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Abstract: This paper proposes a novel meta-heuristic optimization algorithm called the fine-tuning
meta-heuristic algorithm (FTMA) for solving global optimization problems. In this algorithm,
the solutions are fine-tuned using the fundamental steps in meta-heuristic optimization, namely,
exploration, exploitation, and randomization, in such a way that if one step improves the solution,
then it is unnecessary to execute the remaining steps. The performance of the proposed FTMA has
been compared with that of five other optimization algorithms over ten benchmark test functions.
Nine of them are well-known and already exist in the literature, while the tenth one is proposed by
the authors and introduced in this article. One test trial was shown to check the performance of each
algorithm, and the other test for 30 trials to measure the statistical results of the performance of the
proposed algorithm against the others. Results confirm that the proposed FTMA global optimization
algorithm has a competing performance in comparison with its counterparts in terms of speed and
evading the local minima.

Keywords: global optimization; meta-heuristics; swarm intelligence; benchmark functions;
exploration; exploitation; global minimum; local minimum

1. Introduction

Meta-heuristic optimization describes a broad spectrum of optimization algorithms that need
only the relevant objective function along with key specifications, such as variable boundaries and
parameter values. These algorithms can locate the near-optimum, or perhaps the optimum values
of that objective function. In general, meta-heuristic algorithms simulate the physical, biological, or
even chemical processes that happen in nature. Of the meta-heuristic optimization algorithms, the
following are the most widely used:

1. Genetic algorithms (GAs) [1], which simulate Darwin’s theory of evolution;
2. Simulated annealing (SA) [2], which emerged from the thermodynamic argument;
3. Ant colony optimization (ACO) algorithms [3], which mimic the behavior of an ant colony

foraging for food;
4. Particle swarm optimization (PSO) algorithms [4], which simulates the behavior of a flock of birds;
5. Artificial bee colony (ABC) algorithms [5], which mimic the behavior of the honeybee colony; and
6. Differential evolution algorithms (DEAs) [6], for solving global optimization problems.

Xing and Gao collected more than 130 state-of-the-art optimization algorithms in their book [7],
and these swarm-based optimizations are applied in different applications and study cases [8–14].
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Some algorithms start from a single point, such as SA, but the majority begin from a population of initial
solutions (agents) like GAs, PSO, and DEAs, most of which is referred to as “swarm intelligence” in their
mimicry of animal behaviors [15]. In these algorithms, every agent shares its information with other
agents through a system of simple operations. This information sharing results in improvements to the
algorithm performance and helps find the optimum or near-optimum solution(s) more quickly [3].

In any meta-heuristic optimization algorithm, there are three significant types of information
exchange between a particular agent with other agents in the population. The first is called exploitation,
which is a local search for the latest, and the best solution found so far. The second is called exploration,
which is a global search using another agent existing in the problem space [16]. The third is called
randomization, which is rarely used in some algorithms or may not be used at all. This last procedure
is similar to exploration, but instead of an existing agent, a randomly-generated agent is used. For
instance, ABC algorithms use randomization for the scout agent; therefore, it often succeeds in evading
many local minima. Many algorithms begin with exploration and gradually shift to exploitation
after several generations to avoid falling into local optimum values. Meta-heuristic algorithms then
maintain trade between exploration and exploitation [17]. However, the different types demonstrate
variations in how they perform this trade; by using this trade, these algorithms may get close to
near-optimum or even optimum solutions.

All agents compete with themselves to stay alive inside the population. Every agent that improves
its performance replaces any agent that did not promote itself. Therefore, in the fourth stage (i.e.,
selection) a variable selection method, such as greedy selection or roulette wheel, is used to choose the
best agent to replace the worst one [1]. Meta-heuristic algorithms may find near-optimum solutions
for some objective functions, but it may fall into local minima for other ones. This fact will be apparent
in the results of this article. To date, an optimization algorithm that offers a superior convergence
time and avoids local minima for objective functions has yet to be developed. Therefore, the area
is open to improving the existing meta-heuristic algorithms or inventing new ones to fulfill these
requirements [18].

