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1. Derivation of the Physiological Gene Expression Model11

1.1. Protein fraction of cell mass12

The total cell mass MTot can be partitioned into fractions of protein and other constituents. The
protein fraction of the cellular mass, Φpr, can be fit to data from [1] with a linear function:

Φpr = κprλ + Φpr0 (1)

The fit shown in Fig. S1 provides estimates of κpr = −6.47 min and Φpr0 = 0.65.

Figure S1. Fit of protein fraction of the cell mass using data from Table 2 of [1] .
13

1.2. Growth Dependence of the Total RNAP Population14

The total RNAP fraction of the overall protein mass, Φp, exhibits an approximately linear
relationship with growth rate:

Φp = κpλ + Φp0. (2)

We fit this to data provided in [1], yielding estimates κp = 0.30 min and Φp0 = 0.0074, shown in15

Figure S2.16
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Figure S2. Fit of RNAP fraction of protein mass using data from Table 3 of [1].

1.3. Available RNAP17

The total RNAP population can be partitioned by state: freely diffusing; weakly DNA bound at a18

non-specific site; actively transcribing other genes; paused and non-functioning during transcription19

(paused); or immature [2–4]. We are interested in those RNAP that can initiate transcription. It has20

been assumed in past works that transcriptional initiation is proportional to the free fraction [4].21

However, our thermodynamic equilibrium model of the promoter accounts for competition between22

non-specific binding sites and the specific promoter site. We therefore define the combined pool of free23

and non-specifically bound RNAPs as the available RNAP pool, Pa.24

We use a course-grained partitioning of total RNAPs, PTot: dividing them into i) the available
RNAPs, Pa, ii) the bound RNAPs, Pb. We will neglect the immature population as this has been
measured to be a small fraction (< 10%) of the total [2]. We can therefore write the total as

PTot ≈ Pa + Pb (3)

The available subgroup, Pa, includes those RNAPs freely diffusing in the nucleoid as well as those
non-specifically bound to the DNA. These two sub-groups within the available pool, Pa, have been
observed to be in rapid equilibrium [2]. We assume that the bound RNAPs, Pb, include all those bound
to the DNA that are actively transcribing or paused in transcription. We write

Pa = PTot − Pb = PTot(1−Φb) = PTotΦa, (4)

where Φb is the fraction of transcription-occupied RNAPs unavailable for initiation of transcription25

and Φa is the faction of those that are available.26

The growth-dependent fraction of RNAPs that are available to initiate transcription27

(non-transcribing) is still poorly understood. Work by Klumpp and Hwa [4] as well as Bremer28

and colleagues [3,5] have attempted to describe the partitioning of RNAP into free and occupied29

fractions across growth rates without consensus. However, all agree the concentration of free RNAP30

increases with growth rate. Recent spatial imaging experiments of fluorescently-tagged RNAP suggest31

these previous theories may be partially inaccurate; specifically, this new data suggest much larger32

fractions of RNAP are busy in transcription, and smaller fractions are non-specifically bound or paused,33

than previously expected [2,6].34

Current direct measurements of the dependence of Φb or Φa on growth rate are sparse. Bakshi
et al. examine only a single growth rate (doubling time of approximately 42 min) at which they
estimate the partitioning of RNAP using spatial tracking of tagged molecules [2]. Stracy et al. have
since compared RNAP partitioning between growth on minimal and rich media in a spatial tracking
study [6]. A plot of these three data points is shown in Figure S3. It should be noted that the studies
use somewhat different experimental methodologies, and future work with multiple growth rates in
the same strain and conditions is needed to provide a confident description. Growth rates for strains in
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Stracy et al. were previously reported in [7]. From the limited available data (Figure S3) we hypothesize

Figure S3. Fraction of total RNAP occupied in transcription, as it depends on growth rate. Data from
[6], [7] and [2].

a linear dependence for Φb:

Φb = κbλ + Φb0. (5)

Fitting yields the estimates κb = 9.3 min and Φb0 = 0.41. Then Φa0 = 1−Φb0 = 0.59 and κa = −κb =35

−9.3 min.36

We can then re-write this relationship as

Φa = κaλ + Φa0. (6)

Using this relation we can construct an expression for the available RNAP by multiplying PTot by Φa;

