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Abstract: Mixing is considered as a critical process parameter (CPP) during process development due
to its significant influence on reaction selectivity and process safety. Nevertheless, mixing issues are
difficult to identify and solve owing to their complexity and dependence on knowledge of kinetics
and hydrodynamics. In this paper, we proposed an optimization methodology using Computational
Fluid Dynamics (CFD) based compartmental modelling to improve mixing and reaction selectivity.
More importantly, we have demonstrated that through the implementation of surrogate-based
optimization, the proposed methodology can be used as a computationally non-intensive way for
rapid process development of reaction unit operations. For illustration purpose, reaction selectivity
of a process with Bourne competitive reaction network is discussed. Results demonstrate that we can
improve reaction selectivity by dynamically controlling rates and locations of feeding in the reactor.
The proposed methodology incorporates mechanistic understanding of the reaction kinetics together
with an efficient optimization algorithm to determine the optimal process operation and thus can
serve as a tool for quality-by-design (QbD) during product development stage.

Keywords: mixing; CFD-simulation; surrogate-based optimization; compartmental modeling; competing
reaction system; optimization; model order reduction

1. Introduction

In chemical synthesis, many important reactions can be accompanied by undesired side-reactions.
This leads to wastes and affects product quality. Therefore, incorporating knowledge of mixing
can substantially improve reaction selectivity and yield, in addition to enhancing process safety.
Furthermore, due to a growing variety of reactors, characterization of mixing has become vital in
process development [1,2]. To achieve optimal selectivity and yield, appropriate modeling of the mass
transport process in reactors is critical [3]. Nevertheless, owing to the complexity of mass transport in
turbulent flow, analyzing mixing remains a difficult problem.

Frequently, mixing in reactor is approximated by residence time distribution (RTD) analysis, where
residence time is experimentally measured through a tracer test. This approximation has been proved
to work relatively well, however “RTD is not a complete description of structure for a particular reactor or
system of reactors” [3]. Therefore, when reaction with high conversion rates are considered, analysis
solely based on RTD can lead to significant error [4]. Based on local sensors, RTD characterization
of tracer test can be improved by mixing time measurement [5,6]. However, considering potential
bias and the requirement for specific equipment for tracer tests, RTD and mixing time measurement
have become less preferable comparing to the more resource-effective benchmark reaction method [7].

Processes 2019, 7, 9; doi:10.3390/pr7010009 www.mdpi.com/journal/processes

http://www.mdpi.com/journal/processes
http://www.mdpi.com
http://www.mdpi.com/2227-9717/7/1/9?type=check_update&version=1
http://dx.doi.org/10.3390/pr7010009
http://www.mdpi.com/journal/processes


Processes 2019, 7, 9 2 of 20

Therefore, competitive reaction systems have become the standard for mixing analysis [7–9]. Among
the competitive reaction systems, the “well-documented and highly reliable” [7] Bourne reaction and
Villermaux reaction is most commonly adopted [10]. Nevertheless, benchmark reaction tests provide
only the input-output relationship, without detailed description of the process dynamics. Therefore,
developing optimal process operation experimentally remains challenging.

With rapid advances in computer technology, computational fluid dynamics (CFD) has become
a powerful tool to study mixing. Comparing with the experimental methods, it provides detailed
understanding of mixing phenomenon in a timely-efficient manner without requiring meticulous
choice of equipment and sensors. In reaction engineering, CFD has been employed to study mixing
in chemical reactors and bio-reactors. Mixing of liquid-liquid system [11], solid-liquid system [12] or
non-Newtonian fluid [13] are studied with CFD, which agrees well with experimental data. In the
presence of complex chemical reactions [14] or biological metabolism [15] CFD is implemented to
provide detailed understanding of the mass transfer process. Complex hydrodynamics, mass transfer,
heat transfer and reaction kinetic can be satisfactorily captured by CFD, making it a powerful tool in
process design.

As a result, CFD has been implemented to optimize mixing by improve reactor design. Studies
reported in the literature mainly focus on improving geometrical attributes of reactors. Researches
that directly integrate detailed CFD simulation with optimization algorithms has successfully
improved reactor design [16–20]. Due to the complexity of CFD simulations, the chosen optimization
algorithms are often meta-heuristic, such as genetic algorithm (GA) [16–18] and particle swarm
methodology [20]. They can address complex black-box problems, such as reactor geometry [16,17]
or impeller configuration [18], but require a large number of function evaluations, which leads to a
large number of computationally expensive CFD runs. To improve the computational efficiency of
direct CFD simulations, hybrid methods have been proposed that replace direct CFD evaluation with
simpler data-driven models [21–25], which are then integrated with GA. Successful implementation
have been reported in the literature that use neural network [22,23], Gaussian process [24] and radial
basis function (RBF) [25]. However, building confidence in those data-driven models requires large
number of CFD runs, and balancing computational efficiency with accuracy is non-trivial [26].

Apart from improving mixing through optimized design, to the best of the authors’ knowledge,
there is no work that improves mixing by optimizing dynamic process operation based on CFD
simulations. The main reasons for the limited implementation is the complexity of CFD simulations.
To optimize dynamic process operation, more decision variables should be considered. Since GA
would suffer from “curse of dimensionality” [27], significantly more CFD runs would be required,
leading to increasing computational expense and degrading performance.

In this work, a framework is developed trying to leverage CFD simulations to optimize process
operation. Firstly, CFD-based compartmental model is built to replace direct CFD simulations. Comparing
to the data-driven models implemented for reactor geometry optimization, compartmental models are
finite-volume physical models, which provide satisfactory accuracy while requiring significantly less CFD
runs. Secondly, a surrogate-based optimization algorithm using radial-basis function is implemented,
which has been proven to be more efficient than GA [28]. This work offers a compact and systematic
framework for improving reaction selectivity with a numerically efficient Quality-by-Design (QbD)
tool. In a case study, Bourne reaction is employed as a benchmark, which serve as a more explicit
quantification for the efficiency of mixing. The proposed framework is compared with process
operations optimized based on ideal mixing model, suggesting great improvement by leveraging CFD
simulations. By integrating CFD-based compartmental model with surrogate-based optimization, the
proposed framework has shown a great potential for fast process development.

2. Integrating CFD-Based Compartmental Model with Surrogate Based Optimization

This section presents the development and implementation of the proposed methodology. Initially,
a detail description of flow field in the reactor is generated by a CFD simulation. It should be noted
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that in stirred tank reactors the flow field are considered independent from chemical reactions. As a
result, the fluid dynamics data can be used for different reactions, which could contribute to rapid
process design and cost reduction. The result from CFD simulation is used to develop a compartmental
model, which would be discussed in Section 2.1. Comparing to direct CFD simulation, computational
complexity of compartmental model is significantly reduced. Therefore, the optimal process design
can be determined numerically without prohibitive computational expense. The process selectivity is
then optimized by integrating the compartmental model with surrogate-based optimization, as will be
discussed in Section 2.2.

