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Abstract: This paper presents a web-based tool for the optimization of biomass-to-chemicals
processing pathways. The tool provides a user-friendly grpahical user interface (GUI) for building
a process superstructure, offers the possibility of uploading data from Aspen Plus simulations
and generates an optimization code to find the pathway that minimizes the annualized costs or
maximizes the net present value. A processing pathway from residues to lactic acid is used to discuss
and illustrate the main features of the tool.
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1. Introduction

The increased attention received by the advance of a biomass-based economy resulted in the
development of numerous technologies to convert biomass-based feedstocks into several different
products. Tied to it, methodologies and tools to evaluate the standalone performance of the
technologies, as well as processing pathways, have also received attention within the (chemical)
Process Systems Engineering (PSE) community.

PSE contributions to the area can be broadly divided in two levels of analysis/evaluation:
the first level implies the creation of suitable processing flowsheets for each technology or set of
technologies which, after modeling and simulation, allows for the calculation of overall yields and
economic parameters. At the second level, these results might be combined to create feedstock to
products processing superstructures that can be modeled as networks and optimized to find optimal
processing strategies.

Tools used for modeling and simulation include commercial process simulators such as Aspen
Tech softwares, SuperPro Designer, Chemcad, etc., which are commonly taught in undergraduate
Chemical Engineering courses. Therefore, many (experimental) research groups working in the
development of technologies/new products have a certain level of familiarity with them, and perform
techno-economic evaluations of their proposed processes either by themselves or in collaboration with
research groups with a PSE background. Other more advanced tools allow for integrating process
design with process control, and evaluation of impacts (see ICAS [1]), and to systematically generate
processing alternatives that improve a base case processing route (see SustainPro [2] and the works
by the authors of [3,4] for examples specific to biomass-based products). In particular, the latter are
helpful in the creation of processing trees that can be used as input for the proposal of processing
superstructures.

Although being a powerful tool for comparison among alternative strategies and for pathway
selection, superstructure-based approaches require an optimization background, and thus are not
commonly used outside the PSE community. This fact was recognized by Kim et al. [5], and resulted
on the development of a nonexpert friendly web application for optimization-based synthesis of
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biomass to fuel strategies, which was recently launched (see [6]). As described in the article that
presents the tool [7], the application allows the user to define the compounds and technology nodes
and enter the required parameters (prices, availability/demand, conversion/yields, etc.), either by
hand or by uploading a spreadsheet such as the ones that are prepared by commercial simulators.
Then, the network is cast into the optimization problem reported by Kim et al. [5] and solved after
selecting an appropriate objective function.

A generic biorefinery contains processes for the conversion of biomass into fuels as well as
processes for the conversion of biomass into higher value-added products. In previous work
(see the works by the authors of [8,9]), it was discussed that the generic biorefinery can be divided
in two very distinct sections: a section that is devoted to deconstruct the biomass in different
intermediates, and another one that sequentially upgrades these intermediates into a series of
products, creating a valorization chain. Commonly, research groups developing biomass-based
technologies focus on a portion of the value chain, and work in collaboration with other research
groups to proper design upstream and downstream processes. To provide a framework that
integrates and organizes the designs proposed by these different research groups, Torres et al. [8]
proposed an Aspen Plus-based “Collaborative Environment” for simulation. As seen in Figure S1,
it makes use of Aspen’s “Hierarchy” blocks to organize alternative technologies of the same type.
For example, technologies required for fractionation of biomass are classified in four categories:
“Biomass Conditioning”, “Recovery of proteins and extractives”, “Pretreatment”, and “Hydrolysis”;
each category is considered a technology type, and underneath the hierarchy the user can find process
flowsheets for the technologies themselves. As an example, the “Pretreatment” block contains process
flowsheets for acid, alkaline, and organosolv pretreatments, and the “Hydrolysis” block process
flowsheets for chemical and enzymatic hydrolysis. Technologies for the upgrade of pretreatment
products, such as glucose, cellulose, lignin, etc., are categorized so that outlet compounds of these
technologies coincide with the classification of chemical products proposed by the 2004 US-DOE “Top
value-added chemicals” report [10]. Clearly, by mixing and matching technologies within different
blocks, any researcher working on biorefineries, and experienced in simulations, can easily create and
evaluate different processing pathways.