Pa =
ρV0

mrnap
(κaλ + Φa0)

(
κpλ + Φp0

) (
κprλ + Φpr0

)
e(C+D)λ. (7)

Dividing the expression for the available RNAP by the expression for cell volume yields the37

concentration of available RNAP, which our model predicts will decrease with growth rate. Past works38

have observed an increasing transcription rate per gene (particularly moving from slow to moderate39

growth rates) [8]. This suggests that the free RNAP concentration must therefore be increasing40

with the growth rate. However, although our model predicts a decreasing RNAP concentration,41

the transcription rate is predicted to increase (from slow to moderate growth) as the RNAP density42

along the genomic DNA increases. This is consistent with the fact that DNA-binding proteins like43

RNAP and transcription factors (TFs) are mostly confined to the nucleoid DNA [2,9] where they44

diffuse along the DNA strand. As a result, in our model, total RNAP concentration is less relevant45

than the RNAP density along the genomic DNA. We hypothesize this may cause the non-monotonic46

relation for transcription rate per gene that has previously been observed by Liao et al. for constitutive47

promoters [10].48

1.4. Transcription Rate49

Following [11,12], our model of transcription involves interactions between RNA polymerases50

(RNAPs), transcription factors (TFs), promoter copies and non-specific binding sites along the genomic51

DNA. As described in the main text, at each time point we suppose that there are Pa available RNAP52

copies and Ta active transcription factor copies diffusing along the genomic DNA, and that the DNA53

contains Ns non-specific binding sites to which the DNA binding proteins may weakly attach and54

g copies of the regulated promoter of interest. Further we assume that Ns � Pa, Ta, g and that each55

binding of an RNAP or a TF to a non-specific site or a promoter can be characterized by an associated56
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binding energy: εrn and εrg for RNAP to the non-specific sites and promoters respectively, and εtn and57

εtg for transcription factor to non-specific sites and promoters respectively (all ε are negative [13]).58

We use these species and site counts to enumerate the possible arrangements of RNAP and
TF across the genome, and we use the binding energies to derive Boltzmann weights for each
arrangement [11]. This allows us to construct a partition function. For example if all the Pa RNAPs and
u TFs are bound to nonspecific sites, the weighted enumeration for this group of possible micro-states
(the partition function) can be written as

Z(Pa, u) =
Ns!

Pa!Ta!(Ns − Pa − Ta)!︸ ︷︷ ︸
# of micro states

e−Pa
εrn
kBT e−Ta

εtn
kBT︸ ︷︷ ︸

energetic favorability

≈ N(Pa+Ta)
s
Pa!Ta!

e−Pa
εrn
kBT e−Ta

εtn
kBT , (8)

where the approximation holds because Ns is large compared with the other quantities [11]. We can
then construct the partition function for the total number of arrangements of a single promoter copy
(g = 1) as

ZTot
g=1(Pa, Ta) = Z(Pa, Ta)︸ ︷︷ ︸

Empty Promoters

+ Z(Pa − 1, Ta)e
− εpg

kBT︸ ︷︷ ︸
RNAP on Promoter

+ Z(Pa, Ta − 1)e−
εtg
kBT︸ ︷︷ ︸

TF on Promoter

+ Z(Pa − 1, Ta − 1)e−
εpg+εtg+εpt

kBT︸ ︷︷ ︸
RNAP and TF on Promoter

.
(9)

Here εpt is the binding energy between RNA polymerase and transcription factor when both are
bound to the same promoter. We can use this expression to write the equilibrium probability of the
single promoter being occupied by an RNAP by taking the ratio of the partition functions for the
RNAP-bound states to the total partition function;

pbnd =
ZBnd

1 (Pa, Ta)

ZTot
1 (Pa, Ta)

pbnd =

Pa
Ns

e−
∆εr
kBT + PaTa

N2
s

e−
(∆εr+∆εt+εpt)

kBT

1 + Pa
Ns

e−
∆εr
kBT + Ta

Ns
e−

∆εt
kBT + PaTa

N2
s

e−
(∆εr+∆εt+εpt)

kBT

(10)

Here the ∆ε values are the differences between the energy involved in binding the promoter and the
background non-specific binding: ∆εt = εtg − εtn and ∆εr = εrg − εrn. Note, εtn > εtg and εpn > εpg

so that ∆εt and ∆εr are both negative [13]. Denoting the Boltzmann weights as Kr = e−
∆εr
kBT , Kt = e−