2.1. CFD-Based Compartmental Model

2.1.1. A Brief Review of Compartmental Model

Compartmental model defines a matrix of perfectly mixed control volumes interconnected by the
exchanging mass flux. In this method the reactors are discretized into a set of homogeneous control
volumes according to the defined mesh. The volume-averaged variable in all control volumes are solved
together to represent the space distribution inside the reactor. Compartmental modeling was regarded
as a crude tool to study transport process and only provide basic understandings [29]. However, by
incorporating detailed CFD simulation to compartmental model, substantial improvement can be achieved
leading to satisfactory agreement with experimental data without loss of computational efficiency [30,31].

Considering the excessive computational and economical expense usually required by CFD
simulation, for Chemistry, Manufacturing, and Controls (CMC) development, CFD-based compartmental
model have been adopted as computationally cheaper alternative [4,30,32–34] In addition to the reduced
computational expense, CFD-based compartmental model provides the required simplifications for
development work. Unlike CFD, which is not widely available and requires special know-how,
CFD-based compartmental model can be easily implemented for different reaction systems based on
flow field data determined beforehand. Adjustment in chemical kinetics do not usually require extra
CFD simulation, which could save time and reduce cost.

In this proposed methodology, compartmental model is developed from CFD simulation based on
the idea outlined by Bezzo et al. [33]. Two key steps are required for model construction: (1) Topological
mapping between two models through aggregating CFD cells into compartments. (2) Quantifying
mass flux between different compartments. Topology mapping between CFD and compartmental
model can be done either manually or automatically. Manual allocation of CFD cells is based on
preliminary knowledge of flow field, which can be conducted prior to CFD simulation [15,31,35,36].
Automatic mapping, on the other hand, merges computational cells based on CFD simulation to form
meaningful homogeneous control volumes [4,37]. Manual allocation usually leads to simpler mesh
structure, which allow for efficient implementation of optimization tools. Therefore, in this work
manual allocation is conducted, as will be outlined in sub Section 2.1.3.

2.1.2. Compartmental Model Development

Mixing of particles inside the reactor is described by Equation (1), where ci is the concentration of
species i, Ni represents the mass flux of species i, and Ri denotes the source of species i. Compartmental
models are obtained by volume averaging Equation (1) over each predefined compartment V, as
described in Equation (2).

∂Ci
∂t

= −∇·Ni + Ri, (1)

d
dx

∫
V

CidV = −
∫

V
∇·NidV +

∫
V

RidV. (2)

Adopting the divergence theorem and replacing Ci with the volume-averaged concentration Ci,Kj ,
Equation (2) is modified to Equation (3), where Vj is the volume of control volume Kj, and Sj is the
surface of control volume Kj. The mass flux N consist of convection and diffusion, where the diffusion
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is modelled by Fick’s law with diffusion coefficient D. The source term Ri models the homogeneous
consumption and generation of species i, which include chemical reactions and micro mixing. Due to
the assumption of homogeneous compartments, the volume integral of source term in Equation (5) is
modified as follows:

Vj
dCi,Kj

dx
+
∮

Sj

Ni,Kj ·ndS =
∫

Kj

RidV, (3)

Vj
dCi,Kj

dx
= −−

∫
Sj

v·Ci,Kj ·n dS +
∫

Sj

D·∇C·n dS +
∫

Kj

RidV, (4)

∫
Kj

Ri,Kj = Vj·Ri,Kj . (5)

It should be recognized that the homogeneous assumption depends upon the Damköhler number
(Da) in each compartment, which is a strong function of grid size, as will be discussed in sub
Section 2.1.3. Moreover, in this work diffusion mass transfer between different compartments are
neglected, which is also justified in sub Section 2.1.3 based on an analysis of the Péclet number (Pe).
The dominance of convective mass transfer would simplify 4 into Equation (6), where Qjk denotes the
flow rate from control volume j to control volume k.

Vj
dCi,Kj

dt
= −Ci,Kj ∑

k
Qj,k + ∑

l

(
Ql,j·Ci,Kj

)
+ Vj·Ri,Kj . (6)

Equation (6) is a finite-volume mixing model parameterized by mass flow rate Q and compartment
volumes V. Since CFD is also based on fine-volume models, parameters of this mixing model can be
effectively determined from CFD simulations, based on the topology mapping and merging strategy
proposed by Bezzo et al. [33].

Firstly, a steady-state CFD simulation should be developed and calibrated to yield a good
prediction of flow field inside the reactor. Then the computational cells of CFD mapped to the
same compartments are group into ensembles. Cells in the same ensemble are aggregated together,
where, the volumes and mass flow rate and summed together to determine the parameters of each
compartment. To achieve a good balance between computational complexity and model accuracy, the
resolution of the compartmental model is determined based on a grid independence test as will be
discussed in sub Section 2.1.3. For illustration purposes, a well-known pair of parallel competitive
Bourne reactions is studied. As will be discussed later in the case study, this reaction system is
composed of a first-order decay and a parallel second order coupling reaction [38].

2.1.3. Grid Independence

From numerical perspective, compartmental model is an upwind discretization of mass balance
equation with finite volume method. Underlying this discretization scheme lies the assumption of
homogeneity inside each control volume. Therefore, compartmental model would exhibit higher
diffusivity than the true medium. The deviation caused by compartmentalization depends on the
system being modelled and the type of discretization that is used.

One heuristic rule is that with higher resolution grid, the discretized model should behave more
like the continuous case. However, with increasing resolution, the complexity of the model also
increases, which leads to higher computational expenses. Moreover, decreasing grid size would lead
to a decreasing Péclet number, which would undermine the assumption of ignoring diffusion mass
transfer. Therefore, a grid independence analysis should be conducted to find the optimal grid density
to map the CFD data to compartmental model.
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In this work the grid independence test is performed in two steps. First the Damköhler number
(Da) and Péclet number (Pe) are analyzed, as suggested in Equations (7) and (8), which are critical to
justify the compartmentalization of model discussed in sub Section 2.1.2.

Da =
k1CA + k2CbCA

uCA/L
< 1, (7)

Pe =
Lu
D

> 1. (8)

This analysis determines the lower and upper bounds of length scale for the compartments, which
could serve as a starting point for the grid independence test. Then the initial choice of length scale is
improved in an iterative manner. Simulations based on compartmental models with decreasing length
scale are tested. When the simulation results are no longer changing with the increasing grid density,
the model resolution can be considered as sufficient.

It should be mentioned that the optimal grid density depends on reaction kinetics. If the
time constant of chemical reactions is significantly larger than that of mixing, this process could
be considered mixing-insensitive and perfect mixing assumption could be adopted without harming
model precision. By contrast, for fast reaction, the deviation caused by perfect-mixing assumption
could be significant, which require higher resolution. If the characteristic time scale of reaction is
in orders of magnitude less than micro-mixing, which is in the order of 10−3 s [11], micro-mixing
would dominate chemical reaction. As a result, the rate law of chemical reaction should be replaced
with micro-mixing models. Although for different reaction kinetics we can use the same steady state
solution from CFD, if new reaction kinetics are used, grid independence test should be conducted with
the updated model.