In this article, a novel algorithm called the fine-tuning meta-heuristic algorithm (FTMA) is
presented. It utilizes information sharing among the population agents in such a way that it finds the
global optimum solution faster without falling into local ones; this is accomplished by performing
the necessary optimization procedures sequentially. In the next section, the proposed algorithm is
described in detail. Then, five well-known optimization algorithms are presented to compete with
FTMA over a ten-function benchmark. The results and discussion are shown in the final section, along
with the conclusions.

2. Literature Review

In the scope of the recent trends in nature-based meta-heuristic optimization algorithms, since the
genetic algorithms [1] and simulated annealing [2] has been presented, the race begins in inventing
many algorithms thanks to the rapid advances in computer speed and efficiency, especially in the new
millennia. From these algorithms, we mention the firefly algorithm (FA) [19], cuckoo search (CS) [20],
bat algorithm (BA) [21], flower pollination algorithm (FPA) [22], and many others mentioned in [23].

Many optimization algorithms were invented over the past five years. Some of them are new,
and the others are modifications and enhancements to the already-existing ones. One of the recent
and widely-used algorithms is grey wolf optimization (GWO) [24]; it is inspired by the grey wolves
and their hunting behaviors in nature. Four types of leadership hierarchy of the grey wolves as
well as three steps of prey hunting strategies are implemented. Mirjalili continued to invent other
algorithms. The same authors presented moth–flame optimization (MFO) [25]. This algorithm mimics
the navigation method of moths in nature which is called “traverse orientation”. The main path which
the moths travel along is towards the Moon. However, they may fall into a useless spiral path around
artificial lights if they encounter these in their way. Ant lion optimizer (ALO) has been proposed
in [26], which simulated the hunting mechanism of antlions in nature. Five main steps of hunting are
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implemented in this algorithm. Moreover, the same authors of [24] proposed a novel population-based
optimization algorithm, namely, the sine–cosine algorithm (SCA) [27], it fluctuates the solution agents
towards, or outwards, the best solution using a model based on sine and cosine functions. It uses
random and adaptive parameters to emphasize the search steps like exploration and exploitation.
Another proposed algorithm in the literature is the whale optimization algorithm (WOA) [28]. This
algorithm mimics the social behavior of humpback whales, using a hunting strategy called bubble-net,
as well as three operators to simulate this hunting strategy. All these algorithms mentioned above are
developed, enhanced, and modified through the years, hopefully to make them suitable for every real
problem which needs solving. However, no-free-lunch theorems state that there is no single universal
optimization method that can deal with every realistic problem [18].

3. Fine Tuning Meta-Heuristic Algorithm (FTMA)

The FTMA is a meta-heuristic optimization algorithm used to search for optimum solutions for
simple and/or complex objective functions. The fundamental feature of FTMA is the fine-tuning
meta-heuristic method used when searching for the optimum.

FTMA performs the fundamental procedures of solution update, which are exploration,
exploitation, randomization, and selection in sequential order. In FTMA, the first procedure of
exploration is undertaken concerning an arbitrarily-selected solution in the solution space. If the
solution is not improved according to the probability, the second procedure of exploitation is performed
concerning the best global solution found so far. Again, if the solution is not enhanced according to
probability, then the third procedure of randomization is performed concerning a random solution
generated in the solution space. The fourth procedure of selection is performed by comparing the
new solution and the old one and choosing the best according to the objective function. The FTMA
procedure steps are:

1) Initialization: FTMA begins with initialization. Its equation is shown below:

x0
i (k) = lb(k) + rand× (ub(k) − lb(k)); k = 1. 2. . . . d; i = 1, 2, . . . , N. (1)

At this point in the process, all the solutions xt
i are initialized randomly at the iteration counter t = 0

according to the lower bound lb and the upper bound ub for each solution space index k inside the solution
space dimension d. A random number rand, its value is between 0 and 1, is used to place the solution
value randomly somewhere between the lower and upper bounds. The space dimension, along with the
number of solutions N must be specified prior to the process. Then, the fitness f 0

xi is evaluated for each
solution x0

i using the objective function. The values of the best objective fitness f 0
b and its associated best

solution x0
b are initially obtained from the fitness and solutions vectors, respectively. Additionally, the

probabilities of exploitation and randomization, p, and r, respectively, are initialized.
After incrementing the iteration counter inside of the generation iteration loop, the four steps in

each iteration are performed in the FTMA core, as follows:

