2n − 18) + (3)(12× 2n − 6))2.
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By means of simple calculations, we derive that

Var(D1(n)) =
384× 4n − 328× 2n + 69)

4(16× 2n − 7)2 .

Figure 1. D1(n) with n = 3.

The values of the computed irregularity indices against the different generation stages of PAMAM
dendrimers are shown in the Table 1.

Table 1. The values of irregularity indices of structure of Polyamidoamine (PAMAM) dendrimers
against different generation stages.

Growth Stage irr(D1(n)) irrt(D1(n)) σ(D1(n)) Var(D1(n))

D1(1) 74 1358 98 949/2500
D1(2) 170 7030 226 4901/12,996
D1(3) 362 31,622 482 22,021/58,564
D1(4) 746 133,798 994 93,125/248,004
D1(5) 1514 550,118 2018 382,789/1,020,100

The complex synthesis of PAMAM limits the clinical translation of the materials based on PAMAM.
Interestingly, PolyEThyleneAmidoAmine (PETAA) dendrimers with more uniform and complete
structure then PAMAM possesses several properties of PAMAM. In the next subsection, we will
investigate four irregularity indices of PETAA dendrimers.
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2.2. Irregularity Measures of PolyEThyleneAmidoAmine (PETAA) Dendrimers

PolyEThyleneAmidoAmine (PETAA) dendrimers have various properties of PAMAM dendrimers
such as the number of bonds between the surface, and the dendrimer core is the same.
Moreover, the number of surface primary amino groups and tertiary amino groups in PETAA
dendrimers are also the same as in PAMAM dendrimers. Other than that, the unique synthesis
process of the PETAA enhances its potential for the large-scale production, which results in more
application in biomedical sciences [44]. Consequently, the study of PETAA becomes a very respected
topic of research. The molecular graph of this dendrimers is denoted by D2(n), where n represents
the generation of D2(n). The number of vertices in D2(n) is 44× 2n − 19 and the number of edges is
44× 2n − 18. The molecular graph D2(n) for n = 5 is shown in Figure 2.

Figure 2. Chemical structure of Poly(EThyleneAmidoAmine) (PETAA) dendrimer D(5).

Theorem 2. For the molecular graph of PETAA dendrimers D2(n), the irregularity indices are the following:

irr(D2(n)) = 32× 2n − 13,

irrt(D2(n)) = 256× 4n − 204× 2n + 40,

σ(D2(n)) = 40× 2n − 17,

Var(D2(n)) =
2(88× 4n − 69× 2n + 13)

(22× 2n − 9)2 .

Proof. The order and the size of D2(n) are 44× 2n − 18 and 44× 2n − 19 respectively. Let V2
i (n) be

the set of vertices of degree i in D2(n). We can classify the vertices of V(D2(n)) into three partite sets;
the orders of these sets are |V2

1 (n)| = 8× 2n − 2, |V2
2 (n)| = 28× 2n − 12, and |V2

3 (n)| = 8× 2n − 4.
Now, let E2

jk(n) ⊂ E(D2(n)) be the set of edges that have end vertices of degrees j and k. There are
four types of edges in E(D2(n)) based on the degrees of end vertices of each edge. The cardinalities
of these partite sets are |E2

12(n)| = 4 × 2n, |E2
13(n)| = 4 × 2n − 2, |E2

22(n)| = 16 × 2n − 8, and
|E2

23(n)| = 20× 2n − 9.
Now, with the help of vertex and edge partitions and Equations (1)–(4), the irregularity indices

can be computed in the following manner:
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irr(D2(n)) = ∑
uv∈E(D2(n))

|dD2(n)(u)− dD2(n)(v)|

=

 ∑
uv∈E2

12(n)

+ ∑
uv∈E2

13(n)

+ ∑
uv∈E2

23(n)

 |dD2(n)(u)− dD2(n)(v)|

= 32× 2n − 13.

irrt(D2(n)) =
1
2 ∑

u,v∈V(D2(n))
|dD2(n)(u)− dD2(n)(v)|

=
1
2

(
(8× 2n − 2)(28× 2n − 12) + (8× 2n − 2)(8× 2n − 4)

+ (8× 2n − 4)(28× 2n − 12)
)

= 256× 4n − 204× 2n + 40.

σ(D2(n)) = ∑
uv∈E(D2(n))

(dD2(n)(u)− dD2(n)(v))
2

=

 ∑
uv∈E2

12(n)

+ ∑
uv∈E2

13(n)

+ ∑
uv∈E2

23(n)

 (dD2(n)(u)− dD2(n)(v))
2

= 40× 2n − 17.