2.2. Surrogate-Based Optimization

2.2.1. A Brief Review of Surrogate-Based Optimization

Surrogate-based optimization have been the focus of interest in the derivative-free optimization
literature. Commonly seen in science and engineering studies are complex computer simulations and
experiments conducted to gain understanding of systems. As a result, for these problems derivative
information is either unavailable or prohibitively hard to get, making it impossible to implement
deterministic optimization methods efficiently [39]. Therefore, there is a high interest in developing
methods to handle the optimization problems where limited or noisy information is available [40].

Surrogate-based optimization use surrogate models, which are simpler models that can mimic
complex phenomenon, to guide the search in derivative-free optimization problems. Since surrogate
models are computationally less demanding, surrogate-based optimization is a good compromise between
describing the complex process and remaining computationally feasible. It has been demonstrated
that surrogate-based optimization displays superior performance for derivative-free optimization
problems [41]. Most popular surrogate models implemented for optimization methods are RBF [42–46]
and Kriging [47–51], due to their capability to provide prediction uncertainty. Artificial neural networks
(ANN) have excellent fitting characteristics with low complexity, therefore implementations of ANN
for surrogate-based optimization (SBO) is popular for various engineering applications [22,52–54].

SBO works in an iterative manner. In the initial step, several sampling point are chosen, and
an initial surrogate model is built based on function evaluation at those sampled points. Then new
sampling points are determined by evaluating the surrogate model. At new sampling point, the
original model is evaluated and the surrogate model is updated. This process is conducted iteratively
until a stopping criterion is met, and the best design point is chosen. In this work, the mixed-integer
optimization problem is solved with SBO based on the work of Müller [55].



Processes 2019, 7, 9 6 of 20

2.2.2. Problem Formulation

In this work, the location and rate of feeding are optimized to improve reaction selectivity. Due to
the perfect mixing assumption of control volumes, feeding location is represented by the index of
compartment it resides at. It is worth noting that while the feeding location should be fixed throughout
the process, the feeding rate could change dynamically. Therefore, by taking advantage of the extra
degree of freedom through adopting a changing feeding rate, reaction selectivity could be further
improved comparing to a fixed rate feeding, as will be discussed in Section 3.5.2. Dynamic profile of
feeding rate is defined by splitting the whole process time into Ns discrete feeding stages. Feeding rate
is kept constant in each stage, but different feeding rate are employed for different stages. Each feeding
stage m is specified by its duration tm and the adopted feeding rate fm, which are not defined a priori,
instead they are determined by solving an optimization problem.

In order to solve for the optimal operating policy, reaction selectivity should be quantified based
on analyzing product distribution. The most intuitive definition is by segregation index, which is
based on the ratio of raw material consumed by the desired product to the total raw materials injected.
This method was widely adopted in previous work [2,56,57], where the influence of feeding rate was
not investigated. However, adopting segregation index as an objective function in this work could
lead to trivial solutions, due to the fact that feeding rate usually contributes monotonically to product
ratio. Without considering the economics of the process, solely focusing on the product ratio would
lead to unsatisfactory process design. Thus, it is recommended to use revenue as a way to capture and
optimize reaction selectivity. To maximize revenue of chemical processes, the optimization problem is
defined as followed.

Maximize n,ti , fi

(
∑ PRyR −∑ PAyA

)
, (9)

Subject to:

[yR, yA] = ϕ
(

n, t1, f1, t2, f2, . . . , tNp , fNp

)
, (10)

∑ tm = T, ∀m = 1, . . . , Ns, (11)

tm, fm ≥ 0, ∀m = 1, . . . , Ns, (12)

n ∈ [0, Nc], (13)

where PR denotes the price of desired product R while yR denotes its yield. PA represents the unit cost
of raw material A and its consumption is denoted as yA. Both yR and yA are calculated through the
simulation ϕ based on the compartmental model. Addition point n and addition rate profile which is
defined by t1, f 1, t2, f 2 . . . tNs, fNs are parameters of this simulation. The first set of constraints describe
the simulation based on the compartmental model. The second constraint represents that the total time
span of all stages is pre-defined as T.

Notice that the number of stages is introduced as a parameter instead of decision variable. This is
based on the difficulty of penalizing the monotonic increase of the number of stages. By allowing extra
degrees of freedom, an increasing number of stages is always preferred. Reaction selectivity would
always benefit from higher degree of freedom provided by the increasing Np, unless computational
expense of solving this optimization problem is taken into consideration. However, this is beyond the
scope of this paper. The duration of process T is defined as a parameter, which is usually determined
in the production scheduling stage. It is recommended to define T similar to the timescale of mixing in
mixing controlled processes to maximize time efficiency of reactors.

3. Case Study

In this section, a case study of a semi-batch process inside a dual-impeller stirred tank reactor
is studied. The duration of the whole process is 150 s, in which a fed-batch process is analyzed and
optimized. A well-known pair of competitive reactions [38] is introduced to study the influence of
mixing on reaction selectivity. The overall objective for the optimization problem is to maximize
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process productivity, which is defined as the revenue from selling the products minus the total cost of
raw materials injected. In this case study, process designed according to CFD-based compartmental
model and perfect-mixing model are compared to illustrate the effectiveness of this methodology.
Furthermore, constant feeding rate design is compared with time-varying feeding rate to demonstrate
that this framework can further improve reaction selectivity by enabling dynamic design.

3.1. Reactor Setup

This study was carried out in a 74 L baffled stirred vessel agitated with a Rushton impeller and a
pitched blade turbine, as illustrated in Figure 1. The diameter of the vessel is 0.5 m, and the liquid level
is 0.4 m from the bottom of the vessel. The Rushton impeller is assembled 0.14 m below the pitched
blade turbine, whose blade angle is 45◦. The agitation system is operated at 12 rpm anticlockwise,
which drives fluid downwards from the pitched blade turbine to the Rushton impeller.
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3.2. Chemical Kinetics

To study the influence of mixing on reaction selectivity, a well-documented pair of parallel
competitive Bourne reactions is integrated. This reaction system is composed of a first-order decay and
a parallel second order coupling, where A is a diazonium salt (diazotized 2-chloro-4-nitroaniline) and
B is pyrazolone (4-sulphophenyl-3-carboxypyrazol-5-one). R denotes the desirable product which is a
dyestuff, and S is the unwanted product of decomposition. The rate constants at 40 ◦C are k1 = 10−3 s−1

and k2 = 7000 m3 kmol−1 s−1 at a PH = 6.6 [38]. Both reactants are dissolved in aqueous solution.

