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Abstract: The effect of natural antibiotics Moringa oleifera seeds powder in cellulose acetate
membranes as biofouling reducer agent was investigated. Mixed matrix membranes (MMM) were
synthesized by adding 100 mesh M. oleifera seeds powder with variation of three concentrations
(1 wt%, 2 wt%, and 3 wt%), into a mix polymer solution of CA (cellulose acetate) and two
different solvents, i.e., DMF (dimethylformamide) and DMAc (dimethylacetamide). The synthesized
membranes morphology was observed under scanning electron microscopy and from the images
can be seen that the membranes made of DMAc formed rather large macrovoid as compared to
DMF-based membranes. The microstructure affected the water flux through the membranes, in which
the DMAc membranes provided a higher flux value and served as high-throughput microfiltration
membranes. Antibacterial properties of MMM were tested using Escherichia coli adhesion onto
membrane surfaces. The results showed that M. oleifera has been proven to eradicate E. coli activity
on the membrane surfaces due to interaction between bacterial cells and phenolic compounds from
M. oleifera, through absorption processes involving hydrogen bonds.
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1. Introduction

Membrane filtration is a promising technology for the separation of subtances, whether for
aqueous or gas separation application [1]. Microfiltration and ultrafiltration, for instance, are widely
used for food processing and separation of macromolecules, such as for fruit juice clarification.
Fruit juice clarification processes aiming at reducing the dissolved solids in the fluid, and it is able
to produce clearer juice or liquid. Membrane-based ultrafiltration processes were utilized to process
orange and lemon juices [2], pineapple juice [3], and kiwi juice [4].

Application of membrane filtration for food processing, however, also suffered by deposited
particles, either organic, inorganic, or biological substances, on the membrane surface, called fouling.
Several attempts existed for controlling fouling, from physical cleaning using turbulence-induced
flow [5,6] to surface-engineered membranes or feed spacers [7].

Adapting the membrane morphology to improve specific properties, such as anti-biofouling,
is not only possible by modifying the membrane surface but also by optimizing inner structure.
Mixed matrix membranes (MMM) developed to achieve the formation of asymmetric membrane by
interpenetrating functionalized inorganic particles and a polymeric matrix [8,9]. By employing MMM,
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two or more different properties of components combined, to achieve a better separation performance.
In order to promote antifouling properties, some combination of functionalized fillers and polymer
matrixes have been used, such as a combination of nanoparticles of anatase TiO2/polysulfone [10]
and Ag-loaded graphene oxide/polyethersulfone [11]. Those combination were effective, however the
use of metal components as fillers, e.g., silver particles, might be unsafe for membrane that is used
for food processing application. The use of plant-based subtances, might provide a more reliable and
safe anti-biofoulant, such as the utilization of cardanol [12]. In this study, a natural antibacterial M.
oleifera seeds powder is evaluated to be employed as filler to the cellulose acetate polymer matrix to
form anti-biofouling MMM.

M. oleifera could be utilized against Gram positive and negative bacteria [13]. Recombinant protein
inside M. oleifera seeds is able to agglomerate Gram positive and negative bacterial cells [14]. By its
properties, Moringa seeds could potentially be used as for environmentally friendly antibiofouling,
because these natural ingredients are not harmful, even if used in large quantities when compared
with chemicals or metals that are commonly used as agents to reduce biofouling.