∆εt
kBT

and Krt = e−
(∆εr+∆εt+εpt)

kBT yields the following simplified form;

pbound =

Pa
Ns

Kr +
PaTa
N2

s
Krt

1 + Pa
Ns

Kr +
Ta
Ns

Kt +
PaTa
N2

s
Krt

(11)

Next, with RNAP bound to a certain fraction of the promoters (or on average a certain fraction of the
time over the relevant times scale of initiation), we assume open complex and promoter escape occurs
at a fixed rate α (NATE cite for open complex and escape rate), giving

Initiation Rate (for g=1) = α

Pa
Ns

Kr +
PaTa
N2

s
Krt

1 + Pa
Ns

Kr +
Ta
Ns

Kt +
PaTa
N2

s
Krt

(12)
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So far, we have described a single promoter. To address the case of multiple promoters we would
need to account for the cross-correlation between their occupancy by the transcription factor or RNAP.
This has little effect at high TF copy numbers (although at low copy numbers the occupancy of one
promoter significantly decreases the odds of another being occupied). We assume that the RNAP and
TF populations are considerably larger than g, which allows us to assume the promoters function
approximately independently [12]. In that case, we can scale equation (12) to arrive at the initiation
rate as a function of g.

Initiation Rate = αg
Pa
Ns

Kr +
PaTa
N2

s
Krt

1 + Pa
Ns

Kr +
Ta
Ns

Kt +
PaTa
N2

s
Krt

(13)

We assume that the initiation rate is the limiting step in transcription, as elongation rates are
generally faster [14–16]. We can therefore write the overall transcript production rate as follows;

Transcript Production Rate = αg
Pa
Ns

Kr +
PaTa
N2

s
Krt

1 + Pa
Ns

Kr +
Ta
Ns

Kt +
PaTa
N2

s
Krt

Where:

Pa =
ρV0

mrnap
(κaλ + Φa0)

(
κpλ + Φp0

) (
κprλ + ΦProt

0

)
e(C+D)λ,

Ns =
η

λC
(e(C+D)λ − eDλ)

g = e((C+D)−loriC)λ

(14)

1.5. Total Ribosome Population59

From [17], we have a linear relation for the fraction of protein mass that is composed of ribosomal
protein:

Φr = κrλ + Φr0. (15)

Fitting the model to data from [1] yields estimates of κr = 5.5 min and Φr0 = 0.030, as shown in60

Figure S4.

Figure S4. Ribosomal protein fraction of the total protein mass as a function of growth rate. Data from
Table 3 of [1].

61

1.6. Translation Rate62

Both Klumpp et al. and Liang et al. note that the translation rate per transcript is roughly constant
and speculate that this could be due to a constant concentration of free ribosomes maintained
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by regulatory feedback [4,18]. Dai’s more recent results suggest that the fraction of inactive
(non-translating) ribosomes, Φinact, is constant at the moderate to fast growth rates we consider
here [19]. The total ribosome concentration increases with growth rate, because total ribosome copy
number scales faster than the cell volume:

RTot
V

=

(
ρV0

mrib
(κrλ + Φr0)

(
κprλ + Φpr0

)
e(C+D)λ

)(
V0e(C+D)λ

)−1

=
ρ

mrib
(κrλ + Φr0)

(
κprλ + Φpr0

) (16)

Therefore, the inactive ribosome concentration [Rinact] also increases, because Φinact is constant:

Rinact
V

= Φinact
RTot
V

= Φinact
ρ

mrib
(κrλ + Φr0)

(
κprλ + Φpr0

)
(17)

The inactive ribosomes Rinact are either non-functioning (stalled or assembling), Rn f , or free, R f , so

Rinact = Rn f + R f (18)

Following [4,18], we presume that the concentration of free ribosomes, [R f ] is constant. Thus the
fraction of inactive ribosomes that are free, Φ f must scale inversely with the ribosomal fraction of the
mass:

Φ f =
1

(κrλ + Φr0)
(
κprλ + Φpr0

) (19)

and therefore the fraction of inactive ribosomes, Φn f is

Φn f = 1− 1
(κrλ + Φr0)