A
k1→ S, (14)

A + B
k2→ R (15)

The vessel is initially charged with pyrazolone solution with a concentration of 1 × 10−3 M.
diazonium solution is added into the stirred tank in a semi-batch manner, the concentration of which
is 7.4 × 10−1 M.
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In this reaction system, the advantage of defining objective function in the form of productivity is
pronounced. Considering that the desired reaction happens faster than side reactions, infinitely slow
feeding would always be preferred if we want to maximize the ratio between desired product and side
product. Based the time scale of mixing, the duration of process is set as 150 s.

3.3. Flow Field Simulation

CFD simulation is adopted to solve for velocity field inside this reactor based on the physical
property of the solvent. The influence of the feeding pipe over the flow pattern is ignored. Since the
flow rate of injection pipe is 102 order smaller than that of the bulk flow inside the reactor, influence of
reagent injection over the flow pattern is ignored.

A steady state CFD simulation is conducted with the commercial code of Ansys Fluent 16.0 [58].
The Reynolds-Averaged-Navier-Stocks (RANS) equation was numerically solved with multi-reference
frame (MRF) method. To close the equations, k-epsilon turbulence model with standard wall functions
was adopted. The velocity field is shown in Figure 2.
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It should be noted that it is necessary to calibrate CFD simulations so that can be confidently
utilized. Since this case study is used for demonstration purposes, due to the lack of experimental data,
validation of the numerical simulation is not conducted. This will be addressed in future work where
this method is applied.

3.4. Compartmental Modeling and Grid Independence Test

To develop compartmental models from steady state CFD simulation, computational cells
extracted from CFD are aggregated based on a predefined grid. The grid is defined by evenly dividing
the reactor in radial, axial and angular directions. The grid density of each direction is determined
based on the grid sensitivity test proposed in Section 2.1.3.
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To justify the perfect-mixing assumptions in each compartment, local Damköhler number (Da)
is analyzed. As suggested Figure 2, the bulk velocity inside the stirred tank is in the order of 10−2

m/s. Based on Equation (7), the upper bound of length scale in each compartment should be 1 m.
Furthermore, to justify neglecting diffusive mass transfer, Péclet number (Pe) is analyzed according to
Equation (8). Since diffusion coefficient in aqueous solutions are in the order of 10−9 m2/s, the lower
bound of compartment length scale is 10−7 m. It can be concluded that since in single phase turbulent
flow convective mass transfer rate is usually several orders of magnitude higher than that of diffusion,
compartmental model can be safely adopted in most single phase stirred tank reactors.

Starting from the upper bound indicated by the analysis of Damköhler number, length scale of
the compartments is decreased to test the optimal grid density as discussed in Section 2.1.3. In this
work, grid independence test is performed by simulating the injection of diazonium at the top free
surface of liquid near the wall. Considering that the injection should be fast enough to show mixing
effect, but not excessively fast so that the pyrazolone is instantly depleted and the mixing-sensitive
coupling is dominated by the decaying, the feeding rate of diazonium solution is set as 0.5 mL/s,
scaled from the work of Nienow [38]. The distribution of different chemical species at the end of
process is predicted and monitored. The total number of compartments used for the grid sensitivity
test varied from 384 (8 × 8 × 6: axial × radial × angular) to 2352 (12 × 14 × 14). The predicted
amount of chemical species varies with the number of compartments and approaches asymptotic
values as shown in Figure 3. In good agreement with the scaling analysis, convergence is achieved
with 1920 (12 × 16 × 10) compartments for all species, which corresponds to Da < 0.1. For fast model
development, Damköhler number can served as an efficient criterion for defining grids [30]. Further
results presented in this paper are based on this discretization scheme.
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Figure 3. Convergence of predicted (a) Diazonium and (b) Pyrazolone distribution with number
of compartments.

3.5. Optimization and Results

The overall objective for the optimization problem is to maximize process productivity, which
is defined based on the price of different materials. In this case study the price of desired product
is assumed to be ten times as much as the price of diazonium, which is 104 $/mol. The prices have
profound influence on the optimal operating policy. Feeding points are defined with 3 integer variables,
representing the corresponding radial, axial and angular index.

The optimization algorithm is first solved for the optimal static operating condition in which
reagent is injected in a constant rate. To further improve the process productivity, dynamic operating
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conditions where the feeding rate changes dynamically are studied and optimized. Dynamic policies
comprised of 2 and 3 feeding stages are discussed. Furthermore, by optimizing process design with
perfect-mixing assumption, traditional design is compared with this proposed methodology.

3.5.1. Optimal Location of Feeding

In this section, the influence of feeding location on mixing and reaction selectivity is studied. Two
operating conditions with different feeding locations are compared; one is at the bottom corner of
the reactor while the other one is at the tip of Rushton impeller. The feeding rate (1 mL/s) is kept
constant throughout the simulation. In Figure 4 the yield trajectories of desired product are displayed
when different feeding locations are adopted. Considering that stronger convective flow presents
near impellers, in industry the injection point is usually placed in that region. Consistent with this
empirical rule, this simulation suggests that feeding at the corner of the reactor significantly hindered
the progress of reaction.
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near Rushton impeller.

The location for feeding is then numerically optimized with the proposed compartmental model.
As suggested in Table 1, it was found that irrespective of the number of stages, the maximum
productivity is reached when reagents are injected at the tip of Rushton impeller, which suggests a
higher mixing efficiency.

Table 1. Comparison of optimal feeding location for (a) constant rate feeding (b) two-stage dynamic
feeding policy and (c) three-stage feeding policy.

Reagent Injection Policy
Optimal Injection Location

Height (m) Radial Position (m)

Constant Rate Feeding 0.1–0.13 0.22–0.25
Two-stage Dynamic Feeding 0.1–0.13 0.22–0.25

Three-stage Dynamic Feeding 0.1–0.13 0.22–0.25

3.5.2. Optimal Rate of Feeding

The optimal feeding rate profiles determined for different reagent injection policies are illustrated
in Figure 5. It can be concluded that the proposed methodology favors a decreasing feeding rate
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profile, which leads to an increased process productivity. The reason behind this productivity boost is
studied through process dynamics. As illustrated in Table 2, approximately 4% increase in process
productivity is achieved by implementing a dynamic operation.
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injection policies.

Table 2. Comparison of optimal process productivity when (a) constant rate feeding (b) two-stage
dynamic feeding policy and (c) three-stage feeding policy are adopted.

Reagent Injection Policy Optimal Process Productivity ($)

Constant Rate Feeding 6162.90
Two-stage Dynamic Feeding 6410.43

Three-stage Dynamic Feeding 6411.76

Simulated trajectories of chemical species when different injection policies are employed is
illustrated in Figure 6. It is suggested that through employing dynamic policies, the yield of desired
product is not significantly enhanced (Figure 6c), which can be explain by the way we formulate this
problem. Since the price of the desired product is 10 times as high as the price of diazonium, through
the effort to maximize the overall profit, sufficient diazonium is fed to exhaust pyrazolone, which lead
to similar yield of the product.

