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Abstract: The modal injection mechanism ensures the exponential convergence of an observer in a
continuous tubular reactor in dependence with the system parameters, the sensor location, and the
observer gains. In this paper, it is shown that by simple considerations in the boundary conditions,
the observer convergence is improved regardless of the presence of perturbations, the sensor locations
acquire a meaningful physical meaning, and by simple numerical manipulations, the perturbations
in the inflow can be numerically estimated.
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1. Introduction

Tubular reactors are of great importance in chemical and biochemical processes, specially those
with non-monotonic kinetics [1], e.g., catalytic reactors with Langmuir–Hinshelwood kinetics [2,3] or
bioreactors with Haldane kinetics [4]. The tubular reactors are continuous systems where the mass
concentration in some inner point depends on the spatial and temporal coordinates (see Figure 1).

Figure 1. Simplified model of a tubular reactor.

In this kind of reactors, it is almost impossible to measure the concentration along the reactor;
it is usually found that only a finite set of points can be measured, and the system states must be
reconstructed from this information. The necessity to measure or estimate the system states has
motivated the design of observers for this distributed parameter system, including absolute stability
results [5], adaptive switching observers [6], Lyapunov-based approaches [7], backstepping designs [8],
sliding modes observers [9], kalman schemes [10,11], interval observers [12], and finally (the main
interest of this work) dissipative approaches [13].

Dissipative observers deal with a Luenberger-type observer; this is, the observer may be
understood as a copy of the original system, plus correction terms to adjust the system response.
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The observer dynamic in the infinite–dimensional space is studied using the Garlekin’s method, where
the orthonormal basis is defined by the eigenfunctions, which in turn may be divided into slow
eigenfunctions and fast eigenfunctions that describe, correspondingly, the slow and fast dynamics of
the system [14–16].

The main idea of the dissipative observers is, through a modal injection mechanism, to move
the slow eigenfunctions sufficiently far into the left-half complex plane to ensure that the potentially
destabilising effects of the non-linear reaction terms are compensated [13,16]. The effect of the fast
eigenfunctions, corresponding to fast dynamics, is assumed stable and disappears rapidly.

In the non-linear dissipative observer [17], three measurements of the concentration are made
in the reactor: In some inner point and in both boundaries. The observer behaviour depends on
the position of the inner measurement point but not explicitly on the boundary measurements [18];
thus, the boundary measurements can be used for other purposes rather than stability—for example,
to provide further information for the sensor allocation or improve the observer performance in the
presence of inflow uncertainties.

In this paper, we propose a simple but meaningful way to select the boundary gains in order to
improve the observer convergence, provide a physical meaning for the sensor position, and allow the
estimation of the input uncertainties in the inflow. The results are shown in a numerical example.

This paper is organised as follows: In Section 2, the previous results and inconvenience of
neglecting the effects of the boundary gains are described; in Section 3, the advantages of a correct
selection of the boundary gains are proposed; in Section 4, the numerical results are shown; and in
Section 5, the conclusions are presented.

2. Problem Formulation

Consider the tubular reactor depicted in Figure 1, where c (x, t) is the mass concentration at the
spatial coordinate x ∈ [0, 1] at time t. For this tubular reactor, the dynamical equations are given as:

∂c(x,t)
∂t = 1

Pec

∂2c(x,t)
∂x2 − ∂c(x,t)

∂x − Dar (c (x, t)) ,
1

Pec

∂c(x,t)
∂x

∣∣∣
x=0

= c (0, t)− cin (t) ,
1

Pec

∂c(x,t)
∂x

∣∣∣
x=1

= 0,

(1)

where Pec is the system Peclet number, r (x, t) is the non-linear reaction rate, Da is a constant reaction
rate, and cin (t) is the inflow mass concentration.

The mass concentration c (x, t) can be measured by sensors located at the positions x = {0, ξ, 1},
for some ξ ∈ (0, 1); this is, the mass concentration is measured in the inflow, some inner point of
the reactor and outflow. To estimate the complete mass concentration in the distributed system, the
Luenberger-type observer may be used [13]:

∂ĉ(x,t)
∂t = 1

Pec

∂2 ĉ(x,t)
∂x2 − ∂ĉ(x,t)

∂x − Dar (ĉ (x, t))
· · · − lξ (x) (ĉ (ξ, t)− c (ξ, t)) ,

1
Pec

∂ĉ(x,t)
∂x

∣∣∣
x=0

= ĉ (0, t)− cin (t)− l0 (ĉ (0, t)− c (0, t)) ,
1

Pec

∂ĉ(x,t)
∂x

∣∣∣
x=1

= −l1 (ĉ (1, t)− c (1, t)) .