Moving forward, the next step is to connect the proposed Aspen Plus-based Collaborative
Environment with an optimization tool that automatically formulates a pertinent network optimization
problem, allowing the locating of the best processing pathway. In this paper we report the development
of a web-based tool that mimics the structure of the Collaborative Environment, automatizes the
generation of a GAMS-executable optimization problem and programmatically connects with Aspen
Plus to load and simulate data.

The paper is organized as follows. The first section presents the web-based tool and discusses its
structure, scope, and use in view of the process network that will be generated; data entry focusing
on the connection with Aspen Plus is discussed at the end of it. The second section describes the
formulation of the optimization problem generated by the tool. The third section presents an example
of implementation of the tool. A summary of the work is provided in the final section.

2. Description of the Web-Based Tool

Figure 1 shows a screenshot of the GUI of the tool, which is written in React, a JavaScript library for
building user interfaces [11]. In the example shown, four consecutive stages are considered. For each
stage, the user inputs as many technologies as desired. Note that although the tool was thought to
mimic the structure of the Collaborative Environment, exact match is not a requirement, i.e., the user
only inputs those stages and technologies that are pertinent to her/his work.
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Figure 1. Composite of screenshots of the tool. Top: The technology blocks tab. Users enter as
many technology stages and as many blocks for each stage as desired. Upon pointing with the
mouse, two options for data loading (manual and from an Aspen Plus .bkp file) and the option
for programmatically running Aspen Plus are displayed. Bottom Left: Streams and Utilities tab.
Users enter here the name and prices for the different compounds (see text for definition of compounds
in this context). Bottom Right: Optimization Tab: Users select objective function and parameters.
Currently options for maximization of the Net Present Value (NPV) and minimization of Annualized
Cost have been implemented.

Feedstocks, intermediate compound streams, as well as supplies and utilities required for the
technologies are entered in the “Streams & Utilities” tab. As will be explained later, both technology
blocks and streams for the intermediate compounds, represent nodes of the processing network and are
placed in alternation. Thus, streams that contain biomass-based compounds must be placed following
the “after stage” rationale. This is, all streams serving as feedstocks are placed within the “Feedstocks”
block; all streams that represent a product from any of the technologies categorized as “Stage 1” are
placed within the “Streams after stage 1” block, etc. Supplies and Utilities are entered in specific blocks
included within the same tab.

Regarding data needs, “Feedstocks”, “Streams”, and “Supplies” blocks only require a name for
the stream; a price for the stream might also be entered. Utilities required by the process might be
purchased or produced internally. Following Seider et al. [12], if being produced internally, the cost of
the off-site facilities must be included so that it can be considered within the capital costs.

Conversion and all data required for cost estimation must be entered into the Technology blocks;
the GUI provides a clickable button to open up a new window where data is entered. Conversion data
is entered by specifying fluxes for all inlet and outlet streams. For each technology, a key inlet stream
must be defined; this stream is the one that has the most relevant compound, i.e., the one whose
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conversion is sought. As examples, a key inlet stream for a “Pretreatment block” might be any stream
rich in lignocellulosic biomass; and a key stream for a “Hydrolysis block” any stream rich in cellulose.
As a technology might process key streams that are similar but actually represent different compounds
(e.g., cellulose pulp from eucalyptus vs. cellulose pulp from pine or cellulose pulp from organosolv
pretreatment vs. cellulose pulp from acid hydrolysis), and thus also result in different specifications
for the outlet streams, all possible key input streams must be included at this point. The way the tool
handles this possibility is by keeping track of the processing steps required to reach a particular stream.
Any other input stream (including supplies) that does not contain the key compound, is entered in a
similar fashion as a plain input stream. Output streams are entered similarly.

Costs associated with the equipments required by each technology block are bulk entered in
the same window. Following Seider et al. [12], labor-related costs can be estimated considering the
number of operations related to fluids, solids, and mixed fluid-solids, thus information regarding these
might be entered.