(
κprλ + Φpr0

) (20)

This then yields an expression for the free ribosome concentration that is constant across growth rates:

R f ree

V
= Φ f Φinact

RTot
V

(21)

Using a mass action expression for translation:

Translation Rate (in copy #) = β
R f

V
Xrna (22)

This implies the translation efficiency per mRNA, αp, is constant:

Translation Rate (per mRNA) = β
R f

V
(23)

This result conflicts with our assumption of Φ f ≈ Φinact and Rn f being negligible. However,
in a related study of translation in Bacillus subtilis, Borkowski et al. observe a decreasing translation
efficiency (per mRNA) with increasing growth rates and they infer that this is due to a decreasing free
ribosome concentration [20]. The authors use this varying free ribosome concentration to test the mass
action (linear) translation model used by Klumpp et al. [8]. With a varying free ribosome concentration,
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R f /V, the ratio of efficiencies between two different RBS is constant if the mass action (linear) model
of Klumpp is used:

Ratio of Translation Efficiencies =
β1

R f
V

β2
R f
V

=
β1

β2
(24)

However, Borkowski et al. observe that the ratio of translation efficiencies between different transcripts63

varies across growth rates. This suggests that a different model of translation initiation may be64

more appropriate, and that constant translation rate may not be caused by constant free ribosome65

concentrations (applying the same argument to both B. subtilis and E. coli).66

Borkowski et al. propose a Michaelis-Menten model of translation initiation in terms of the free
ribosome concentration to explain the non-constant translation efficiency ratios [20]:

Translation Rate (copy #) =
β

R f
V

KM +
R f
V

Xrna (25)

with translation efficiency then expressed as;

Translation Rate (per mRNA) =
β

R f
V

KM +
R f
V

(26)

In this model, the mRNA’s RBS is characterized by two constants, β, the maximal translation initiation67

rate per mRNA, and KM, a half-saturating constant specific to the given RBS. This model is also68

justified by the mechanisms of translation initiation in which the mRNA species may be in limiting69

quantities and become saturated. This Michaelis-Menten formulation agrees with the observation70

of constant translation efficiency in Klumpp and Liao [8,18], under the assumption that the RBS of71

the gene has a low KM value and is near saturation over the relevant growth rates. We have also72

assumed that initiation of translation is the limiting step in protein production, and that it is slower73

than translation elongation [21,22].74

2. Details of the Multiple-shooting Algorithm and Optimization75

Our OED algorithm can be classified as a direct optimal control approach – following a76

discretize-then-optimize procedure [23], where the system dynamics are implemented numerically, the77

control variables are discretized and selected, the system response is simulated, and then the controls78

are adjusted to improve the objective. However, for our dynamic, non-linear system we found this79

approach performed poorly if implemented in a naive manner. Multiple shooting and collocations80

methods provide improvements by discretizing the simulation along with the controls [23,24]. In81

multiple shooting specifically, the simulation is partitioned into a series of initial value problems [23].82

This process increases the dimensionality of the problem but also improves the problem structure,83

giving the optimization algorithm more information about how each control contributes to the84

objective function [25]. This process has been referred to as ’lifting’, where the problem is lifted85

into a higher-dimensional, but more easily navigated space [25]. The problem structure can be further86

improved by including derivative information for the object and constraints, which can be done in a87

straightforward manner using algorithmic differentiation tools available in CasADi [26].88

Below, we provide a brief overview of the multiple shooting algorithm used in this work for89

optimal experimental design (OED). Further details on the implementation of similar algorithms can90

be found in [27–29]. We will describe the algorithm implementation in pseudo-code, outlining the91

use of CasADi’s symbolic interface. CasADi uses symbolics (on the front-end) to create mathematical92

expressions; details of the back-end implementation can be found in [30]. An example of some (pseudo)93

syntax for the CasADi MATLAB interface is given in Algorithm 1. In this example we define two94
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Algorithm 1 CasADi Example

1: x=SX.sym(’x’)
2: y=SX.sym(’y’)
3: z=x+y
4: f=function(’f’,{x,y},{z})
5: f(1,2)
6: »3
7: w1=SX.sym(’w1’)
8: w2=SX.sym(’w2’)
9: f(w1,w2)