2) Exploration: The general formula of this step is as follows:

y(k) = xt
i(k) + rand×

(
xt

j(k) − xt
i(k)

)
. (2)

In this step, every solution xt
i is moved with respect to another existing solution vector xt

j, where j , i.
The value of the objective function for the temporary solution y is then evaluated as a temporary fitness g.

3) Exploitation: Its equation is presented as follows:

i f g > f t
xi && p > rand, y(k) = xt

i(k) + rand×
(
xt

b(k) − xt
i(k)

)
. (3)

If the fitness g is not improved compared with f t
xi and the probability of exploitation p is greater

than a random number rand; then the exploitation step will be initiated. In this step, the temporary
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solution vector y is calculated by moving the solution xt
i with respect to the best global solution, xt

b. The
value of the objective function for the temporary solution y is re-evaluated and stored in the temporary
fitness g.

4) Randomization: The formula of this step is as follows:

i f g > f t
xi && r > rand, y(k) = xt

i(k) + rand×
(
lb(k) + rand× (ub(k) − lb(k)) − xt

i(k)
)
. (4)

If the fitness g is not improved again in comparison with f t
xi and the probability of randomization

r is higher than a random number rand, then the randomization step will be initiated. In this step, the
solution xt

i moves with respect to a randomly-generated solution. The value of the objective function
for the temporary solution y is again re-evaluated and then stored in the temporary fitness g.

5) Selection: The final step of the FTMA iteration process is the selection step, which is summarized as:

i f g < f t
xi, xt+1

i = y; f t+1
xi = g, (5)

i f g < f t
b , xt+1

b = y; f t+1
b = g. (6)

6) Stopping Condition: The search ends if the global fitness value f t+1
b reaches zero or below a

specified tolerance value ε, or if the iteration counter t reaches its previously-specified maximum value
R. The pseudocode of FTMA is summarized as in Algorithm 1 below.

4. Methodology

To check the validity of the proposed FTMA, it should be tested with different well-known
optimization algorithms that were used widely in the literature. Five algorithms are chosen, although
there are many.

4.1. Well-Known Optimization Algorithms

(1) Genetic algorithm (decimal form) (DGA): This is similar to a conventional GAs with the exception
that the chromosomes are not converted to binary digits. It has the same steps as GAs, selection,
crossover, and mutation. Here, the crossover or mutation procedures are performed upon the
decimal digits as they are performed upon the bits in a binary GA. The entire procedure of the
DGA is taken from [29].

(2) Genetic algorithm (real form) (RGA): In this algorithm, the vectors are used in optimization as
real values, without converting them to integers or binary numbers. As a binary GA, it performs
the same procedures. The complete steps of DGA are taken from [30].

(3) Particle swarm optimization (PSO) with optimizer: The success of this famous algorithm is down
to its simplicity. It uses the velocity vector to update every solution, using the best solution of the
vector along with the best global solution found so far. The core formula of PSO is taken from [4].

(4) Differential evolution algorithm (DEAs): This algorithm chooses two (possibly three) solutions
other than the current solution and searches stochastically, using selected constants to update the
current solution. The whole algorithm is shown in [6].