Once “Streams and Utilities” and “Blocks” are defined and all possible connections established,
a processing network is built, and the GAMS code for the optimization problem described in
Section 3, is automatically generated. Two possible objective functions—the Net Present Value and the
Annualized Cost—have already been built in the code; the user has to select one of them through the
“Optimization” tab. The “Optimization” tab also includes some options for computation of the objective
functions that the user may change. The options include the lifetime of the project, the interest rate,
the yearly base salary of plant operators and the annualization factor. Two other options, namely “Big
M value” and “ Maximum number of Blank Technologies”, that affect the optimization code have also
been included, the need for these options will become clear after describing the problem in Section 3,
and will be discussed at that point. In the present version, the GAMS code is not automatically
executed, requiring manual download of the user. The code is self-contained, so it can be easily
submitted to the (free) online NEOS Server [13] for resolution, if the user does not have a license for it.

Upload of Aspen-Plus Simulation Data

As described above, data can be manually entered into the tool. However, this is a time-consuming
and error-prone activity, whose automatization is desirable. To simplify data entry, the tool includes a
connection to Aspen Plus so that data from converged simulations can be uploaded.

For connecting with Aspen Plus, we have considered the procedure reported in Kitchin et al. [14].
Briefly, the reference describes a way of using Python [15] to access data from an Aspen Plus simulation
that has already been run. In the present version of the tool, we have generated a Python algorithm
that receives the requests from data from the tool (in the form of a .json file), translates the request into
the variables used in an Aspen Plus simulation, loads the results saved in the .bkp file, translates back
the results into the variables used in the tool, and generates an output .json file that can be loaded
back by the tool. The flow of information for this procedure is summarized in Figure 2.

Within the tool itself, a clickable button placed next to the “Edit” button used for manual data entry
is available for generation of the request file to be sent to the Python code (see Figure 1). By clicking this
button, a new window opens up and requests the user to (i) specify the path leading to the technology
(i.e., feedstock and all previous processing steps which as mentioned before affect the properties of the
outlet streams) and (ii) identify the names given in the Aspen Plus simulation to the streams relevant
to the technology under consideration and match them with the names given to these streams within
the tool. An example is given in Section 4. Upon doing this, the import data request file is generated.
As the intention is to use the tool in conjunction with the Collaborative Environment described in the
introduction, it is assumed that the Aspen Plus .bkp file is that of this environment. However, the code
could be modified to upload data from technologies saved in different Aspen Plus files.

The option of sending data to Aspen Plus so as to re-run simulations is also included as an extra
clickable button. So far, BISSO has the capability of programmatically requesting changes in mass
flows, recycle rates, and yields in RYIELD reactors. A request file similar to the one described in the
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previous paragraph is used for this purpose. Data files generated by executing the Python code are
imported back to BISSO using a specific clickable button included to this end.

Figure 2. Scheme of the flow of information within the tool. Flow for uploading data from already run
Aspen Plus (.bkp) files is shown in dashed lines.

3. Optimization Problem Generated by BISSO

Figure 3 shows a simplified network representation of the biomass to products superstructure
considered in the tool we have developed. As seen, two types of nodes are considered:
compounds nodes, which represent streams with a certain composition rather than pure compounds,
and technology nodes, which represent the processing alternatives described in the Collaborative
Environment. Arcs connecting the nodes indicate possible inlet/outlet flows of each compound in/out
of each technology.

Figure 3. A generic processing superstructure.

The constraints of the optimization problem are defined by the mass balances in the nodes.
Compound nodes act as mixers/splitters of the streams coming from and going to technology nodes,
i.e., they do not change their physical characteristics or chemical composition. Technology nodes
perform all the operations related to chemical/physical changes. For derivation of the model, we have
considered linear input–output relationships for each technology; these relationships correspond to
conversion data obtained for example from the Aspen Plus Collaborative Environment.