Nevertheless, dynamic feeding rate can improve process productivity through reducing the
waste of raw material. As suggested in Figure 6a, considerable amount of diazonium is wasted if
constant rate feeding policy is adopted. When reactant is fed at a constant rate, with the consumption
of pyrazolone, diazonium would inevitably accumulate faster, which lead to material waste that
compromises economic performance. By adjusting feeding rate as pyrazolone is deleted, maximum
process profit can be achieved.
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Figure 6. Simulated trajectories of (a) Diazo (b) Pyrazolone and (c) Desired product when optimal
feeding policies solved with different number of stages are employed.

3.5.3. Traditional Process Design with Perfect-Mixing Assumptions

To illustrate the improvement of reaction selectivity by implementing this proposed methodology,
perfect-mixing model is studied and compared with compartmental model. The same optimization
algorithm is applied to the process dynamics model developed under perfect mixing assumption.
Specifically, in this section, three-stage dynamic feeding rate is considered. Table 3 shows the simulated
process productivity when different methodologies are employed. It can be concluded that by
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capturing the heterogeneity with CFD-based compartmental model, significant improvement to
process productivity could be achieved. The reason behind this productivity boost is studied through
process dynamics, as shown in Figures 7 and 8.

Table 3. Comparison between optimal operating conditions solved with perfect mixing model and the
proposed methodology.

Methodology Simulated Process Productivity ($)

Perfect-mixing Model 6162.90
CFD-based Compartmental Model 6410.43
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Figure 7. Optimal feeding rate profile solved with CFD-based compartmental model and perfect
mixing model.

Optimal feeding rate profiles determined with different methodologies are illustrated in Figure 7.
It is suggested that process design based on perfect-mixing assumption would lead to faster feeding
at earlier period of process. Therefore, a high quantity of diazonium is accumulated in the earlier
stage of process (Figure 8a). As a result, the undesired decomposition of diazonium is accelerated,
which compromise reaction selectivity (Figure 8d). Moreover, without considering the insufficient
consumption of pyrazolone due to imperfect mixing, the overall yield of desired product is hindered,
which further reduced product productivity.
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Figure 8. Simulated trajectories of (a) Diazonium (b) Pyrazolone (c) Desired product when different
methodologies are employed.

4. Discussion

Mixing in turbulent flow can significantly influence reaction selectivity, therefore systematic
analysis of mass transfer inside reactors is crucial for process design. Despite the increasing
computational power available for gaining understanding of the mixing process, in-silico process
design can still be inefficient in time and cost. In this proposed framework, by replacing repetitive
dynamic CFD simulation with compartmental model, process design can be conducted in a timely
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and economically more efficient manner. Moreover, in this work surrogate-based optimization is
implemented to numerically optimize process productivity. Comparing to genetic algorithm, which is
most widely adopted in engineering design, surrogate–based method requires less simulations to find
the optimal process design. As a result, the overall time efficiency can be significantly improved.

Rößger and Richter [25] have thoroughly compared state of the art CFD-based optimization methods
based on a 2-parameter design problem. For that specific problem it has been demonstrated that direct
optimization based on CFD simulation would require 1000 CFD simulations, which is computationally
prohibitive. Hybrid methods based on data-driven models can reduce the required number of CFD
simulations. However, as have been discussed, a large number of simulations are required to sufficiently
train the data-driven model and prevent over-fitting. The reported computational time is 6.5 h running
parallel on a 20-core Intel Xeon E5 V2 2.8 GHz processor.

In this manuscript, to optimize the process operation, 8 decision variables are considered. By
implementing an efficient iterative SBO algorithm, 150 iterations are sufficient for the algorithm to
converge to a good solution. Moreover, since each iteration is based on the compartmental model, which
only require a single CFD simulation to construct. As presented in Table 4, single simulations were
performed to determine the computational effort for one design evaluation. The overall computational
time is 3 h, running on a single-core of an Intel Xeon E5 V3 workstation. It can be concluded that
by implementing CFD-based compartmental modeling, significant time saving could be achieved if
same hardware system is applied. In active pharmaceutical ingredient (API) plant design where a
large number of simulations are conducted, computational expense could be reduced from weeks
to h through the implementation of the proposed methodology. Moreover, considering that CFD
is not freely available and requires special know-how, by cutting back dynamics CFD simulations,
implementing compartmental modeling is economically beneficial. This approach has shown a good
potential to characterize mixing in all the reactors in an API plant.

Table 4. Comparing computational expense between the proposed methodology and direct CFD simulation.

Methodology Computational Expense for One Simulation (s)

Dynamic CFD simulation 104

CFD-based Compartmental Model 70

Despite the reduced model complexity, in this work the grid density is determined so that
inhomogeneity inside reactor is sufficiently captured. Comparing to traditional process design
strategies which are based on perfect-mixing assumption, better reaction selectivity could be achieved
through compartmental model. As has been discussed in sub Section 3.5.3, by replacing traditional
process design strategy with this proposed compartmental model, more than 10% increase in process
profit has been achieved (Table 5).

Table 5. Comparison between optimal operating conditions solved with perfect mixing model and the
proposed methodology.

Methodology Simulated Process Productivity ($)

Perfect-mixing Model 5713.18
Compartmental Model (constant rate) 6126.90
Compartmental Model (dynamic rate) 6411.76

Furthermore, this proposed framework allows the design of dynamic operations. As illustrated in
sub Section 3.5.2, by adapting feeding rate in time to account for the depletion of raw materials, material
waste can be substantially reduced, which in turn leads to improved process productivity. Considering
that for complex reaction networks commonly encountered in organic synthesis, process dynamics
could be very complicated. By enabling the design of dynamic operations to fit the evolving chemical
processes, this proposed framework has exhibited a great potential of productivity improvement.
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5. Conclusions

CFD is a powerful tool to study mixing in chemical processes, and as such it has been applied
widely for numerical optimization of reactor designs. Nevertheless, implementation of CFD to improve
mixing through optimization of process operation is limited. A key reason is the computational
complexity of CFD models. Even though some data-driven models are used to replace CFD to reduce
time expense, to build confidence in the data-driven models requires large amount of CFD simulation.
The implementation of meta-heuristic algorithms further increased the computational expense.

This paper has shown possible ways to address the inherent difficulty with two improvements.
First, instead of using data-driven models to represent CFD simulation, compartmental model is
implemented. Since compartmental model are built based on first-principle mass balance equations, it
requires significantly less CFD simulations to drive, making it a better compromise between computational
complexity and model accuracy. Second, GA is replaced with surrogate-based optimization based on
RBF, which has been proven to be more efficient than GA. It should be noted that this surrogate-based
optimization algorithm does not give global optimality guarantees, same as GA. The goals should be to
find “good” or near optimal solutions when enough resources are provided.