Var(D2(n)) =
1
n′ ∑

v∈V(D2(n))
d2

D2(n)
(v)− 1

n′2

 ∑
v∈V(D2(n))

dD2(n)(v)

2

=
1
n′

 ∑
v∈V2

1

d2
D2(n)

(v) + ∑
v∈V2

2

d2
D2(n)

(v) + ∑
v∈V2

3

d2
D2(n)

(v)


− 1

n′2

 ∑
v∈V2

1

dD2(n)(v) + ∑
v∈V2

2

dD2(n)(v) + ∑
v∈V2

3

dD2(n)(v)

2

=
1

44× 2n − 18
((1)2(8× 2n − 2) + (2)2(28× 2n − 12)

+ (3)2(8× 2n − 4))− 1
(44× 2n − 18)2 (((1)(8× 2n − 2))

+ (2)(28× 2n − 12) + (3)(8× 2n − 4))2.

After simplification, we get

Var(D2(n)) =
2(88× 4n − 69× 2n + 13)

(22× 2n − 9)2 .

The Table 2 describes the values of the computed irregularity indices against the different
generation stages of PETAA dendrimers.



Processes 2019, 7, 662 8 of 14

Table 2. The values of irregularity indices of structure of PETAA dendrimers against different
generation stages.

Growth Stage irr(D2(n)) irrt(D2(n)) σ(D2(n)) Var(D2(n))

D2(1) 51 656 63 454/1225
D2(2) 115 3320 143 2290/6241
D2(3) 243 14,792 303 10,186/27,889
D2(4) 499 62,312 623 42,874/117,649
D2(5) 1011 255,656 1263 175,834/483,025

In 2003, another dendrimer poly (propyl ether imine) (PETIM) was synthesized [45] and
reported as a carrier for the sustained delivery of the drug ketoprofen [46]. In the last subsection, we
are going to highlight the irregularity-based topological indices of this dendrimers.

2.3. Irregularity Measures of Poly (propyl ether imine) (PETIM) Dendrimers

Zidovudine (AZT) is the first antiretroviral drug approved by the Food and Drug Administration
(FDA) for the treatment of Acquired Immune Deficiency Syndrome (AIDS) [47]. In a recent
investigation, AZT-loaded PETIM dendrimer for its sustained drug delivery was studied. The findings
of the present study revealed that PETIM dendrimer is a better alternative for sustained drug delivery
of zidovudine in comparison to present conventional therapy [48]. Let D3(n) be the molecular graph
of this dendrimers, where n represents the generation stage of D3(n). The molecular graph D3(n) for
n = 5 is shown in Figure 3.
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Figure 3. D3(n) with n = 5.

Theorem 3. For the molecular graph D3(n), the irregularity indices can be represented by the
following formulas:

irr(D3(n)) = 8× 2n − 6 = σ(D3(n)),

irrt(D3(n)) = 40× 4n − 62× 2n + 21,

σ(D3(n)) = 8× 2n − 6,

Var(D3(n)) =
96× 4n − 140× 2n + 42

(24× 2n − 23)2 .

Proof. The order and the size of D3(n) are 3× 2n+3 − 23 and 24(2n − 1) respectively. Let V1
i (n) be

the set of vertices of degree i in D3(n). We can classify the vertices of V(D3(n)) into three partite sets,
the orders of these sets are |V1

1 (n)| = 2n+1, |V1
2 (n)| = 5× 2n+2 − 21 and |V1

3 (n)| = 2n+1 − 2.

Figure 3. D3(n) with n = 5.
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Theorem 3. For the molecular graph D3(n), the irregularity indices can be represented by the
following formulas:

irr(D3(n)) = 8× 2n − 6 = σ(D3(n)),

irrt(D3(n)) = 40× 4n − 62× 2n + 21,

σ(D3(n)) = 8× 2n − 6,

Var(D3(n)) =
96× 4n − 140× 2n + 42

(24× 2n − 23)2 .

Proof. The order and the size of D3(n) are 3× 2n+3 − 23 and 24(2n − 1) respectively. Let V1
i (n) be

the set of vertices of degree i in D3(n). We can classify the vertices of V(D3(n)) into three partite sets,
the orders of these sets are |V1

1 (n)| = 2n+1, |V1
2 (n)| = 5× 2n+2 − 21, and |V1

3 (n)| = 2n+1 − 2.
Now, let E1

jk(n) ⊂ E(D3(n)) be the set of edges that have end vertices of degrees j and k. There are
three types of edges in E(D3(n)) based on the degrees of end vertices of each edge. The cardinalities
of these partite sets are |E1

12(n)| = 2n+1, |E1
22(n)| = 2(2× 2n+3 − 9), and |E1

23(n)| = 6(2n − 1).
Followed by the above information, and the expressions of irregularity indices manifested in

Equations (1)–(4), the explicit formulae of these indices can be formulated as follows:

irr(D3(n)) = ∑
uv∈E(D3(n))

|dD3(n)(u)− dD3(n)(v)|

=

 ∑
uv∈E1

12(n)

+ ∑
uv∈E1

23(n)

 |dD3(n)(u)− dD3(n)(v)|

= 8× 2n − 6.

irrt(D3(n)) =
1
2 ∑

u,v∈V(D3(n))
|dD3(n)(u)− dD3(n)(v)|

=
1
2

(
(2n+1)(5× 2n+2 − 21) + (5× 2n+2 − 21)(2n+1 − 2)

)
= 40× 4n − 62× 2n + 21.