As for polymeric matrix, cellulose acetate has been chosen due to some beneficial properties.
Cellulose acetate has good properties as a membrane polymer for food processing due to renewable,
biodegradable, biocompatible, non-toxic, and inexpensive subtances [15,16]. Cellulose acetate has
relatively thermal and chemical stability [17], because cellulose has a rich of hydroxyl groups and it is
able to form a strong hydrogen bonds that could not be separated easily [18]. Cellulose acetate are
also extraordinary hydrophilic, which can be used for minimizing fouling on the membrane [19,20].
By its higher hydrophilicity, the cellulose acetate has the potential as an ultrafiltration membrane
material, because it has ability pass water efficiently. On the other hand, cellulose acetate membranes
have a drawback, namely the lack of a reactive functional group on the polymer surface, which
might degrade the efficiency of membrane separation [21]. In this study, the use of cellulose acetate
as polymeric matrix and impregnated M. oleifera seeds powder is aiming at the enhancement of
membrane permeability and selectivity. The future direction of this study is the used of non-toxic and
anti-biofouling M. oleifera particles filled in the hydrophylic cellulose acetate matrix to form MMM for
juice clarification.

2. Materials and Methods

2.1. Materials

M. oleifera (Mo) seeds were provided by a local farmer in Indonesia. M. oleifera seeds was dryed by
using oven at 60 ◦C for 24 h. The seeds were grinded into 100 mesh of powder size. In order to obtain
a uniform M. oleifera powder size, the powder was analyzed by using CILAS 1090 (CILAS, Orleans,
France) particle size analyzer. Moreover, because the phenolic substances are recognized as promoting
anti-bacterial activity, the M. oleifera seeds powder was characterized using a Fourier-transform
infrared spectroscopy (FT-IR) Shimadzu 8400S (Shimadzu Corp., Kyoto, Japan) to investigate its
phenolic contents. All chemicals and reagents that were used in this research are of analytical grade
(pure analysis, pa). Cellulose acetate (CA), dimethylformamide (DMF), dimethylacetamide (DMAc)
were purchased from Merck (Darmstadt, Germany). The concentration variation of cellulose acetate,
M. oleifera powder and solvents are modified from Saranya et al. [22] and full factorial design of
experiment were used and summarized in Table 1. Each treatment was repeated three times.

2.2. Mixed Matrix Membranes Preparation

Every combination of polymer, Moringa powder, and solvents shown in Table 1 were mixed
manually using laboratory spatula due to viscous mixture, until homogen. The mixture was then
left for 24 h until there is no bubbly gas left. The membrane solution is then casted by using custom
made casting knife in designated thickness and constant casting speed to form the uniform membrane
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sheet. The casted polymer is then immersed in distilled water for 10 min, which allows the membrane
solidify. The MMM’s sheets were then dried in a box under slow, modest, and constant nitrogen flow.

Table 1. Mixture of M. oleifera, cellulose acetate and solvents (dimethylformamide (DMF) or
dimethylacetamide (DMAc)) used in this study.

Treatment CA (g) Mo (g) CA + Mo (g) DMF (mL) DMAc (mL)

CA + DMF (Pristine DMF) 4 - 4 20 -
CA + 1 wt% Mo + DMF 3.96 0.04 4 20 -
CA + 2 wt% Mo + DMF 3.92 0.08 4 20 -
CA + 3 wt% Mo + DMF 3.88 0.12 4 20 -

CA + DMAc (Pristine DMAc) 4 - 4 - 20
CA + 1 wt% Mo + DMAc 3.96 0.04 4 - 20
CA + 2 wt% Mo + DMAc 3.92 0.08 4 - 20
CA + 3 wt% Mo + DMAc 3.88 0.12 4 - 20

2.3. Membranes Thickness Measurement

It is essential to know the thickness of the membranes that has been made. Membrane thickness
and tortuosity will affect the transport of liquid through the membrane and also affect filtration time.
Measurement of membrane thickness were done on five locus, i.e., top, bottom, right, left, and middle
edges of membrane sheets by using a micrometer with an accuracy of 0.01 mm. The data obtained
were then averaged.

2.4. Membranes Morphology

The Scanning Electron Microscope (SEM) images provide morphology of inner side of the
membranes, i.e., membrane pores and macrovoid. Cross section of the MMM were analyzed by
using SEM JEOL JSM-6360 (JEOL Ltd., Tokyo, Japan), with accelerating voltage of 10 kV. The samples
were coated with Pd-Au prior to SEM investigation.