10: »’w1+w2’

symbolic variables ’x’ and ’y’ with ’SX.sym()’. We then create the symbolic expression ’z=x+y’, where95

’z’ now symbolically means ’x+y’. To be able to evaluate that expression on new inputs, we define a96

function ’f’ that maps ’x’ and ’y’ to the output described by ’z’. Below this, we see that we can use97

the function ’f’ to map specific numbers to a numerical output, but we can also use it to create new98

symbolic expressions (i.e. ’w1+w2’). These in turn could be used to build layers of symbolics as we99

will do in the OED algorithm. The reader is referred to CasADi manual for further details on the100

internal functions [30]. We mix use of both the MX and SX symbolic classes, which have different101

computational properties [30], however the reader can ignore this for general understanding (MX102

symbolics are created like SX symbols but with ’MX.sym()’).103

For simplicity we will restate the system dynamics for a single sub-experiment as follows

dY
dt

= G(Y , θ, λ, u(t), W(t)) (27)

Here the state Y contains X (2 components), all X̄θi for each of 6 parameters (12 components), ŵ (2104

components), and the unique elements of I (21 components), for a total of 37 components. The details105

of the dependence of Y on λ, u(t) and W(t) can be found in the main text. Our algorithm begins106

by defining this right-hand side as a symbolic expression in CasADi, via Algorithm 2. In defining

Algorithm 2 RHS function definition

1: Y=SX.sym(’Y ’,37) . Define symbolic variables
2: θ=SX.sym(’Y ’,6)
3: λ=SX.sym(’λ’)
4: u=SX.sym(’u’)
5: w=SX.sym(’w’,2) . One each for wrna, wprot
6: RHS=G(Y , θ, λ, u, w) . Implement G algebraically
7: g= function(’g’,{Y ,λ,u,w},{RHS}) . Create RHS CasADi function

107

G(Y , θ, λ, u, wrna, wprot) algebraically (line 7 above, details omitted), we used CasADi’s algorithmic108

differentiation and matrix algebra abilities. This can be done by first defining the RHS for the state109

variables Xrna and X prot symbolically. Then the sensitivities and FIM RHS functions can be determined110

from the corresponding RHS expression by using the jacobian function, the jtimes function and the111

matrix product operator, among others.112

Using the symbolic function for the overall RHS, G, we can construct a symbolic function, Ḡ1,113

for a single step of an explicit, fixed-step-size numerical integration scheme. We used a fourth-order114

Runge-Kutta scheme as described in the CasADi examples [31]. External ODE solvers, like the115

Sundials suite [32], can be used, but defining an explicit integrator in CasADi has the advantage that116

the integrator itself can be algorithmically differentiated. This is useful for providing first and second117

order integral information to the NLP solver. In contrast, the use of conditional statements by variable118

step-size or implicit solvers generally precludes algorithmic differentiation. The single step of the RK4119

integrator is given as shown in Algorithm 3, see [31] for further details.120



Version January 21, 2019 submitted to Processes S9 of S14

Algorithm 3 Define RK4 Scheme

8: Define Symbolic Y input . Define an input Y vector
9: k1 = g(Y input, θ, λ, u, w) . Implement the RK4 sub-steps

10: k2 = g(Y input + ∆tk1/2, θ, λ, u, wrna, wprot)
11: k3 = g(Y input + ∆tk2/2, θ, λ, u, w)
12: k4 = g(Y input + ∆tk3, θ, λ, u, w)
13: Youtput = Y input + ∆t(k1 + 2k2 + 2k3 + k4)/6 . Create a symbolic expression for the output
14: Ḡ1=function(’Ḡ1’,{Y input,θ,λ,u,w},{Youtput}) . Create a function mapping from Y input to Youtput

Recall that for a single sub-experiment, the input u(t) is piecewise-constant over six 100 min121

intervals, W(t) (i.e. wrna(t) and wprot(t)) is piecewise-constant over forty-eight 12.5 min intervals, and122

the growth rate λ is constant. We label these discretized controls by their corresponding intervals as123

follows: growth controls, λ(i), where i ∈ {1, , 2, 3} (each sub-experiment); induction controls, u(j,i),124

where j ∈ {1, . . . , 6} (each induction interval & sub-experiment); and sampling controls, w(k,j,i)
rna and125

w(k,j,i)
rna , where k ∈ {1, . . . , 48} (each sampling interval, induction interval & sub-experiment). Because126

the 48 sampling intervals are the shortest of the piecewise constant intervals, each has constant controls127

(in λ, u and w(species)) over its duration. We can therefore iterate the single RK4 step function, Ĝ1, to128

create an integrator, Ĝ, that maps the state at the beginning of the sampling interval to the end, 12.5129

min later, with a constant set of controls (see Algorithm 4).