(2)

Note that the observer is a copy of the original system (Equation (1)), plus the distributed
correction term lξ (x) and the boundary correction terms {l0, l1}. The observation error

e (x, t) := ĉ (x, t)− c (x, t) , (3)

is the difference between the real and the estimated mass concentration, with a dynamical evolution
given as:
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∂e(x,t)
∂t = 1

Pec

∂2e(x,t)
∂x2 − ∂e(x,t)

∂x − Daρ (x, t)− lξ (x)e (ξ, t)
1

Pec

∂e(x,t)
∂x

∣∣∣
x=0

= (1− l0) e (0, t) ,
1

Pec

∂e(x,t)
∂x

∣∣∣
x=1

= −l1e (1, t) ,

(4)

where the non-linear term ρ (x, t) = r (ĉ (x, t))− r (c (x, t)) is the difference between the reaction rate
in the system and the observer. In Reference [18], the following theorem is described.

Theorem 1. If in the observer (Equation (2)), the boundary correction terms are set to zero, and using the
correction term:

lξ (x) =
N

∑
k=1

lξ,kΦk (x), (5)

where φk (x) are the solutions of the Sturm–Liouville problem:(
1

Pec

∂2

∂x2 −
∂

∂x

)
Φk (x) = λkΦk (x) , (6)

then the weighted error norm:

‖e (x, t)‖Lω
2
=
∫ 1

0
exp−Pecx e2 (x, t)dx =: E (t) , (7)

converges exponentially to zero; this is:

E (t) ≤ E (0) exp−Λ̃t, (8)

for some positive constant Λ̃, if the following conditions are met:

(i) The non-linear term ρ (x, t) satisfies the sector condition:

Sh :=
∫ 1

0
ω (x)

[
e (x, t)
ρ (x, t)

]T [
−susl

1
2 (su + sl)

1
2 (su + sl) −1

] [
e (x, t)
ρ (x, t)

]
dx ≥ 0, (9)

where sl = min ∂r
∂c , and su = max ∂r

∂c are, respectively, the minimal and maximal slope of the reaction rate
with respect to the concentration;

(ii) the sensor location x = ξ does not correspond to any root of the first N eigenfunctions Φk (x), this is,
Φk (ξ) 6= 0;

(iii) noticing that the eigenvalues λk, given as:

λk =
P2

ec + 4ω2
k

4Pec
, (10)

are real, negative, and form a discrete monotonically decreasing series [19], λ1 > λ2 > . . . > λN >

λN+1 > . . ., for some (k− 1)π ≤ ωk ≤ π, see Equation (20). Then, the modal correction dimension N is
chosen such that:

−2λN+1 >
(2Da − [su + sl ])

2

4
− susl + 2Λ, (11)

and finally;
(iv) the maximal eigenvalue of the matrix (AN − LCs), where:
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AN =


λ1 0 · · · 0
0 λ2 0
...

. . .
...

0 0 · · · λN

 , L =


lξ,1
lξ,2

...
lξ,N

 , Cs =


φ1 (ξ)

φ2 (ξ)

· · ·
φN (ξ)

 , (12)

is smaller than λN+1.

Remark 1. The eigenvalues λk are functions of the Peclet number Pec, determining the convergence rate of the
weighted error norm (Equation (7)), and the dimension N of the modal correction mechanism (Equation (11)).
A small Peclet number produces a high diffusion term, whereas a big Peclet number produces a small
diffusion term.

The basic idea of the observer is to accelerate the convergence rate of the slowest N−
eigenfunctions. Noticing that the observer stability proof does not depend on the boundary conditions
(see Appendix A), the pair {l0, l1} is selected to improve the observer performance, without seemingly
any restriction on the pair {l0, l1}. In similar works [16], solely the boundary conditions in the observer
convergence are studied, leading to restrictive conditions.