2.5. Tensile Strength and Elasticity

The testing of tensile strength and elasticity are necessary to evaluate the physical characteristics
of the membrane that has been made. The mechanical properties will affect the physical strength
of the sheet to withstand the pressure given during the filtration process. Physical characteristics of
membranes were tested using tensile strength Imada ZP-200N (Imada Co. Ltd., Toyohashi, Japan).

2.6. Flux Test

To determine the ability of membrane performance, the flux value was investigated. The flux
is basically the mass transfer occurred during the filtration processes and it is related to membrane
permeability. Pristine CA membranes (membranes without M. oleifera seeds powder) and MMM’s
(membranes with M. oleifera seeds powder) were tested under dead-end operation mode under 0.7 bar
constant transmembrane pressure. The diameter of the membrane tested was 3 cm, and the duration
of the test was 10 min, which measured the volume of permeate every 1 min. Flux was measured from
amount of water volume passing through each unit of membranes area per unit time.

2.7. Anti-Bacterial Test

The bacterial cultivation and antibacterial test were undertaken following methods used
previously [23,24]. The adhered bacterial cells on each membrane surfaces were observed by using
SEM Hitachi TM3000 (Hitachi, Ltd., Tokyo, Japan). The bacterial cells attachment test was done for the
individual sample from pristine and 1 wt% membrane samples.
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3. Results

3.1. Moringa Oleifera Seeds

3.1.1. Physical Characteristics

The physical appearance of M. oleifera seeds before peeling, after being peeled and after being
powdered can be seen in Figure 1. As shown in Figure 1, M. oleifera seeds has black and hard shells
before peeled (a) and the white seeds were obtained after being peeled (b). The powdered M. oleifera
seeds after grinded (c) and meshed of 100 mesh or about 149 µm (d), looks more delicate and has a
more uniform texture when compared to (c).
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Figure 1. (a) M. oleifera seeds before peeling with hard and black shells, (b) M. oleifera white seeds after
peeling, (c) M. oleifera seeds after powdered, and (d) M. oleifera seeds 100 mesh (about 149 µm).

In order to obtain a more details on the M. oleifera powder size distribution, the powder was
analized using a particle size analyzer and the results shown in Figure 2.
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As shown in Figure 2, the M. oleifera powder diameter distribution are 10% on the size of 13.60 µm,
50% on the size of 80.44 µm, and 90% on the size of 157.10 µm. It is concluded that the most M. oleifera
powder basically has average diameter of about 157 µm, and it has relatively uniform size based on
the histogram shown.

3.1.2. Chemical Composition

Chemical compounds of M. oleifera seeds powder were characterized by using FT-IR. The spectra
image can be seen in Figure 3, along with the spectra of M. oleifera extract previously reported [25,26],
as comparison.
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Figure 3. Fourier-transform infrared (FT-IR) spectra of M. oleifera seeds powder and extract, show the
presence of hydroxyl groups of phenolic compounds.

From the spectra, it can be seen that M. oleifera seeds contain phenolic compounds, which are
detected at the peak of hydroxyl groups (–OH) at 1379.77 and 3321.96. The IR spectra of M. oleifera
extract shows a more clear peaks, while the M. oleifera seed powder shows a more noisy spectra due to
the presence of another subtances. However, both spectra show peaks of hydroxyl group of phenolic
and alcoholic compounds. The complete compounds of M. oleifera seeds powder are listed in Table 2.

Table 2. FT-IR Peak of M. oleifera Seeds Powder.