(5) Artificial bee colony (ABC): This algorithm gained use for its distributed behavior simulating the
collaborative system of a honeybee colony. The system is divided into three parts, the employed
bees which perform exploration, the onlooker which shows exploitation, and the scout which
performs randomization. The algorithm is illustrated in [5].
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Algorithm 1: Fine-Tuning Meta-Heuristic Algorithm

Input: No. of solution population N, Maximum number of iterations R;
Tick;
for i = 1 to N

Initialize x0
i using Equation (1);

Evaluate f 0
xi for every x0

i ;
end for
Search for x0

b and f 0
b ;

Initialize t = 0, set p and r;
while t < R && f t

b > ε

t = t + 1;
for i = 1 to N

Choose xt
j such that j , i;

Compute y using Exploration (Equation (2));
Evaluate g for y;
if g > f t

xi && p > rand
Compute y using Exploitation (Equation (3));
Evaluate g for y;
if g > f t

xi && r > rand
Compute y using Randomization (Equation (4));
Evaluate g for y;

end if
end if
if g < f t

xi
Update xt+1

i and f t+1
xi using Equation (5);

if g < f t
b

Update xt+1
b and f t+1

b using Equation (6);
end if

end if
end for

end while
Output: xt+1

b , f t+1
b , t, and the computation time.

4.2. Benchmark Test Functions

The optimization algorithms mentioned above, along with the proposed algorithm, will be tested
on ten unimodal and multimodal benchmark functions. These functions have been used widely as
alternatives to real-world optimization problems. Table 1 illustrates nine of these functions.

where xi represents one of the solution parameters that i = 1, 2, 3 . . . d where d is the solution
space dimension. The bold 0 represents a solution vector of zeros, whereas the bold 1 represents a
solution vector of ones. The tenth benchmark function is proposed by the authors and introduced
for the first time in this article, which is a multimodal function with multiple local and one global
minimum, as shown in Table 2.

This function has 3d
− 1 local minima which are located on points whose coordinates equal either

0 or ±1 except for the global minimum which is located precisely at the origin. The positive real
parameter ε should be slightly higher than zero to trick the optimization algorithm to fall into the
local minima.
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Table 1. List of nine benchmark test functions used in global optimization.

Fn.Sym. Function Formula |xi| Optimum

F1 SPHERE
d∑

i=1
x2

i <5 f (0) = 0

F2 ELLIPSOID
d∑

i=1
ix2

i <5 f (0) = 0

F3 EXPONENTIAL 1− exp
(
−0.5×

d∑
i=1

x2
i

)
<5 f (0) = 0

F4 ROSENBROCK ∑d−1
i=1 100

(
xi+1 − x2

i

)2
+ (xi − 1)2 <2 f (1) = 0

F5 RASTRIGIN 10d +
d∑

i=1

(
x2

i − 10 cos 2πxi
)

<5 f (0) = 0

F6 SCHWEFEL 418.983d−∑d
i=1(xi + 420.968) sin

√
|xi + 420.968|

<100 f (0) = 0

F7 GREIWANK
∑d

i=1
x2

i
4000 −

∏d
i=1 cos xi√

i
+ 1 <600 f (0) = 0

F8 ACKLEY
−20 exp

−0.2

√∑d
i=1 x2

i
d

−
exp

(∑d
i=1 cos 2πx

d

)
+ e + 20

<32 f (0) = 0

F9 SCHAFFER
∑d−1

i=1 0.5 +
sin2(x2

i −x2
i+1)−0.5

(1+0.001(x2
i +x2

i+1))
2 <100 f (0) = 0

Table 2. The introduced benchmark test function.

Fn.Sym. Function Formula |xi| Optimum

F10 ALLAWI
d∑

i=1

(
x6

i − 2(ε+ 1)x4
i + (4ε+ 1)x2

i

)
. 0 < ε� 1 <2 f ∗(0) = 0

Figure 1 illustrates that function for d = 2 and for ε = 2.22× 10−16, which is the default constant
called eps used in MATLAB® package (MathWorks, Natick, MA, USA). There are eight local minima
distributed in a square space around the global minimum. The value of the function at these minima
may be represented as f (x) = 2ε

∑d
i=1|xi|.
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5. Results and Discussion

The two most essential requirements for an optimization algorithm are fast convergence and
reaching the global minimum without falling into the local minima. Therefore, the judge for which of
the optimization algorithms is the best will be taken according to these two criteria. The optimization
algorithms were used to find the optimum values for the ten benchmark functions through 30 trials,
to check for the mean error and the standard deviation for statistical comparison purposes. The
parameters of the optimization algorithm FTMA, p and r were set to be 0.7 to make the flow control
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probably bypass the exploitation and randomization steps, even if the fitness is not improved in the
exploration step. For all the algorithms, the number of dimensions was d = 2, the number of solution
population agents was N = 1000, and the maximum number of iterations was R = 1000. The results of
a sample trial are illustrated in Table 3.