As compounds and technologies may or may not be present in the optimal process, each node
is assigned a binary variable: yF( f ) denotes the binary variable assigned to feedstock f , and yJi(ji)
denotes the binary variable assigned to technology block ji in stage i. The following equations provide
the relations that act as constraints of the optimization problem.
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• Feedstock selection. It is assumed that one and only one feedstock must be selected (i.e., there is
no trivial solution):

∑
F

yF(F) = 1 (1)

• Technology nodes:

– Technology selection. One and only one technology block is allowed for each processing
stage. Herein, it has to be noted that stage bypassing is still allowed as each stage is assumed
to have a “Blank” technology block:

card(Ji)

∑
ji=1

yJi(ji) = 1 ∀Ji ∈ Set of technologies in stage i (2)

– Mass balances in technology nodes. As mentioned before, inlet–outlet streams for each
technology block are inputs provided by the user, and as they are the result of process
simulations, it is reasonable to assume that mass balances are satisfied. The complexity
of modeling the relationships in the technology nodes stem from the fact that the outlet
of a technology block depends not only on the inlet compound but also on how that inlet
compound was obtained. For example, consider a technology block that represents an
enzymatic hydrolysis process. This type of process would be at least a stage 3 technology
block, as it requires a stage 1 technology block that processes wood logs into chips of a
certain size and a stage 2 technology block that separates the cellulose from the rest of the
matrix (pretreatment technology blocks). Evidently, the result of processing cellulose by
enzymatic hydrolysis is not the same if cellulose resulted from a steam explosion process
or an organosolv process. Therefore, constraints relating to input–output information of
technology blocks have to take into account not only which compound is being processed,
but also the path that allowed production of that compound. We have taken the approach
detailed below:

∗ A variable ξ is defined to assign an index to order all the possible processing paths and
feedstock combinations up to stage i as

ξ = ord(Ji) +
i−1

∑
h=1

((
i

∏
k=h+1

card(Jk)) · (ord(Jh)− 1)) +
i

∏
k=1

(card(Jk)) · (ord(F)− 1) (3)

This variable ξ then denotes a pathway, g: g(F( f ), J1(j1), J2(j2), ..., Ji(ji)) = g(ξ).
An example of the assignment is provided in the Supplementary Information.

∗ A binary variable z(ξ) is defined for each pathway, then z(ξ) = 1 if and only if the
pathway is active i.e., yF( f ) = 1, yJ1(j1) = 1, yJ2(j2) = 1, etc. This can be written as

z(ξ) = yF( f ) ·
i

∏
Jk=1

yJk(jk) (4)

Note that the restrictions in Equations (1) and (2) imply that there exists only one ξ so
that z(ξ) = 1, i.e., only one pathway is possible (thus the constraint ∑ξ z(ξ) = 1 is not
required for this formulation). Also, it has to be noticed that Equation (4) implies a
nonlinear function of binary variables, which can be recast in a set of linear equations
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as reported in Biegler, Grossmann and Westerberg [16]. Thus, in the formulation,
Equation (4) is substituted by the set of Equation (5).

z(ξ) ≥
i

∑
Jk=1

yJk(jk) + yF( f )− i (5)

z(ξ) ≤ yF( f )

z(ξ) ≤ yJ1(j1)
...

z(ξ) ≤ yJi(ji)

∗ with the above definitions, inlet and outlet streams for compounds, supplies, and utilities
are computed as

xin(st, Ji) = z(ξ) · INP(st, Ji(ji)) (6)

xout(st, Ji) = z(ξ) ·OUT(st, Ji(ji)) (7)

xsup(st, Ji) = z(ξ) · SUP(st, Ji(ji)) (8)

where INP, OUT, SUP, are GAMS parameters that are defined by BISSO using the
data uploaded by the user, as discussed in Section 2, and ji is the index given to the
Technology block in stage i that is related to ξ.

– Logical restrictions stating that if at a certain technological stage a non-blank technology
node is active, then a key stream associated with a non-blank technology node has to have
a non-zero flow, and vice versa. Basically, these restrictions force yJi = 1 to xkey(st, Ji) 6=
0 and yJi = 0 to xkey(st, Ji) = 0 for all non-blank technology nodes, or in other words
blank technology nodes become active (i.e., YJi=blank = 1) if and only if all key streams have
zero flow.

(1−YJi=blank) ≤ M1 ∑
st

xkey(st, Ji) (9)

M2(1−YJi=blank) ≥∑
st

xkey(st, Ji) (10)

where M1and M2 are arbitrary large numbers.