σ(D3(n)) = ∑
uv∈E(D3(n))

(dD3(n)(u)− dD3(n)(v))
2

=

 ∑
uv∈E1

12(n)

+ ∑
uv∈E1

23(n)

 (dD3(n)(u)− dD3(n)(v))
2

= 8× 2n − 6.
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Var(D3(n)) =
1
n′ ∑

v∈V(D3(n))
d2

D3(n)
(v)− 1

n′2

 ∑
v∈V(D3(n))

dD3(n)(v)

2

=
1
n′

 ∑
v∈V1

1

d2
D3(n)

(v) + ∑
v∈V1

2

d2
D3(n)

(v) + ∑
v∈V1

3

d2
D3(n)

(v)


− 1

n′2

 ∑
v∈V1

1

dD3(n)(v) + ∑
v∈V1

2

dD3(n)(v) + ∑
v∈V1

3

dD3(n)(v)

2

=
1

3× 2n+3 − 23
((1)2(2n+1) + (2)2(5× 2n+2 − 21)

+ (3)2(2n+1 − 2))− 1
(3× 2n+3 − 23)2 (((1)(2

n+1))

+ (2)(5× 2n+2 − 21) + (3)(2n+1 − 2))2.

Further simplifications yield

Var(D3(n)) =
96× 4n − 140× 2n + 42

(24× 2n − 23)2 .

The Table 3 presents the values of the computed irregularity indices against the different
generation stages of PETIM dendrimers. In the next section, we present some graphical analysis
of irregularity measures (of the structures under discussion) based upon the results obtained in
this section.

Table 3. The values of irregularity indices of structure of poly (propyl ether imine) (PETIM) dendrimers
against different generation stages.

Growth Stage irr(D3(n)) irrt(D3(n)) σ(D3(n)) Var(D3(n))

D3(1) 10 57 10 146/625
D3(2) 26 413 26 1018/5329
D3(3) 58 2085 58 5066/28,561
D3(4) 122 9269 122 22,378/130,321
D3(5) 250 38,997 250 93,866/55,5025

3. Graphical Analysis and Discussions

In this section, we present our theoretical outcomes and deduce which of the dendrimer structures
depicted above is more irregular than the remaining ones with respect to a specific irregularity index.
Each dendrimer structure relies on a single variable n. We plot the graph with irregularity index
of D1(n), D2(n), and D3(n) (on a single graph) as a dependent variable and n as an independent
variable. We observe that all the irregularity indices behave in a particular way with the increase in
the value of n. We provided the graphical appearances of these indices with respect to the change in
the growth stage of the dendrimer structure. In this graphical examination, the blue colour shows the
graphical functioning of the PETIM dendrimer structure, the red colour shows the graphical behaviour
of the PETAA dendrimer structure, and the green colour shows the graphical response of the PAMAM
dendrimer structure. We present the values of various irregularity indices for the dendrimer structures
in Tables 1–3. With the help of these tables, the comparative behavior of these irregularity indices
for dendrimer structures has been expressed in Figures 4–7. These figures show that the molecular
structure of PAMAM dendrimer is highly irregular as compared to the other dendrimer structures
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and the molecular structure of PETAA dendrimer is more irregular than the molecular structure of
PETIM dendrimer.

Figure 4. Albertson irregularity index.

Figure 5. σ irregularity index.
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Figure 6. Total irregularity index.

Figure 7. Variance index.

4. Conclusions

A modern trend in QSAR/QSPR studies is the use of properties which can be secure from the
molecular structure without any other input data. The basic reason for this is to forecast the chemical
properties of such a huge collection of compounds and drugs takes a large number of chemical
inspections, thereby these tasks increase the burden of work of the chemical and pharmaceutical
researchers. Thus, the strategy of estimating the topological indices has offered the explanations of such
medicinal behaviour of various compounds and drugs. Hence, the irregularity indices for the molecular
graphs of dendrimers are demonstrated by a mathematical derivation method and we presented the
comparison of the molecular structures by using the graph structures. Our outcomes could perform a
significant role in estimating and comparing the properties of these molecular structures.
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