In this work, as an extension of the previous theorem, we show that the gains {l0, l1} can be
selected to:

(a) Improve the observer convergence;
(b) provide more information about the sensor position;
(c) facilitate tuning the observer parameters;
(d) and allow the estimation of the inflow perturbation.

3. Main Results

The gains {l0, l1} are not required directly in the proof of Theorem 1, but they certainly modify
the eigenvalues Φk (x) used to design the correction term (Equation (5)) and play an important role in
the observation error (see Equations (3) and (16)). In the following corollary, we show how the correct
gains {l0, l1} simplify the observer design and constrain the error behaviour in a suitable way.

Corollary 1. Assume conditions of Theorem 1 are fulfilled, but consider the boundary conditions:

|l0| � 1 and l1 = l0 − 2, (13)

then:

(i) The correction term lξ (x) in Equation (5) simplifies to:

lξ (x) =
√

2expPecx/2
N

∑
k=1

lξ,k sin (kπx) , (14)

(ii) the feasible sensor positions are given by all points in the set:

ξ =
{

y ∈ (0, 1) : y 6= n
k

for k = 1, · · · , N and n ∈ N
}

, (15)

(iii) and the observation error in the boundaries is close to zero or converges rapidly to zero.

The proof of this corollary is given along this section. First recall that the solution for the error
Equation (4) may be decomposed as:
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e (x, t) =
∞

∑
k=1

ek (t)Φk (x) , (16)

where the set {φk (x)}|k∈N defines a basis for the spatial distribution and {ek (t)}|k∈N defines the time
evolution of the system. From Equation (6), it follows that the eigenfunctions {φk (x)}|k∈N are of
the form:

Φk (x) = expPecx/2 (Aksin (ωkx) + Bk cos (ωkx)) . (17)

The eigenfrequencies {ωk}|k∈N and the amplitudes {Ak, Bk}|k∈N are obtained, substituting the
eigenfunctions from Equation (17) in the Sturm–Liouville boundary conditions:

1
Pec

∂φk(x)
∂x

∣∣∣
x=0

= (1− l0) φk (0) ,
1

Pec

∂φk(x)
∂x

∣∣∣
x=1

= −l1φk (1) ,
(18)

as:
(1− 2l0) PecBk − 2ωk Ak = 0, (19)

and:

(tan (ωk))
−1 =

1
(l1 − l0 + 1)

(
1

Pec
ωk +

(1 + 2l1) (2l0 − 1)
4

Pec

ωk

)
. (20)

From Equations (19) and (20), it follows that numerical approximations are required to build
the inyection term (Equation (5)). From Equation (13), for example, l1 − l0 + 1 = −1 and |l0| � 1,
Equation (20) becomes:

(tan (ωk))
−1 ≈ −

(
1

Pec
ωk + |l0|2

Pec

ωk

)
. (21)

The right-hand side is a concave function with upper bound:

−
(

1
Pec

ωk + |l0|2
Pec

ωk

)
≤ −2 |l0| , (22)

and Equation (20) simply becomes:

(tan (ωk))
−1 ≤ −2 |l0| , (23)

and using |l0| � 1, we find:
ωk ≈ kπ for all k ∈ N. (24)

In Figure 2, the left and right-hand sides of Equation (20) are plotted for l0 = 12 and l1 = 10,
where the intersection points are the solutions of the equation, which verifies Equation (24).

Once the eigenfrequencies ωk are fixed, Equation (19) becomes:

Bk =
2kπAk

(1− 2l0) Pec
, (25)

and for |l0| large enough, the first N terms may be neglected, this is:

{Bk}|k=1,··· ,N ≈ 0. (26)
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Figure 2. Numerical approximation for Equation(20).

Therefore, the first N eigenfunctions are:

φk (x) ≈ Ak expPecx/2 sin (kπx) k = {1, · · · , N} . (27)

To satisfy the orthogonal condition depicted in the Appendix A (see Equation (A3)), Ak =
√

2 is
selected for k = {1, · · · , N}, and the first N eigenfunctions become:

φk (x) ≈
√

2 expPecx/2 sin (kπx) for k = {1, · · · , N} , (28)

From where Equation (14) follows. In Figure 3, the first four eigenvalues for l0 = 12 and l1 = 10
are shown. Increasing |l0| will make Equation (28) a better approximation to the real eigenvalues.