Table 3. Results of the global fitness and computation time (s) for a sample trial. DGA: Genetic algorithm
(decimal form); RGA: Genetic algorithm (real form); PSO: Particle swarm optimization; DEA: Differential
evolution algorithms; ABC: Artificial bee colony; FTMA: fine-tuning meta-heuristic algorithm.

Fn.
DGA RGA PSO DEA ABC FTMA

Fitness Time Fitness Time Fitness Time Fitness Time Fitness Time Fitness Time

F1 1.06 ×
10−16 1.05 1.64 × 10−16 0.34 1.66 × 10−16 0.46 3.01 × 10−17 0.27 7.50 × 10−17 0.30 5.8 × 10−17 0.12

F2 1.07 ×
10−16 1.39 5.10 × 10−16 8.88 1.16 × 10−17 0.69 9.28 × 10−17 0.40 2.15 × 10−17 0.45 1.51 × 10−17 0.13

F3 2.22 ×
10−16 102 2.22 × 10−16 0.28 2.22 × 10−16 0.38 1.11 × 10−16 0.25 1.11 × 10−16 0.35 1.11 × 10−16 0.10

F4 1.95 × 10−6 6.96 1.20 × 10−5 4.84 1.97 × 10−16 0.46 1.63 × 10−16 0.46 4.37 × 10−7 2.52 7.05 × 10−17 0.41
F5 0 1.18 0 0.50 0 0.67 5.22 × 10−6 4.85 0 0.65 0 0.18
F6 0 1.00 0 0.46 0 0.58 0 0.28 0 0.633 0 0.15

F7 2.22 ×
10−16 1.23 0 0.53 0 0.71 5.33 × 10−9 5.41 1.11 × 10−16 2.15 0 0.21

F8 0 2.67 1.34 × 10−12 7.02 0 0.83 0 0.65 0 0.75 0 0.30
F9 0 0.58 2.22 × 10−16 0.20 0 0.31 0 0.43 2.22 × 10−16 0.66 0 0.09
F10 4.44 × 10−16 8.01 1.18 × 10−16 0.29 1.76 × 10−16 0.51 1.70 × 10−13 4.19 1.54 × 10−16 0.67 2.12 × 10−16 0.11

The data represent the output fitness value and the time taken by the optimization algorithm to
drive its optimum global fitness below the minimum tolerance error ε = 2.22× 10−16. The data in bold
represents the algorithm that simultaneously scored the fastest time and found the global minimum
for a specific benchmark function. The underlined data represents the algorithms that failed to pass
the tolerance and completed all 1000 generation cycles. The following ten figures in Figure 2 represent
the ten benchmark functions, illustrating the process of the optimization. All charts contain six lines
which differ in pattern, one for each optimization algorithm.
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Concerning the computation time, it is evident from Table 3 that the FTMA outperforms all other
algorithms. Furthermore, we can see that the DGA failed to reach the optimum in F4 and barely in
F7. For RGA, F2, F4, and F8 also failed. PSO evaded all local minima in all the benchmark functions.
Furthermore, DEA failed in F10 along with F5 and F7. The ABC algorithm succeeded in avoiding
local minima except for F4. In F5, F6, F8, and F9, most of the algorithms succeeded in capturing
the zero global optimum value. However, FTMA never fell into the local minima, scoring the best
convergence time out of all the optimization algorithms. Additionally, it reaches zero optimum value
in the functions from F5 through F9. One can see that some of the optimization algorithms are suitable
for some problems and not ideal for others. For example, DGA, RGA, and ABC failed in F4, but DEA
succeeded; the situation is in contrary to F5. This confirms the no-free-lunch theorems of the absence of
a universal algorithm for every problem. PSO, as well as FTMA, have both succeeded in evading the
local maxima and converging to the global one. However, the time taken by PSO to reach the optimum
is three to four times the time taken by FTMA. If we look at the ten subgraphs, which represent the
search progression of the algorithms for one trial (its results are illustrated in Table 3), we find that
the FTMA line (solid black) is the closest line to the vertical axis, which is the logarithmic scale of
the global fitness against the number of generations. Although the maximum number of iterations
is 1000, the maximum number of iterations displayed in the plots is set to be 150, because most of
the algorithms catch the global optimum at or before this generation. In all figures, FTMA is the
best-performing function. PSO and ABC are next best in most of the graphs. DGA, RGA, and DEA
failed on many occasions. If we take the time which FTMA reached the critical error tolerance, the
best of the other functions barely reached the fitness value at the same time. It can be seen from the
plots that some of the algorithms have trapped in local minima, especially in F4. This implies that
FTMA has the fastest convergence speed among the identified optimization algorithms. The values
of the mean and standard deviation for the 30 trials are evaluated for each optimization algorithm
and benchmark function. Table 4 illustrates the distribution of the output error, and Table 5 shows
the distribution of computation time. The bold and underlined values represent the fastest and failed
sets of trials, respectively. The trial sets are presented in ten sub-figures in Figure 3, one for each
benchmark function.
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Table 4. Statistical results of the output error for 30 trials.