Peak (cm−1) Functional Group Name

986.32 C=C Alkene
1057.68 C–O Primary Alcohol
1237.05 C–O Alkyl Aryl Ester
1269.84 C–O Aromatic ester
1379.77 O–H Phenol
1746.22 C=O Ester
2689.35 C–H Aldehyd
2924.65 C–H/N–H Alkene/Amine Salt
3321.96 O–H Alcohol

Phenolic compounds could act as antibacterial agent. The utilization of M. oleifera as a natural
coagulant within filtration process could eliminate cyanobacterial and microcystin [27]. A previous
study reported that ten phenolic compounds found inside M. oleifera seeds extract i.e., gallic acid,
p-coumaric acid, ferulic acid, caffeic acid, catechin, epicatechin, vanillin, and quercetin [28]). M. oleifera
seeds have natural phenolics, which are a good source for natural antioxidants and antibacterials for
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pharmacy and food processes. It is therefore M. oleifera seeds that also can be used as a biofouling
reducing agent in MMMs for food processing.

3.2. Mechanical Properties of the Membranes

The physical appearance of cellulose acetate membranes with M. oleifera seeds filler was thin and
white-colored sheet. There was no difference in color between MMM and pristine membranes, which
means that M. oleifera seeds powder did not affect the color of the membranes.

The visible surface morphology between membranes used of DMF solvent and used of DMAc
solvent were also no different. These two solvents provided a good morphological surface of the
membranes. It has been approved that the solubility of cellulose acetate polymer is suitable for both
solvents that were used in this research, based on Brandup criteria [29].

3.2.1. Membranes Thicknesses

The average thickness of the membranes are presented in Figure 4. As mentioned previously,
membrane thickness and tortuosity were essential on liquid transport inside the membranes. The
thickness affects the filtration time, and might also alter the performance of membrane filtration
processes [30].
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Based on Figure 4, it can be seen that there were a small difference on average membrane thickness
between the membranes made of DMF and DMAc solvents. The largest range of MMMs thickness
was 0.03 mm. The membranes thickness decreased after drying due to solvent evaporation. The rate of
solvent evaporation will affect the thickness of the membrane produced. The longer time it takes for
the solution to evaporate, the thicker membrane sheet and the lower porosity produced. The pristine
membrane made of DMF solvent has thinner sheet when compared with the pristine membrane made
of DMAc solvent. By the addition of the Moringa seeds powder, the MMM is made of DMF solvent
that is thicker than that of DMAc. However, the thicknesses of the membranes were relatively uniform.

3.2.2. Membrane Sheets Tensile Strength and Elasticity

Tensile strength and elasticity were tested to understand the physical properties of each membrane
sheets and the results are shown in Figure 5. As shown, there was a slightly different tensile strength
values between MMMs that dissolved in DMF and DMAc. The tensile strength value of MMMs
in DMF solvent was a bit lower than MMMs in DMAc solvent by increasing the M. oleifera seeds
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concentration. The increased value might be affected by the more tight structure of membranes that
are made by DMAc solvent. The membrane structure promoted by the solubility of cellulose acetate
polymer in DMAc solvent is lower when compared to DMF.
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On the other hand, as shown in Figure 6, the elasticity of both membranes increased with the
addition of M. oleifera seeds powder, but then decreased and levelled off at 10% and 11.11%.
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In general, both membrane sheets tensile strength and elasticity are affected by the use of solvents.
However, the mechanical properties of the membranes are similar, this is because the DMF and DMAc
solvents have almost the same properties. Both solvents are polymetric, have a low evaporation point,
and have strong hydrogen bonds [31]. Although membranes that are made of DMF solvents and
membranes made of DMAc solvents have almost the same properties, but the DMF’s is always slightly
better in both physical and chemical properties [32].

The addition of M. oleifera seeds powder can increase the membrane elasticity, especially with the
addition of 1 wt% M. oleifera seeds powder in the membrane that is made of DMAc solvent. This is due
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to a strong hydrogen bonding between cellulose acetate and DMAc [33]. However, after the addition of
2 wt% M. oleifera seeds powder, its elasticity decreased. Adnan, et al. [34] reported that with addition
of silica as filler in CA membrane, promote the decrease of mechanical properties. It could be caused
by aggregation of particles due to a higher concentration and prevent it to disperse uniformly in a
polymer matrix.