• Compound nodes:

– Binary variables associated to the nodes: Given the restrictions in Equations (6)–(8), if a
compound has an inlet or outlet non-zero flow from a technology, ji, then the node is
consumed or produced by a technology, thus is active. We define binary variables yC and
yP that become active if and only if an intermediate compound is consumed or produced;
thus, the following constraints apply,

M3yC ≥ xin
total(st) (11)

yC ≤ M4xin
total(st) (12)

M5yP ≥ xout
total(st) (13)

yP ≤ M6xout
total(st) (14)

where, as before, M2–M6 are arbitrary large numbers.
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– Mass balances: We do not consider the constraint xin
total(st) = xout

total(st), which states that all
the intermediate produced must be consumed within the superstructure as it is not realistic;
for example, an intermediate might be only partially consumed by downstream technologies
or a small external purchase might be required. Instead we compute the total imbalance of
intermediates as

xout
total(st)− xin

total(st) = ximbalance
total (st) (15)

Then, if ximbalance
total (st) is negative, there is a need for an external (i.e., market purchase) source

of intermediate and, if positive, the intermediate must be disposed. With this consideration a
generic compound node might be represented as shown in Figure 4, and Equation (16) or
Equation (17) must be included in the node.

ximbalance
total (st) = xout

excess(st) if ximbalance
total (st) > 0 (16)

ximbalance
total (st) = −xin

required(st) if ximbalance
total (st) < 0 (17)

Binary variables ν+ and ν− are defined as active if Equation (16) or Equation (17) are satisfied,
respectively, and can be related to ximbalance

total (st) using a big M approach as before,

M7ν+(st) ≥ ximbalance
total (st) (18)

M8ν−(st) ≥ −ximbalance
total (st) (19)

xin
required(st) ≤ M9(1− ν+(st)) (20)

xout
excess(st) ≤ M10(1− ν−(st)) (21)

To prevent a solution in which the node is solved by buying and selling an intermediate
without producing (i.e., xin

required(st) = xout
excess(st)) binary variables, ν+ and ν− also have to be

related, as shown in Equation (22)

ν+(st) + ν−(st) ≥ 1 (22)

Figure 4. Representation of a generic compound node st: xout
total(st) indicates all st produced by the

technologies; xin
total(st) indicates all st consumed by the technologies; xin

required(st) indicates the amount

of st that needs to be purchased from the market; xout
excess(st) indicates the amount of st that is produced

in excess of the technologies needs.

• Within the BISSO GUI, we have included for each stream the option of considering it a possible
final product, this is, streams resulting from nonfinal stages may also be considered as salable
products. The optimization code generated by the tool incorporates a constraint which forces the
selection of just one of these products.
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∑
P

yP(P) = 1 (23)

In the current first version, BISSO includes the capability of computing capital and operational
expenses (i.e., CAPEX and OPEX), and computes either the Total Annualized Cost (TAC) or the Net
Present Value (NPV) as the objective functions to be minimized, these are computed as:

TAC = OPEX + a f · TCI (24)

NPV = −TCI +
Nproject−years

∑
i=1

Revenues−OPEX
(1 + r)i (25)

where a f is the annualization factor, Nproject−years represents the lifetime of the project, and r is the
interest rate, all inputs from the user which might be changed in the “Optimization tab”.

For computation of CAPEX, as total equipment (installed) cost for each technology block is
requested by BISSO, the total equipment cost is computed by multiplying these by the corresponding
binary and adding the contributions of all the blocks:

CEinstalled
total =

card(J)

∑
J=1

CEJ(j)yJ(j) (26)

The Total Capital Investment (TCI) is then computed by considering appropriate factors for
yard improvements, buildings, service installations (i.e., steam generators and electricity), etc.,
as recommended in process design textbooks.

OPEX include raw materials and utilities costs, labor costs, maintenance costs, operating overhead,
and depreciation. Raw materials and utilities costs are computed by multiplying their prices (data
requested by BISSO) to the corresponding flows and binary variables, and adding up. All the other
costs are estimated following the procedure in Seider et al. [12], which considers the type of process
included in each block (i.e., only solids, only fluid, mixed, and information that is requested by BISSO)
to compute labor costs, and then uses factors to estimate maintenance and overhead costs. Labor costs
are then estimated by multiplying individual contributions of type of process for each technology block
to the corresponding binaries and adding up all the blocks. Depreciation is computed by considering
linear depreciation assuming a salvage value of 20%.