0 0.2 0.4 0.6 0.8 1

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Figure 3. First four eigenvalues φk (x).

From Equation (28), it is immediately obvious that the sensor should avoid any position ξ ∈ (0, 1)
such that:

sin (ξπx) = 0 for k = {1, · · · , N} , (29)

and Equation (15) follows.
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Now, noticing that the slowest N eigenfunctions are approximated by sine functions, the error
decomposition e (x, t) = ∑∞

k=1 ek (t) φk (x) may be written as:

e (x, t) =
N

∑
k=1

ek (t) Ak sin (kπx) +
∞

∑
k=N+1

ek (t) φk (x) . (30)

Therefore, at the boundaries:

e (x, t)|x={0,1} =
∞

∑
k=N+1

ek (t) φk (x) , (31)

the error depends only of fastest modes {φk (x)}|k={N+1,··· } that converges rapidly to zero.

Remark 2. If the values of Bk for k = {1, 2, ..., N} are not negligible, this may occur for small Peclet numbers
or l0 close to 1

2 (see Equation (19)); then, a peaking phenomenon may arise. This is exemplified in the numerical
simulation section.

Remark 3. Equation (13), say l1 = l0 − 2 is an algebraic condition, not the only one, proposed to preserve the
right-hand side of Equation (20) as a concave function, keeping valid the approximation ωk ≈ kπ.

The precise sensor position is something that should be discussed more carefully; however,
noticing that the sensor position ξ should be selected to increase the effect of the correction mechanism,
given by the product lξ (x) e (ξ, t) in Equation (4), the sensor position can be proposed to satisfy
the relation:

ξ =

{
y :

N

∑
j=1

∣∣φj (y)
∣∣ = max

x∈(0,1)

N

∑
j=1

∣∣φj (x)
∣∣} . (32)

4. Numerical Simulation

In this section, a tubular reactor with a non-monotonic Langmuir–Hinshelwood type kinematics
is considered [2,3], where the reaction rate is given by:

r (c (x, t)) =
c (x, t)

(1 + σc (x, t))2 , (33)

where the constant coefficient σ denotes some inhibition parameter. Simulation studies were carried
out, considering a diffusion dominated behaviour corresponding to (Pec, σ, Da) = (6, 3, 4), and an
inflow as the sum of a nominal and a perturbation term:

cin (t) = 0.3︸︷︷︸
nominal

+ 0.1

(
5

∑
m=0

cos (6mπt)

)
︸ ︷︷ ︸

perturbation

. (34)

Figure 4 shows the error surface when no correction mechanism is applied, this is, l0 = l1 = lξ = 0.
The behaviour at x = 0 is due to the inflow perturbations.
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Figure 4. Error surface without boundary feedback.

By setting {l0, l1} = {102, 100}, the error in the boundaries can be brought to values close to
zero rapidly (see Figure 5); even the effect of the inflow perturbations is reduced. Note that without
the modal injection mechanism lξ (x), at t = 0.6 (s), the spatial behaviour of the error resembles the
behaviour of the first and slowest eigenfunction φ1 (x) =

√
2 expPecx/2 sin (πx).
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Figure 5. Error surface with only boundary feedback.

Now, it is straightforward to verify condition (iii) of Theorem 1; this is, the eigenvalues form the
decreasing series:

λ1 = −3.15, λ2 = −8.08, λ3 = −16.30, · · · (35)

and Equation (11) is fulfilled for N = 1:

− 2λN+1 >
(2Da − [su + sl ])

2

4
− susl + 2Λ = 12.41 + 2Λ, (36)

and any Λ ∈ (0, 1.87). It is proposed the modal correction mechanism:

lξ (x) = lξ,1φ1 (x) = lξ,1
√

2 expPecx/2 sin (πx) , (37)
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that will affect the slowest eigenfunction, allowing a better convergence of the error surface to zero.
Using Equation (32) to fix the sensor position to ξ = 0.74, and by setting lξ,1 = 2.87, condition (iv) of
the Theorem 1 is fulfilled:

λ1 − lξ,1φ (ξ) = −30 < λ2. (38)

In Figure 6, the error surface with the the boundary feedback and the correction mechanism is
shown. The effect of the modal injection mechanism is immediate.