The surrogate-based compartmental model optimization presented a compact and efficient
structure, which can be easily implemented in other scenarios. Since in compartmental model
space is discretized, which leads to mixed-integer nonlinear programing problems, surrogate-based
optimization is an efficient way to address it. Moreover, compartmental model is built based on
steady-state hydrodynamic solution from CFD, which is independent from models inside each
compartment. Therefore, changing models in compartments does not require extra CFD simulations.

The proposed methodology allows for dynamic process operation design, which has shown a
great potential of productivity improvement. Moreover, dynamic optimization of process operation
improves process flexibility and agility to adjust to a more dynamic market. Finally, the developed
simplification of complex transport model has the potential for advanced process monitoring and
control for reactors with limited instrumentation, such as single-use bioreactors and fermenters.

It should be noted that, to leverage the result of CFD simulation, compartmental models are
constructed based on steady-state hydrodynamic solution. However, this simplification is based on
the assumption that the flow field is independent from chemical reaction. This assumption would
limit the application of the proposed method in reactive flows. In addition, experimental calibration of
CFD simulation is necessary build confidence in the predictive ability of the proposed methodology.
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Abbreviations

CPP Critical process parameters
CFD Computational fluid dynamics
QbD Quality by design
RTD Residence time distribution
GA Genetic algorithm
RBF Radial basis function
CMC Chemistry, manufacturing, and controls
ANN Artificial neural network
RANS Reynolds averaged Navier-Stocks
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MRF Multi-reference frame
API Active pharmaceutical ingredient
SBO Surrogate-based opitmization
List of Symbols:
c Concentration
N Mass flux
D Diffusivity
R Source
V Volume
S Surface area
Q Mass flow rate
Da Damköhler number
Pe Péclet number
k Reaction rate constant
L Characteristic length
u Characteristic velocity
P Price
y Yield
Ns Number of feeding stages
Nc Number of compartments
t Duration
f Feed rate
Subscripts:
i ith species
j jth compartment
m mth stage of operation

References

1. Plutschack, M.B.; Pieber, B.; Gilmore, K.; Seeberger, P.H. The Hitchhiker’s Guide to Flow Chemistry(II).
Chem. Rev. 2017, 117, 11796–11893. [CrossRef]

2. Gobert, S.R.L.; Kuhn, S.; Braeken, L.; Thomassen, L.C.J. Characterization of Milli- and Microflow Reactors:
Mixing Efficiency and Residence Time Distribution. Org. Process. Res. Dev. 2017, 21, 531–542. [CrossRef]

3. Fogler, H.S. Essentials of Chemical Reaction Engineering; Pearson Education: Upper Saddle River, NJ, USA,
2010.

4. Gresch, M.; Brugger, R.; Meyer, A.; Gujer, W. Compartmental Models for Continuous Flow Reactors Derived
from CFD Simulations. Environ. Sci. Technol. 2009, 43, 2381–2387. [CrossRef]

5. Nienow, A.W. On impeller circulation and mixing effectiveness in the turbulent flow regime. Chem. Eng. Sci.
1997, 52, 2557–2565. [CrossRef]

6. Rosseburg, A.; Fitschen, J.; Wutz, J.; Wucherpfennig, T.; Schluter, M. Hydrodynamic inhomogeneities in
large scale stirred tanks–Influence on mixing time. Chem. Eng. Sci. 2018, 188, 208–220. [CrossRef]

7. Levesque, F.; Bogus, N.J.; Spencer, G.; Grigorov, P.; McMullen, J.P.; Thaisrivongs, D.A.; Davies, I.W.; Naber, J.R.
Advancing Flow Chemistry Portability: A Simplified Approach to Scaling Up Flow Chemistry. Org. Process.
Res. Dev. 2018, 22, 1015–1021. [CrossRef]

8. Aubin, J.; Ferrando, M.; Jiricny, V. Current methods for characterising mixing and flow in microchannels.
Chem. Eng. Sci. 2010, 65, 2065–2093. [CrossRef]

9. Commenge, J.M.; Falk, L. Villermaux-Dushman protocol for experimental characterization of micromixers.
Chem. Eng. Process. 2011, 50, 979–990. [CrossRef]

10. Reckamp, J.M.; Bindels, A.; Duffield, S.; Liu, Y.C.; Bradford, E.; Ricci, E.; Susanne, F.; Rutter, A. Mixing
Performance Evaluation for Commercially Available Micromixers Using Villermaux-Dushman Reaction
Scheme with the Interaction by Exchange with the Mean Model. Org. Process. Res. Dev. 2017, 21, 816–820.
[CrossRef]

11. Cheng, D.; Feng, X.; Cheng, J.C.; Yang, C. Numerical simulation of macro-mixing in liquid-liquid stirred
tanks. Chem. Eng. Sci. 2013, 101, 272–282. [CrossRef]

http://dx.doi.org/10.1021/acs.chemrev.7b00183
http://dx.doi.org/10.1021/acs.oprd.6b00359
http://dx.doi.org/10.1021/es801651j
http://dx.doi.org/10.1016/S0009-2509(97)00072-9
http://dx.doi.org/10.1016/j.ces.2018.05.008
http://dx.doi.org/10.1021/acs.oprd.8b00063
http://dx.doi.org/10.1016/j.ces.2009.12.001
http://dx.doi.org/10.1016/j.cep.2011.06.006
http://dx.doi.org/10.1021/acs.oprd.6b00332
http://dx.doi.org/10.1016/j.ces.2013.06.026


Processes 2019, 7, 9 18 of 20

12. Liu, L.; Barigou, M. Experimentally Validated Computational Fluid Dynamics Simulations of Multicomponent
Hydrodynamics and Phase Distribution in Agitated High Solid Fraction Binary Suspensions. Ind. Eng. Chem. Res.
2014, 53, 895–908. [CrossRef]

13. Reinecke, S.F.; Deutschmann, A.; Jobst, K.; Hampel, U. Macro-mixing characterisation of a stirred model
fermenter of non-Newtonian liquid by flow following sensor particles and ERT. Chem. Eng. Res. Des. 2017,
118, 1–11. [CrossRef]

14. Warmeling, H.; Behr, A.; Vorholt, A.J. Jet loop reactors as a versatile reactor set up—Intensifying catalytic
reactions: A review. Chem. Eng. Sci. 2016, 149, 229–248. [CrossRef]

15. Farzan, P.; Ierapetritou, M.G. Integrated modeling to capture the interaction of physiology and fluid dynamics
in biopharmaceutical bioreactors. Comput. Chem. Eng. 2017, 97, 271–282. [CrossRef]

16. Foli, K.; Okabe, T.; Olhofer, M.; Jin, Y.C.; Sendhoff, B. Optimization of micro heat exchanger: CFD, analytical
approach and multi-objective evolutionary algorithms. Int. J. Heat Mass Transf. 2006, 49, 1090–1099.
[CrossRef]