Considering the equations above the problem is a Mixed Integer Linear Programming
optimization problem, the GAMS file generated by BISSO includes a call to GAMS/Cplex [17] for its
solution. Solver options are as default with the exception of the addition of the solution pool option so
that in addition to the optimal solution; other nonoptimal solutions are also reported.

4. Demonstration of BISSO: Production of Lactic Acid from Residues

Lactic acid is one of the “top ten” biomass-based building blocks [18], which has gained attention
as it can be easily produced by fermentation of many biomass-based feedstocks. The lactic acid global
market is projected to be USD 3.82 billion in 2020 and is growing at a compound annualized growth
rate (CAGR) of 18.6% [19], due to the popularity of polylactic acid (PLA), a biobased and biodegradable
polymer, for use as a sustainable replacement of many fossil-based polymers. In previous works [20],
we have analyzed different pathways for the production of Lactic Acid from lignocellulosic and milk
& cheese industry (whey) residues. Although the number of processing options simulated so far do
not justify the use of optimization to find the most economical solution, we will still use this example
as a demonstration of the tool we have developed.

Figure 5 shows the lactic acid production network that was considered for the demonstration.
As seen, it includes two feedstocks, four processing stages with six technology blocks plus a blank each
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(i.e., a total of ten technology blocks will be included), and eight compounds (seven intermediates and
the lactic acid product). Figure 6 shows a screenshot of how these blocks are implemented in BISSO.

Figure 5. Superstructure for Eucalyptus grandis residues and whey to lactic acid used for the
demonstration of the tool.

Figure 6. Screenshot of the implementation of the superstructure in Figure 5 in BISSO. Top: Blocks tab;
Bottom: Stream and Utilities tab.

Aspen Plus process flowsheets are available for all the technologies and are discussed in a previous
work [20]; data from the simulations provided information on the supplies and utilities that were
required. The E. grandis→ Chipping→ E. grandis chips→ Organosolv Pretreatment→ Cellulose→
Enzymatic Hydrolysis E. glucose→ Fermentation Lactic Acid pathway has been also implemented in
the form required by the Aspen Plus Collaborative Environment described in the Introduction (see
Figures S1 and S2 for screenshots of the Collaborative Environment for this pathway).
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As an example of how the data loading from Aspen works, Figure 7 shows the case of the
Organosolv block. Notice the difference between the name of the compound in the tool and in the
source .bkp file, and also that data loading has only been allowed for streams connecting technology
stages, i.e., the streams correspond to those that are outside the hierarchy blocks. This is not a limitation
is a choice that we have made to make the use of the tool simpler. Access to the individual flowsheets
(i.e., data inside the hierarchy blocks) has been implemented for cases where Aspen Plus runs need
to be performed. Section S4 in Supplementary Materials shows the .json file generated to request
access to Aspen Plus data and the Python code used to perform the request. Cost-related data (i.e.,
equipment and utilities/supplies costs) was manually entered.

Figure 7. Screenshot of the data request screen for accessing Aspen Plus .bkp information. The request
screen was thought to be used in conjunction with an Aspen Plus Collaborative Environment proposed
in previous works (see the work by the authors of [8]). Aspen Stream name corresponds to the name
given to the stream in the Collaborative Environment (see Section S1.1 in Supplementary Materials).
“Associated to stream” indicates the name given in BISSO.

The optimization code was validated by considering different sets of cost data. The base case data
corresponds to the simulations reported in the already mentioned previous work and is presented in
Section S5 in Supplementary Materials. As expected, when lactic acid is set as the desired product, the
optimal solution (for both economic objective functions) corresponds to the Whey→ Separation of
lactose and proteins (centrifugation)→ lactose→ Fermentation→ lactic acid pathway; the second best
solution is the E. grandis→ Chipping→ Chips→ Organosolv→ Cellulose→ Enzymatic Hydrolisis
→ Glucose→ Fermentation→ Lactic Acid pathway. If Cellulose, Glucose, and Lactose are also marked
in BISSO as possible salable products, the code returns as the optimal solution the pathway that has
the least number of processing steps; this is also expected, as neither pathway has a positive NPV with
the prices costs and economic parameters considered in the original data set.