Figure 7 shows the error norm E (t) for all different feedback conditions:

(a) No feedback;
(b) only boundary feedback;
(c) only modal correction mechanism;
(d) both boundary and modal correction mechanism.
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Figure 6. Error surface with boundary and the first mode feedback.

Figure 7. Error comparison.
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The combination of a modal injection mechanism with boundary feedback increases the convergence
rate without compromising stability. To improve the observer convergence, more modes can be added
to the modal correction mechanism; for example, consider the modal correction mechanism:

lξ (x) =
3

∑
k=1

lξ ,kΦk (x) =
√

2 expPecx/2
3

∑
k=1

lξ ,k sin (kπx). (39)

It is immediate to verify that setting:

lξ,1 = 12.6, lξ,2 = 6.2, lξ,3 = 0.3, (40)

then:

max

eig


−3.15 0 0

0 −8.08 0
0 0 −16.30

−
lξ,1

lξ,2
lξ,3

 [φ1 (ξ) φ2 (ξ) φ3 (ξ)
]
 = −20 < λ3, (41)

and the convergence rate of the three slowest modes is increased. In Figure 8, the corresponding error
surface is shown. Comparing Figures 6 and 8, the effect of adding more modes in the modal correction
mechanism is immediate.
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Figure 8. Error surface with boundary and three modal correction mechanism.

Now, using the fact that the error in the boundaries is close to zero, this is:

e (x, t)|x=0 ≈ 0 ⇒ ĉ (0, t) ≈ c (0, t), (42)

simple numeric manipulations will allow the estimation of the inflow perturbation. From the
boundary conditions:

1
Pec

∂c (0, t)
∂x

= c (0, t)−
{

cin (t) + θper (t)
}

, (43)

and the corresponding discrete approximation:

1
Pec∆x

(c (∆x, t)− c (0, t)) = c (0, t)−
{

cin (t) + θper (t)
}

, (44)
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a non-rigorous estimation of the perturbation is obtained by replacing the actual concentration with
the estimated concentration, this is, c (∆x, t)→ ĉ (∆x, t), and solving for θper as:

θper (t) ≈
1

Pec∆x
((1 + Pec∆x) c (0, t)− ĉ (∆x, t))− cin (t) . (45)

The estimation of the inflow perturbation is shown in Figure 9.
Finally, and for completeness, an example is presented of the peaking phenomenon that commonly

occurs when high gains are implemented.
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Figure 9. Perturbation estimation in the concentration input.

Peaking Phenomenon

Consider a tubular reactor with a small Peclet number, for example, (Pec, σ, Da) = (2, 3, 4), and
the boundary gains (l0, l1) = (12, 10). The corresponding error surface is depicted in Figure 10, where
a peak in the spatial boundary appears. Contrary to what is thought, this peak is reduced when the
boundary gains are increased, making this peaking phenomenon something that should be more
carefully analysed, especially when the observer data will be used for feedback control [20].
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5. Conclusions

In this work, we extend some results of the non-linear dissipative observer to show that correctly
chosen boundary gains allow a simple tuning of the observer and its parameters, improving the
observer convergence, and allowing the estimation of the inflow perturbations. Numerical validation
of the presented algorithm shows the validity of the proposed approach.
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Appendix A

Proof of Theorem 2.1. In this section, a simplified proof is provided. First recall that the error norm
(see Equation (7)) may be equivalently written as:

‖e (x, t)‖Lω
2
= E (t) =

∫ 1

0
ω (x) e2 (x, t) dx, (A1)

where ω (x) = expPecx/2 [21,22]. Combining Equations (16) and (A1), we have:

E (t) =
∞

∑
k=1

∞

∑
j=1

ek (t) ej (t)
∫ 1

0
ω (x) φk (x) φj (x) dx, (A2)

selecting the eigenfuntions {φk (x)}|k∈N in such a way that:

∫ 1

0
ω (x) φk (x) φj (x) dx = δk,j, (A3)

where:

δk,j =

{
0 if k 6= j
1 if k = j

, (A4)

then the error norm can be written as:

E (t) =
∞

∑
k=1

∞

∑
j=1

ek (t) ej (t) δk,j =
∞

∑
k=1

e2
k (t) , (A5)

and deriving the error norm E (t), we obtain:

d
dt E (t) = d

dt

(∫ 1
0 ω (x) e2 (x, t) dx

)
= 2

∫ 1
0 ω (x) e (x, t) ∂e(x,t)

∂t dx, (A6)

and substituting (4) we have:
d
dt

E (t) = DT + DK, (A7)

with:
DT = 2

∫ 1
0 ω (x) e (x, t)

((
1

Pec
∂2

∂x2 − ∂
∂x

)
e (x, t)−lξ (x) e (ξ, t)

)
dx

DK = −2
∫ 1

0 ω (x) e (x, t) Daρ (x, t) dx
. (A8)
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Now, using Equations (16) and (6), we rewrite DT as:

DT = 2
∞
∑

k=1

∞
∑

j=1
λkej (t) ek (t)

∫ 1
0 ω (x)Φk (x)Φj (x)dx

−2
∞
∑

k=1

N
∑

j=1
lξ,je (ξ, t)ek (t)

∫ 1
0 Φj (x)Φk (x) dx,

(A9)

and using the orthogonality condition (Equation (A3)), we have:

DT = 2
∞

∑
k=1

λke2
k (t)− 2e (ξ, t)

N

∑
k=1

lξ,kek (t) : (A10)

since e (ξ, t) = ∑∞
k=1 ek (t) φk (ξ), then:

DT = 2
∞

∑
k=1

λke2
k (t)− 2

∞

∑
k=1

N

∑
j=1

ek (t)Φk (ξ)lξ,jej (t), (A11)

which can be written in the quadratic form:

DT = 2eT (t)

[
, AN − LCs LC f

0 AN+1

]
e (t) (A12)

where:
e (t) =

[
e1 (t) · · · eN (t) eN+1 (t) · · ·

]T
, (A13)

and:

AN =

 λ1 0
. . .

0 λN

 , AN+1 =

 λN+1 0
0 λN+2

. . .

 (A14)

L =

 lξ,1
· · ·
lξ,N

 , Cs =

 Φ1 (ξ)

· · ·
ΦN (ξ)

 , C f =

 ΦN+1 (ξ)

ΦN+2 (ξ)

· · ·

 . (A15)

If φk (ξ) 6= 0 for k = {1, · · · , N}, then the pair {AN , Cs} is observable and there exists a vector L
such that:

λN+1 ≤ max σ (AN − LCs) , (A16)

so DT is bounded by:
DT ≤ λN+1eT (t) e (t) = λN+1E (t) . (A17)

The perturbation term DK is bounded using the sector condition Sh ≥ 0 (see Equation (9)) so:

DK ≤ −2
∫ 1

0
ω (x) e (x, t) Daρ (x, t) dx + Sh, (A18)

or, regrouping terms:

DK ≤ −
∫ 1

0
ω (x)

[
e (x, t)
ρ (c, e)

]T [
susl Da − 1

2 (su + sl)

Da − 1
2 (su + sl) 1

] [
e (x, t)
ρ (c, e)

]
dx. (A19)
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Equation (A7) is then bounded as:

d
dt

E (t) ≤ −
∫ 1

0
ω (x)

[
e (x, t)
ρ (c, e)

]T

P

[
e (x, t)
ρ (c, e)

]
dx, (A20)

where P = PT ∈ R2×2 is given by:

P =

[
susl − 2λN+1 Da − 1

2 (su + sl)

Da − 1
2 (su + sl) 1

]
. (A21)

Now, P is positive definite if for some positive scalar Λ > 0:

susl − 2λN+1 −
(

Da −
1
2
(su + sl)

)2
= Λ, (A22)

or, equivalently:

−2λN+1 =
(2Da − [su + sl ])

2

4
− susl + Λ, (A23)

Therefore:

d
dt

E (t) ≤ −Λ̃
∫ 1

0
ω (x)

[
e (x, t)
ρ (x, e)

]T[
e (x, t)
ρ (x, e)

]
dx Λ̃ = min σ (P) (A24)

d
dt

E (t) ≤ −Λ̃
∫ 1

0
ω (x) e2 (x, t) dx = −Λ̃E (t) , (A25)

and:
E (t) ≤ E (0) exp−Λ̃t . (A26)

�
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