3.3. Membrane Pores and Morphology

Pores of membranes affect membrane permeability. The SEM cross-section images of the
membrane sheets are shown in Figure 7. As shown, we can distinguished the pores size between
control membranes both in DMF and DMAc solvents. Besides, it can be seen that there are a lot of
selective layers (small pores located in the upper layer) on CA membranes with 1 wt% Moringa seeds
powder in the DMAc solvent. The structure promotes membrane permeability of DMAc solvent better
than membranes using DMF solvent.
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Figure 7. Cross-Section SEM images (500× magnification): (a) cellulose acetate (CA) pristine membrane
made of dimethylformamide (DMF) solvent, (b) CA mixed matrix membranes (CA MMM) with 1 wt%
Moringa seeds powder made of DMF solvent, (c) CA pristine membrane made of DMAc solvent, and
(d) CA MMM with 1 wt% Moringa seeds powder made of DMAc solvent.

The DMAc solvent is more effective in dissolving cellulose acetate due to DMAc solubility that is
nearly close to cellulose acetate solubility. The difference of solubility (∆δ) between DMAc and cellulose
acetate is 2.14 MPa1/2, while DMF and cellulose acetate is 4.84 MPa1/2 [29]. If the solubility parameter
between the polymer and solvent were close, then the mixing will be better. Solubility is closely related
to the density of cohesive energy needed in the phase of polymer separation with solvents [35], where
the solubility parameter is translated as the root function (rank 1

2 ) of the cohesive energy density,
which is then known as HSP (Hildebrand Solubility Parameter) [36]. By this approach, the solubility
between polymers and solvents can be predicted [35]. The polymer–solvent interaction is affected by
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the enthalpic and entropic components of the materials [37]. Materials which have similarities in HSP
will be easily mixed or dissolved [38]. Based on the aforementioned, the difference in solubility of
DMAc with solubility of cellulose acetate is smaller than that of DMF. The cohesive energy density is
also related to molecular weight, where the higher molecular weight, the smaller frequency of coherent
energy needed [35]. The molecular weight of DMAc used in this study was 87.12 g·mol−1, while DMF
was 73.09 g·mol−1. It is reported that the preparation of membranes cellulose acetate-polysulfone via
the phase inversion method produces higher pores, however, with increasing the additive materials,
pores will decrease [39]. In this work, on the other hand, CA membrane with 1 wt% M. oleifera seeds
powder made of DMAc solvent produce many pores than that of made of DMF solvent.

3.4. Effect of Adding M. oleifera Seeds Powder on Membrane Flux

This flux value shows the membrane’s ability to pass fluid to the filtration process and is related
to the permeability of the membrane. The clean water flux values for each membrane can be seen in
Figure 8. Membranes that are made of DMAc solvent had higher flux values than that of the DMF
solvent. It was clear that the addition M. oleifera seeds powder increased the flux membranes made
of DMAc solvent. In DMF solvent, the flux of MMMs decreased 44% after adding 1 wt% M. oleifera
seeds powder. This phenomena might have occurred due to more macrovoid on the mixed matrix
membranes with DMAc solvent, along with the addition of Moringa seeds powder, as compared with
the ones of DMF solvent. The SEM images shown previously in Figure 7 were supported the evidence.
By the flux value, the membranes produced could be considered as high-throughput microfiltration
membranes [30].
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Figure 8. Clean water flux as measured for each membrane.