Fn.
DGA RGA PSO DEA ABC FTMA

m. Std. m. Std. m. Std. m. Std. m. Std. m. Std.

F1 5.94 × 10−17 5.84 ×
10−17 5.10 × 10−15 2.43 × 10−14 1.03 × 10−16 6.23 × 10−17 9.13 × 10−17 5.75 × 10−17 1.00 × 10−16 6.80 × 10−17 7.84 × 10−17 5.35 × 10−17

F2 6.29 × 10−17 5.46 ×
10−17 2.20 × 10−16 7.04 × 10−16 7.74 × 10−17 5.98 × 10−17 1.05 × 10−16 6.76 × 10−17 8.78 × 10−17 6.24 × 10−17 9.95 × 10−17 6.52 × 10−17

F3 1.29 × 1016 9.96 ×
10−17 2.77 × 10−15 1.31 × 10−14 1.36 × 10−16 7.94 × 10−17 1.25 × 10−16 7.97 × 10−17 1.14 × 10−16 7.29 × 10−17 1.03 × 10−16 8.56 × 10−17

F4 2.69 × 10−06 8.17 × 10−06 3.51 × 10−05 0.0001 1.07 × 10−16 6.38 × 10−17 1.09 × 10−16 6.92 × 10−17 1.05 × 10−06 1.85 × 10−06 1.25 × 10−16 6.43 × 10−17

F5 0 0 8.52*10−15 4.52 × 10−14 0 0 3.99 × 10−07 4.84 × 10−07 0 0 0 0
F6 0 0 0 0 0 0 0 0 0 0 0 0
F7 1.18*10−16 1.03*10−16 1.33 × 10−16 8.78 × 10−17 1.03 × 10−16 8.56 × 10−17 1.50 × 10−07 1.96 × 10−07 1.11 × 10−16 9.50 × 10−17 1.03 × 10−16 8.56 × 10−17

F8 2.36*10−16 8.86*10−16 1.59 × 10−08 4.54 × 10−08 0 0 0 0 0 0 0 0
F9 1.03*10−16 1.10*10−16 1.55 × 10−16 1.01 × 10−16 1.25 × 10−16 1.1 × 10−16 1.55 × 10−16 1.01 × 10−16 1.48 × 10−16 1.04 × 10−16 1.40 × 10−16 1.07 × 10−16

F10 6.56*10−16 9.14*10−17 1.19 × 10−16 1.11 × 10−16 3.73 × 10−16 3.01 × 10−16 1.41 × 10−09 6.34 × 10−09 1.04 × 10−16 6.07 × 10−17 9.80 × 10−17 5.83 × 10−17

Table 5. Statistical results of the computation time (seconds) for 30 trials.