Algorithm 4 Iterate RK4 over the sampling (smallest) control interval

7: Yo=MX.sym(’Yo’)
8: Y iter=Yo
9: for 12.5/∆t do . Iterate, advancing ∆t time units each loop

10: Y iter = Ḡ1(Y iter, θ, λ, u, wrna, wprot) . Apply Ḡ1 to the state Y iter each loop
11: end for
12: Ḡ=function(’Ḡ’,{Yo,θ,λ,u,w},{Y iter}) . Create function, maps interval start, Yo, to end, Y iter

130

To determine the D-optimality score we need to integrate the RHS over the total time (0 to 600131

min) for each sub-experiment. The final objective value can be computed from the Fisher information132

entries (the 17th to 37th components) at the final time, Y(t = t f )17...37, in each of the sub-experiments.133

To apply multiple-shooting, we partitioned each sub-experiment’s duration into six shooting intervals.134

We used intervals of 100 min, corresponding to the six constant-u induction intervals. We treat each135

of these shooting intervals as a separate initial value problem, with its own initial conditions Y j
o.136

Algorithm 5 shows how we use Ḡ to propagate these initial conditions through the series of shooting137

intervals, linking the initial value problems with constraints to enforce continuity. There are seven138

initial conditions Y j
o for each sub-experiment because the final time is treated as a (dummy) initial139

condition; this increases the sparsity of the problem. Using the initial conditions, Y j
o, as optimization140

variables, along with the discretized controls, provides a number of benefits. It gives the NLP solver141

direct access to the system state at regular intervals throughout the simulation time. This improves142

the problem structure as the NLP solver can alter the states directly. The continuity constraints then143

propagate this information to the control variables. Moreover, these states increase the sparsity of the144

NLP problem because the coupling of the controls and the objective across the simulation is partitioned145

by the additional optimization variables. The system dynamics in each shooting interval only depend146

on controls in the other intervals via the continuity constraints.147

As shown in Algorithm 5, we loop over each sub-experiment, induction/shooting interval and148

sampling interval, iteratively building up a symbolic expression for the objective function and for149

the nonlinear constraint functions. At the beginning of the experiment, we create vectors ’CtrlVec’150

and ’CnstrnVec’ which, as we move through the three nested loops, are filled with symbolic terms for151

each of the NLP optimization variables and the non-linear constraints, respectively. The elements of152
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Algorithm 5 Construct control problem

13: CtrlVec={} . Empty vector for OED control symbols
14: lbw=[] . Empty vector lower bound of OED control symbols
15: ubw=[] . Empty vector upper bound of OED control symbols
16: CnstrnVec={} . Empty vector for nonlinear constraint symbols
17: lbc=[] . Empty vector lower bound of nonlinear constraints
18: ubc=[] . Empty vector upper bound of nonlinear constraints
19: FIM= 0̄
20: for i = 1 : 3 do . Loop over sub-experiments
21: λi = MX.sym(’λ(i)’) . Create λ control, one for each loop
22: CtrlVec={CtrlVec, λ(i)} . Add λ(i) to control vector
23: lbw = [lbw; λmin]; . Restrict growth rates to feasible range
24: ubw = [ubw; λmax];
25:
26: Y (0,i)

o = MX.sym(’Y(0,i)
o ’, 37); . Create initial condition state for each sub-experiment