17. Uebel, K.; Rößger, P.; Prüfert, U.; Richter, A.; Meyer, B. CFD-based multi-objective optimization of a quench
reactor design. Fuel Process. Technol. 2016, 149, 290–304. [CrossRef]

18. Chen, M.; Wang, J.; Zhao, S.; Xu, C.; Feng, L. Optimization of Dual-Impeller Configurations in a Gas–Liquid
Stirred Tank Based on Computational Fluid Dynamics and Multiobjective Evolutionary Algorithm. Ind. Eng.
Chem. Res. 2016, 55, 9054–9063. [CrossRef]

19. Na, J.; Kshetrimayum, K.S.; Lee, U.; Han, C. Multi-objective optimization of microchannel reactor for
Fischer-Tropsch synthesis using computational fluid dynamics and genetic algorithm. Chem. Eng. J. 2017,
313, 1521–1534. [CrossRef]

20. De-Sheng, Z.; Jian, C.; Wei-Dong, S.H.I.; Lei, S.H.I.; Lin-Lin, G. Optimization of hydrofoil for tidal current
turbine based on particle swarm optimization and computational fluid dynamic ethod. Thermal Sci. 2016, 20,
907–912.

21. Sierra-Pallares, J.; del Valle, J.G.; Paniagua, J.M.; Garcia, J.; Mendez-Bueno, C.; Castro, F. Shape optimization
of a long-tapered R134a ejector mixing chamber. Energy 2018, 165, 422–438. [CrossRef]

22. Brar, L.S.; Elsayed, K. Analysis and optimization of cyclone separators with eccentric vortex finders using
large eddy simulation and artificial neural network. Sep. Purif. Technol. 2018, 207, 269–283. [CrossRef]

23. Jung, I.; Kshetrimayum, K.S.; Park, S.; Na, J.; Lee, Y.; An, J.; Park, S.; Lee, C.-J.; Han, C. Computational
Fluid Dynamics Based Optimal Design of Guiding Channel Geometry in U-Type Coolant Layer Manifold of
Large-Scale Microchannel Fischer–Tropsch Reactor. Ind. Eng. Chem. Res. 2016, 55, 505–515. [CrossRef]

24. Park, S.; Na, J.; Kim, M.; Lee, J.M. Multi-objective Bayesian optimization of chemical reactor design using
computational fluid dynamics. Comput. Chem. Eng. 2018, 119, 25–37. [CrossRef]

25. Rößger, P.; Richter, A. Performance of different optimization concepts for reactive flow systems based on
combined CFD and response surface methods. Comput. Chem. Eng. 2018, 108, 232–239. [CrossRef]

26. Abu-Mostafa, Y.S.; Magdon-Ismail, M.; Lin, H.-T. Learning from Dat; AMLBook: New York, NY, USA, 2012;
Volume 4.

27. Kapsoulis, D.; Tsiakas, K.; Trompoukis, X.; Asouti, V.; Giannakoglou, K. A PCA-assisted hybrid algorithm
combining EAs and adjoint methods for CFD-based optimization. Appl. Soft. Comput. 2018, 73, 520–529.
[CrossRef]

28. Muller, J.; Shoemaker, C.A.; Piche, R. SO-MI: A surrogate model algorithm for computationally expensive
nonlinear mixed-integer black-box global optimization problems. Comput. Oper. Res. 2013, 40, 1383–1400.
[CrossRef]

29. Boltersdorf, U.; Deerberg, G.; SCHLÜTER, S. Computational study of the effects of process parameters on
the product distribution for mixing sensitive reactions and on distribution of gas in stirred tank reactors.
Recent Res. Dev. Chem. Eng. 2000, 4, 15–43.

30. Guha, D.; Dudukovic, M.P.; Ramachandran, P.A.; Mehta, S.; Alvare, J. CFD-based compartmental modeling
of single phase stirred-tank reactors. AlChE J. 2006, 52, 1836–1846. [CrossRef]

31. Nørregaard, A.; Bach, C.; Krühne, U.; Borgbjerg, U.; Gernaey, K.V. Hypothesis-driven compartment model
for stirred bioreactors utilizing computational fluid dynamics and multiple pH sensors. Chem. Eng. J. 2019,
356, 161–169. [CrossRef]

http://dx.doi.org/10.1021/ie3032586
http://dx.doi.org/10.1016/j.cherd.2016.12.002
http://dx.doi.org/10.1016/j.ces.2016.04.032
http://dx.doi.org/10.1016/j.compchemeng.2016.11.037
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.08.032
http://dx.doi.org/10.1016/j.fuproc.2016.04.008
http://dx.doi.org/10.1021/acs.iecr.6b01660
http://dx.doi.org/10.1016/j.cej.2016.11.040
http://dx.doi.org/10.1016/j.energy.2018.09.057
http://dx.doi.org/10.1016/j.seppur.2018.06.013
http://dx.doi.org/10.1021/acs.iecr.5b03313
http://dx.doi.org/10.1016/j.compchemeng.2018.08.005
http://dx.doi.org/10.1016/j.compchemeng.2017.09.008
http://dx.doi.org/10.1016/j.asoc.2018.09.002
http://dx.doi.org/10.1016/j.cor.2012.08.022
http://dx.doi.org/10.1002/aic.10772
http://dx.doi.org/10.1016/j.cej.2018.08.191


Processes 2019, 7, 9 19 of 20

32. Zhao, W.; Buffo, A.; Alopaeus, V.; Han, B.; Louhi-Kultanen, M. Application of the compartmental model to
the gas-liquid precipitation of CO2-Ca(OH)2 aqueous system in a stirred tank. AlChE J. 2017, 63, 378–386.
[CrossRef]

33. Bezzo, F.; Macchietto, S.; Pantelides, C.C. A general methodology for hybrid multizonal/CFD models.
Comput. Chem. Eng. 2004, 28, 501–511. [CrossRef]

34. Vrabel, P.; van der Lans, R.; Cui, Y.Q.; Luyben, K. Compartment model approach: Mixing in large scale
aerated reactors with multiple impellers. Chem. Eng. Res. Des. 1999, 77, 291–302. [CrossRef]

35. Du, J.; Johansen, T.A. Integrated Multilinear Model Predictive Control of Nonlinear Systems Based on Gap
Metric. Ind. Eng. Chem. Res. 2015, 54, 6002–6011. [CrossRef]

36. Srilatha, C.; Morab, V.V.; Mundada, T.P.; Patwardhan, A.W. Relation between hydrodynamics and drop size
distributions in pump–mix mixer. Chem. Eng. Sci. 2010, 65, 3409–3426. [CrossRef]

37. Bezzo, F.; Macchietto, S. A general methodology for hybrid multizonal/CFD models—Part II. Automatic
zoning. Comput. Chem. Eng. 2004, 28, 513–525. [CrossRef]

38. Nienow, A.W.; Drain, S.M.; Boyes, A.P.; Mann, R.; El-Hamouz, A.M.; Carpenter, K.J. A new pair of reactions
to characterize imperfect macro-mixing and partial segregation in a stirred semi-batch reactor. Chem. Eng. Sci.
1992, 47, 2825–2830. [CrossRef]

39. Conn, A.R.; Scheinberg, K.; Vicente, L.N. Introduction to Derivative-Free Optimization; Siam: Philadelphia, PA,
USA, 2009.