Fn.
DGA RGA PSO DEA ABC FTMA

m. Std. m. Std. m. Std. m. Std. m. Std. m. Std.

F1 1.085 0.221 0.566 1.091 0.546 0.072 0.315 0.047 0.364 0.040 0.125 0.021
F2 1.423 0.221 2.389 3.780 0.754 0.103 0.413 0.052 0.490 0.063 0.159 0.026
F3 1.021 0.219 1.215 2.224 0.525 0.075 0.291 0.034 0.353 0.067 0.166 0.015
F4 6.299 2.660 5.747 0.658 0.518 0.087 0.500 0.076 2.920 0.410 0.449 0.126
F5 1.275 0.247 1.788 2.561 0.687 0.091 5.200 0.500 0.733 0.084 0.203 0.033
F6 1.122 0.202 0.365 0.037 0.617 0.030 0.312 0.032 0.372 0.032 0.129 0.018
F7 1.361 0.290 0.686 0.110 0.714 0.030 5.783 0.111 2.100 0.241 0.213 0.028
F8 5.055 2.518 7.832 0.124 0.984 0.147 0.691 0.035 0.811 0.059 0.307 0.026
F9 0.773 0.139 0.404 0.761 0.343 0.054 0.478 0.051 0.765 0.092 0.119 0.022
F10 2.288 3.154 0.785 1.188 2.460 1.585 4.583 0.300 0.643 0.110 0.124 0.055
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In Table 4, the overall trials show that some algorithms that succeeded in one of the tests might
not achieve well in another one. It can be concluded that RGA failed in F2; DGA, RGA, and ABC
failed in F4. Moreover, DEA failed in F5; DEA, and ABC failed in F7; DGA and RGA failed in F8;
while PSO failed in the proposed benchmark function F10, which succeeded in all the other functions.
Although DGA average error is slightly less than the mean error of FTMA in F1, F2, and F9, the average
computation time is about eight times the computation time of the proposed algorithm. This implies
that the proposed algorithm succeeded in reaching the global minimum before DGA. It can be seen that
the computation time for the proposed algorithm is the best for all the benchmark functions. In Figure 3,
the plots contain six lines with different patterns, one for each optimization algorithm. The figures show
the logarithm of the computation time against computation trials. One can determine from these plots
that some optimization functions are suitable for some algorithms and not for another. For instance,
DEA is suitable for F4 but not for F5. The proposed algorithm always has the best computation time
among all the remaining algorithms. Its solid line lies in the bottom near the horizontal axis. In F4,
it is accompanied by PSO and DEA; in the other plots, it was alone in the bottom. For the proposed
benchmark system, DEA was the worst. PSO fell in local optima many times, and DGA a few times.
ABC and RGA performed well, but FTMA was the best.

6. Conclusions

This paper proposed a new global optimization named the fine-tuning meta-heuristic algorithm
(FTMA). From the simulation results, it can be concluded that the FTMA reaches the optimum value
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faster than any other optimization algorithm used in the comparison. Its performance is competing with
state-of-the-art methods, namely, RGA, DEA, ABC, PSO, and DGA. It accomplishes this in real-time
and, unlike other optimization algorithms, evading any local optima. Moreover, it maintains the
accuracy and robustness at the least runtime. Therefore, the FTMA offers a promising approach which,
thanks to its rapid convergence time, could be applied in more complicated real-time systems where
the time is a crucial factor. This result does not mean that this algorithm can solve any real problem
we may encounter in practice, as it stated in the no-free-lunch theorems, there may be processes that
this algorithm struggles to solve. So, there are possible opportunities to enhance the FTMA and/or its
counterparts. Future studies include using the FTMA in combinatorial optimization or integrating
the FTMA in control applications as an online or offline tuning algorithm for finding the optimal
parameters of the feedback controllers. Moreover, because the lack of resources (supercomputers,
etc.), the computation time of more than two parameters in the algorithm takes hours or sometimes
days. So, it is intended to make the problem space higher if these resources become available. Finally,
checking multi-dimensional spaces and using multi-objective problem scenarios are possible aspects
for future research.
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