27: CtrlVec={CtrlVec, Y (0,i)
o } . Add it to the control vector

28: lbw = [lbw; 0̄];
29: ubw = [ubw; ¯Inf];
30:
31: CnstrnVec={CnstrnVec, Y (0,i)

o −SteadyState(λ(i),θ) } . Constrain IC to be at steady state
32: lbc = [lbc; 0̄]; . Bounds for constraint are 0, implying equality
33: ubc = [ubc; 0̄];
34:
35: for i = 1 : 6 do . Loop over shooting/induction interval
36: u(j,i) = MX.sym(’u(j,i)’) . Create u control, one for each sub-exp. & induction intrvl.
37: CtrlVec={CtrlVec, u(j,i)} . Add u(j,i) to control vector
38: lbw = [lbw; umin]; . Restrict u to feasible range
39: ubw = [ubw; umax];
40:
41: for j = 1 : 48 do
42: w(k,j,i) = MX.sym(’w(k,j,i)’,2) . Create w for each sub-exp., induction & samp. intrvl
43: CtrlVec={CtrlVec, w(k,j,i)} . Add w(k,j,i) to control vector
44: lbw = [lbw; 0̄]; . Restrict w to feasible range
45: ubw = [ubw; wmax];
46:
47: Y (j−1,i)

o = Ḡ(Y (j−1,i)
o , θ, λ(i), u(j,i), w(k,j,i)) . Advance (symbolic) state vector

48: end for
49:
50:
51: Y(j,i)

o = MX.sym(’Y(j,i)
o ’, 37); . Create new shooting interval IC

52: CtrlVec={CtrlVec, Y(j,i)
o } . Add it to the control vector

53: lbw = [lbw; 0̄];
54: ubw = [ubw; ¯Inf];
55:
56: CnstrnVec={CnstrnVec, Y(j,i)

o −Y(j−1,i)
o } . Constrain Y(j,i)

o for continuity with Y(j−1,i)
o

57: lbc = [lbc; 0̄]; . Bounds for constraints are 0, implying equality
58: ubc = [ubc; 0̄];
59: end for
60: CnstrnVec={CnstrnVec, cmax −Y(6,i)

o (15..16) } . Constrain integral of samp. density to leq. 12
61: lbc = [lbc; 0̄]; . Bounds for constraint is 0, implying equality
62: ubc = [ubc; 0̄];
63:
64: FIM=FIM+Y(6,i)

o (17..37) . Sum FIM terms for each sub-exp.
65: end for
66: Objective= − log(det (sym(FIM))) . Define the overall objective
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’CtrlVec’ are individual symbols representing the controls and the shooting initial conditions, which153

the NLP solver will optimize. The elements of ’CnstrnVec’ contain non-linear symbolic expression154

that evaluate to the constraint functions. The vectors ’lbc’ and ’ubc’ are the lower and upper bounds155

for the non-linear constraint functions. If we want two symbolic expressions to be equal, we insert156

an expression for their difference into ’CnstrnVec’, and then set both ’lbc’ and ’ubc’ to zero to enforce157

equality. The vectors ’lbw’ and ’ubw’ likewise constrain the ’CnstrnVec’ optimization variable vector158

to feasible ranges. We start with both ’CtrlVec’, ’CnstrnVec’, ’lbw’, ’ubw’, ’lbc’ and ’ubc’ empty and fill159

them as we loop over the problem structure.160

At line 21 we create a symbol, λ(i) for the growth rate control. This is done once for each161

sub-experiment at the start of the outer loop. We then add it to the control vector, ’CtrlVec’, and162

constrain its range. At line 26 we create a symbol vector for the initial conditions for the sub-experiment.163

This too is then added to the control vector and constrained to a feasible range. However at line 31, we164

insert the additional nonlinear constraint that the initial condition must be at steady state (defined165

by the CasADi function ’SteadyState(λ(i), θ)’, definition not given and must be provided by the user).166

We enforce equality in the following lines. At line 36 we create an induction control variable u(j,i) and167

add it to ’CtrlVec’, once for each sub-experiment and shooting/induction interval. This also marks168

the beginning of a shooting interval. In the following lines we constrain the induction to its feasible169

range. At line 42 we create symbols for the sampling density controls, add them to ’CtrlVec’, and170

then constrain them. At line 47 we use Ḡ to propagate the symbol for the initial condition, Y(j,i)
o ,171

forward, storing it in the same variable. (This does not erase the original contents of Y(j,i)
o from the172

start of the shooting interval, as those symbols are stored in ’CtrlVec’.) The inner-most loop calls Ḡ173

with the corresponding control symbols for the given interval and iteratively advances the state vector.174

After completion of the inner loop, at line 51, a new shooting initial condition is created and added to175