40. Boukouvala, F.; Misener, R.; Floudas, C.A. Global optimization advances in Mixed-Integer Nonlinear
Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO. Eur. J. Oper. Res. 2016, 252,
701–727. [CrossRef]

41. Bhosekar, A.; Ierapetritou, M. Advances in surrogate based modeling, feasibility analysis, and optimization:
A review. Comput. Chem. Eng. 2018, 108, 250–267. [CrossRef]

42. Regis, R.G.; Shoemaker, C.A. Improved strategies for radial basis function methods for global optimization.
J. Glob. Optim. 2007, 37, 113–135. [CrossRef]

43. Oeuvray, R.; Bierlaire, M. BOOSTERS: A derivative-free algorithm based on radial basis functions. Int. J.
Model. Simul. 2009, 29, 26–36. [CrossRef]

44. Wild, S.M.; Shoemaker, C.A. Global Convergence of Radial Basis Function Trust-Region Algorithms for
Derivative-Free Optimization. SIAM Rev. 2013, 55, 349–371. [CrossRef]

45. Regis, R.G.; Wild, S.M. CONORBIT: constrained optimization by radial basis function interpolation in trust
regions. Optim. Meth. Softw. 2017, 32, 552–580. [CrossRef]

46. Wang, Z.L.; Ierapetritou, M. A novel feasibility analysis method for black-box processes using a radial basis
function adaptive sampling approach. AlChE J. 2017, 63, 532–550. [CrossRef]

47. Jones, D.R.; Schonlau, M.; Welch, W.J. Efficient global optimization of expensive black-box functions.
J. Glob. Optim. 1998, 13, 455–492. [CrossRef]

48. Boukouvala, F.; Ierapetritou, M.G. Derivative-free optimization for expensive constrained problems using a
novel expected improvement objective function. AlChE J. 2014, 60, 2462–2474. [CrossRef]

49. Regis, R.G. Trust regions in Kriging-based optimization with expected improvement. Eng. Optim. 2016, 48,
1037–1059. [CrossRef]

50. Beykal, B.; Boukouvala, F.; Floudas, C.A.; Sorek, N.; Zalavadia, H.; Gildin, E. Global optimization of grey-box
computational systems using surrogate functions and application to highly constrained oil-field operations.
Comput. Chem. Eng. 2018, 114, 99–110. [CrossRef]

51. Wang, Z.L.; Ierapetritou, M. Constrained optimization of black-box stochastic systems using a novel
feasibility enhanced Kriging-based method. Comput. Chem. Eng. 2018, 118, 210–223. [CrossRef]

52. Fernandes, F.A.N. Optimization of Fischer-Tropsch synthesis using neural networks. Chem. Eng. Technol.
2006, 29, 449–453. [CrossRef]

53. Henao, C.A.; Maravelias, C.T. Surrogate-Based Superstructure Optimization Framework. AlChE J. 2011, 57,
1216–1232. [CrossRef]

54. Sen, O.; Gaul, N.J.; Choi, K.K.; Jacobs, G.; Udaykumar, H.S. Evaluation of multifidelity surrogate modeling
techniques to construct closure laws for drag in shock-particle interactions. J. Comput. Phys. 2018, 371,
434–451. [CrossRef]

55. Müller, J. MISO: mixed-integer surrogate optimization framework. Optim. Eng. 2015, 17, 177–203. [CrossRef]

http://dx.doi.org/10.1002/aic.15567
http://dx.doi.org/10.1016/j.compchemeng.2003.08.004
http://dx.doi.org/10.1205/026387699526223
http://dx.doi.org/10.1021/ie504170d
http://dx.doi.org/10.1016/j.ces.2010.02.035
http://dx.doi.org/10.1016/j.compchemeng.2003.08.010
http://dx.doi.org/10.1016/0009-2509(92)87136-E
http://dx.doi.org/10.1016/j.ejor.2015.12.018
http://dx.doi.org/10.1016/j.compchemeng.2017.09.017
http://dx.doi.org/10.1007/s10898-006-9040-1
http://dx.doi.org/10.1080/02286203.2009.11442507
http://dx.doi.org/10.1137/120902434
http://dx.doi.org/10.1080/10556788.2016.1226305
http://dx.doi.org/10.1002/aic.15362
http://dx.doi.org/10.1023/A:1008306431147
http://dx.doi.org/10.1002/aic.14442
http://dx.doi.org/10.1080/0305215X.2015.1082350
http://dx.doi.org/10.1016/j.compchemeng.2018.01.005
http://dx.doi.org/10.1016/j.compchemeng.2018.07.016
http://dx.doi.org/10.1002/ceat.200500310
http://dx.doi.org/10.1002/aic.12341
http://dx.doi.org/10.1016/j.jcp.2018.05.039
http://dx.doi.org/10.1007/s11081-015-9281-2


Processes 2019, 7, 9 20 of 20

56. Zhang, W.P.; Wang, X.; Feng, X.; Yang, C.; Mao, Z.S. Investigation of Mixing Performance in Passive
Micromixers. Ind. Eng. Chem. Res. 2016, 55, 10036–10043. [CrossRef]

57. Lin, X.Y.; Wang, K.; Zhang, J.S.; Luo, G.S. Liquid-liquid mixing enhancement rules by microbubbles in three
typical micro-mixers. Chem. Eng. Sci. 2015, 127, 60–71. [CrossRef]

58. Fluent, A. Ansys Fluent Theory Guide; ANSYS Inc.: Canonsburg, PA, USA, 2011; Volume 15317, pp. 724–746.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1021/acs.iecr.6b01765
http://dx.doi.org/10.1016/j.ces.2015.01.014
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Integrating CFD-Based Compartmental Model with Surrogate Based Optimization 
	CFD-Based Compartmental Model 
	A Brief Review of Compartmental Model 
	Compartmental Model Development 
	Grid Independence 

	Surrogate-Based Optimization 
	A Brief Review of Surrogate-Based Optimization 
	Problem Formulation 


	Case Study 
	Reactor Setup 
	Chemical Kinetics 
	Flow Field Simulation 
	Compartmental Modeling and Grid Independence Test 
	Optimization and Results 
	Optimal Location of Feeding 
	Optimal Rate of Feeding 
	Traditional Process Design with Perfect-Mixing Assumptions 


	Discussion 
	Conclusions 
	References