Other sets of data used to run the code were variations of the base case intentionally manipulated
to favor different solutions or failure to find a solution. The code was tested against several of these
validation sets, which included diminishing the costs of the ”desired” pathway by at least three orders
of magnitude, varying the prices of desired/undesired products, establishing impossible connections
between nodes and technologies, the addition of new pathways leading to other fermentation products,
etc. In all cases, the code was able to retrieve the desired optimal solution. However, in here it has to be
mentioned, that in some cases using the default options GAMS/CPLEX retrieves a suboptimal solution.
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Although this is solved by manipulating the optimality tolerances of the algorithm, as the intention of
this tool is to be useful for nonoptimization experts, we do not expect users to be knowledgeable on
which tolerance should be adjusted. We have circumvented this by including the solution pool option
as a default feature of the tool. With this, all case studies retrieved the optimal solution and at least the
three next best solutions.

5. Summary and Future Perspectives

In this work, we have presented a tool for optimization of biomass conversion processes that was
developed thinking on its use by researchers knowledgeable in biomass conversion and process
modeling, but lacking a background in optimization. The tool has its basis in an Aspen Plus
Collaborative Environment idea for the development and analysis of biomass conversion pathways
that was proposed in previous works [8]. The goal is that researchers working on different processes of
an overall biomass conversion network may contribute with flowsheets specifically developed for their
part of the process and connect them with flowsheets developed by other researchers working on other
areas. Although the tool is exemplified through a case study that considers biochemical conversion
processes, thermochemical-based processes may also be fit to the same structure (see Section S3 in
Supplementary Materials).

In the current version, the tool is presented as a web application in which researchers must
provide the technology and compounds that will build the network. Data might be either entered
manually or uploaded from Aspen Plus .bkp files. Then, given the network structure, yield, economic
data, and the set of products that might be of interest, the tool automatically generates a GAMS file
that solves the network for maximization of the NPV or minimization of the annualized cost. The tool
uses CPLEX for solving the generated MILP problem, and besides the optimal solution, other possible
solutions are also reported through CPLEX’s solnpool feature.

The main advantages of BISSO over currently existing tools for optimization of biomass-based
processes are (i) ease of use, (ii) the possibility of connecting with Aspen Plus, and the (iii) recognition
that although having the same main chemical compounds, the properties of an intermediate node
depend on the pathway that led to that intermediate.

In the near future, we expect to make BISSO available through our University’s web host. We are
currently working towards improving the tool by adding a feature that processes the results obtained
by GAMS into user-friendly graphics, and expanding the Aspen-Plus connection capabilities.

Supplementary Materials: The following are available online at https://www.mdpi.com/2227-9717/7/10/645/
s1.
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CAGR Compound Annualized Growth Rate
CAPEX Capital Expenses
CE installed cost of each technology
F index for Feedstocks
GAMS Generalized Algebraic Modelling System
GUI Graphic User Interface
i index for Processing Stages
J index for Technologies
Ji index for Technology J at Processing Stage i
M1 −M10 arbitrary big numbers
NPV Net Present Value
OPEX operational expenses
P index for the subset of compounds st that might be sold to the market
st index for the set of compounds
TAC Total Annualized Costs
tot total
x flow
xin inlet flow of a compound to a specific technology
xin

required inlet flow of a compound that needs to be purchased from the market

ximbalance total amount of a compound st that needs to be disposed (if positive) or purchased (if negative)
xkey inlet flow of the compound selected as the key compound to a specific technology
xout outlet flow of a compound from a specific technology
xout

excess flow of a compound produced in excess of technology needs
xsup inlet flow of a supply to a specific technology
yC binary variable associated with consumption of a compound st
yP binary variable associated with production of a compound st
yF binary variable for feedstock F
yJ binary variable for technology J
z binary variable for individual pathways
ν+, ν− binary variables for flow compounds required extra or produced in excess
ξ individual index for each path
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