’CtrlVec’. At line 56 we constrain the new initial condition to be equal to the final value of the state176

vector on the previous shooting interval (the product of the iterated Ḡ), adding it to ’CnstrnVec’. At177

the end of the sub-experiment loop, line 60, we enforce the integral constraints on the sampling density.178

At line 64 we add the FIM entries in the final sub-experiment state vector to the running totals across179

the sub-experiments. Finally, we form the objective expression ’Objective’, which contains a (very180

large) symbolic expression for the objective of the entire experiment, in line 66.181

To improved numerical stability, we compute the determinant of the Fisher information matrix
using QR factorization: ITot = QR. The entries in ’FIM’ are the unique values of ITot. The function
’sym()’ in Algorithm 5 reforms the complete ITot from the vector ’FIM’. Because ITot is positive
semi-definite det (ITot) ≥ 0. Further

|det(ITot)| = |det(Q)||det(R)| (28)

The factorization is such that |det(Q)| = 1. Because R is an upper triangular matrix, the determinant
is the product of its diagonal entries:

det(ITot) = ∏
m

R(m,m) (29)

and so

− ln(ΘD (ITot)) = − ln(det(ITot)) = −∑
m

ln(R(m,m)) (30)

The expression in ’Objective’ is a mathematical function of the symbols listed in ’CtrlVec’. Likewise,182

the vector of expressions in ’CnstrnVec’ are also mathematical functions of the symbols in ’CtrlVec’.183

Because these functions are symbolic, they can be differentiated with respect to any (or all) of the184

entries in ’CtrlVec’ (or the parameter vector θ). This property allows CasADi to automatically generate185

Jacobians and Hessians for the objective and the constraints when passing the problem to IPOPT.186
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Although generation of the derivatives is automated once the symbolic expression is constructed,187

choosing a problem structure that achieves maximal sparsity is critical. The degree of sparsity in the188

Hessian and Jacobians make a significant difference in the computation time. Once the the symbolic189

expressions for the OED problem have been created, passing them to IPOPT is straightforward using190

CasADi’s interface. Algorithm 6 shows the creation of the solver and its call in CasADi’s MATLAB191

interface. Starting the solver requires an initial guess for the control vector. We generate this by192

simulating one of the null experiments and storing the state variables and controls at the appropriate193

times to construct ’CtrlVec’.

Algorithm 6 Calling IPOPT

67: prob = struct( Objective, CtrlVec, CnstrnVec) . Package symbol vectors for passage to IPOPT
68: solver = nlpsol( ’ipopt’, prob) . Create a solver instance
69: solver( CtrlVeco, lbw, ubw, lbc, ubc) . Call solver with initial guess; CtrlVeco, pass upper/lower

bounds

194

Parameter Estimation: We also implemented our weighted least-squares parameter estimation195

algorithm in CasADi. This was also implemented as a multiple-shooting algorithm and was structured196

in a similar manner to the OED algorithm above, where the parameters are treated as time-constant197

controls in an optimal control problem [33,34]. The weights in our fitting algorithm were taken as the198

inverse of the sampling variances, σ2
rna = (0.05)Xrna and σ2

prot = (0.05)Xprot. In our numerical fitting199

experiments, for each experimental design (null, null variants, optimal and perturbed optimal), we200

initialized the parameter estimation algorithm to a random parameter vector drawn uniformly from201

the feasible parameter range. For each experimental design, a small subset of the 30 fittings either did202

not converge (max number of iterations or other stopping condition was reached) or converged to203

clearly erroneous estimates (relative error exceeding several orders of magnitude ). We removed these204

outliers before computing covariances. The number of outliers in each design were as follows: null205

experiment, 3; growth variant, 2; sampling variant, 1; induction variant, 3; true optimal, 0; perturbed206

optimal, 0 (for all six).207

Timing: Our OED algorithm normally took between 70 and 400 iterations to converge in IPOPT208

(depending on the number and range of the parameters). The wall-clock time was on the order of an209

hour. Our parameter estimating algorithm normally took between 10 and 70 iterations to converge.210

The wall-clock timing was on the order of 10s of minutes. All experiments were done on a Mac mini211

machine with a 2.6 GHz Intel Core i5 and 16 GB of RAM.212
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