Previous studies reported the preparation of high flux microfiltration membranes. Ferreira
et al. [40] produced high flux microfiltration membranes with the flux value up to 11,017 L·m−2·h−1,
used polyethersulfone (PES) and DMAc with silver nanoparticles for water disinfection.
The membranes manufactured formed a sponge-like structure. However, the flux was decreased
by changing the composition of polymer and solvent and changing the precipitation bath between
solvent and water. The later treatment was affected in membrane pores, which were formed. In this
study, flux values of MMMs tht were made of DMAc solvent are higher than that of DMF solvent.
This is because MMMs that are made of DMAc solvent has more macrovoid pores than that of DMF
solvent, as clearly shown by SEM images in Figure 7.
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The highest value of flux is found on membranes made of DMAc solvent with the addition 1 wt%
M. oleifera seeds powder. Flux values decreased significantly due to the increasing concentration
of M. oleifera seeds powder to the mixed materials. The same result was obtained in a different
study [41], with their work on of high flux polysulfone membranes. Another research was done and
reported that high flux membranes were produced, and testing the performance in a constant flux
test [42]. Several microfiltration and ultrafiltration industrial membranes were tested. The high flux
(900–4000 L·m−2·h−1) affinity membranes based on cellulose nanocomposites for removal heavy metal
ions from industrial effluents were also reported [43].

3.5. Effect of Adding M. oleifera on Bacterial Activity

The effect of adding natural antibacterial subtances from M. oleifera seeds evaluated by the
adhesion of E. coli bacteria cells onto membrane surfaces. The SEM images are presented in Figure 9.
The addition of M. oleifera seeds powder as antibacterial material on MMM surfaces in both DMF and
DMAc solvents provided a significant effect. When comparing the pristine membrane and MMM,
the pristine membrane attract E. coli bacteria cells adhered on its surface area. On the other hand,
MMM membranes, which are both made of DMF or DMAc solvents, had less bacteria attachment on
its surfaces. Detailed quantification of bacterial attachment is presented in Figure 10.
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Figure 9. Membranes surface image using SEM after bacterial test. (a) Pristine membrane (made of
DMF solvent), (b) Pristine membrane (made of DMAc solvent), (c) MMM with 1 wt% Moringa (made
of DMF solvent), and (d) MMM with 1 wt% Moringa (made DMAc solvent). All SEM images used
5000× magnification.
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Figure 10. Amount of bacteria cells attached on membranes surfaces. The bacteria adhesion decreased
due to the impregnation of Moringa seeds powder in the polymer matrix.

Based on Figure 10, the decrease of attachment of bacteria on membranes without Moringa seeds
powder and the addition of 1 wt% Moringa seeds made of DMF solvent reached 64%. While on the
same ratio membrane made of DMAc solvent, the decrease of bacterial attachment of bacteria reached
95%. According to Ferreira et al. [44], M. oleifera seeds powder inhibit the growth of bacteria and
bacteriophages directly, and it clearly provides a similar effect on the MMM membranes.

Despite the positive impact of M. oleifera on anti-biofouling properties of MMMs, the dominant
factors affecting the membrane properties is still unknown. Further study is required on the
optimization of parameters, and some advance in the design of experiments (DoE) might be used,
such as response surface methodology [45], two-level fractional factorial experiment [46], or Taguchi
design of experiments [47].

4. Conclusions

Cellulose acetated based mixed matrix membranes containing a natural antibiofoulant M. oleifera
seeds powder have been synthesized. Two different solvents were utilized, i.e., DMF and DMAc.
The results show that the interaction of CA with DMAc solvent is more effective than with DMF solvent
due to a higher solubility with CA. The interaction between DMAc solvent and CA resulted membranes
with more macrovoid pores, when compared to membranes made of DMF solvent. The condition
promotes that the membrane made of DMAc solvent has good permeability rather than that of the
DMF solvent. MMMs with 1 wt% M. oleifera powder made of DMAc solvent has the highest value of
clean water flux that is equal to 14,048 L·m−2·h−1. M. oleifera powder works as an antibacterial and
it can inhibit E. coli growth up to 64% and 95%, respectively, in MMMs with 1 wt% M. oleifera seeds
powder made of DMF and DMAc solvents, respectively. Thus, M. oleifera seeds can prevent biofouling
in membrane processes, especially in being used for food processing.
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