
processes

Article

Numerical Investigation of the Failure Mechanism of
Transversely Isotropic Rocks with a Particle Flow
Modeling Method

Xu-Xu Yang 1,2,*, Hong-Wen Jing 2 and Wei-Guo Qiao 1

1 Shandong Provincial Key Laboratory of Civil Engineering Disaster Prevention and Mitigation, Shandong
University of Science and Technology, Qingdao 266590, China; skd995559@sdust.edu.cn

2 State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining
and Technology, Xuzhou 221116, China; yangxucumt@126.com

* Correspondence: yangxu@sdust.edu.cn; Tel.: +86-0532-8605-7646

Received: 30 August 2018; Accepted: 14 September 2018; Published: 17 September 2018
����������
�������

Abstract: Transversely isotropic rocks are commonly encountered in rock engineering practices,
and their strength and failure behavior is often governed by the property of anisotropy. The particle
flow modeling method was utilized to investigate the failure mechanism of transversely isotropic
rocks subject to uniaxial compressive loading. The details for establishing transversely isotropic
rock models were first presented, and then a parametric study was carried out to look into the effect
of interface properties on the failure mode and strength of transversely isotropic rock models by
varying the interface dip angle. The smooth joint model was incorporated to create interfaces for
the completeness of establishing transversely isotropic rock models with the particle flow modeling
method. Accordingly, three failure modes observed in transversely isotropic rock models with
varying dip angles were tensile failure across interfaces, shear failure along interfaces, and tensile
failure along interfaces. Furthermore, the interface mechanical parameters were found to differently
influence the failure behavior of transversely isotropic rock models. The bonded joint cohesion
and bonded joint friction angle that contribute to the shear strength of interfaces have considerable
influence on the uniaxial compressive strength (UCS) values, while the joint coefficient of friction and
joint tensile strength have a slight influence on the UCS values. The findings in this paper indicated
the importance of interfaces in estimating failure behavior of transversely isotropic rocks.
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1. Introduction

The dominant anisotropy or transverse isotropy of geological materials, especially of foliated
metamorphic rocks, such as slates, gneisses, schist, and sedimentary rocks with bedding planes,
leads to complicated failure behaviors [1]. Rock anisotropy is one of the most significant characteristics
that should be taken into consideration for underground engineering. The design and stability analysis
of underground structures excavated in anisotropic rock masses, for instance, require a complete
understanding of the failure behavior of the rock materials. Thus, the failure mechanism of anisotropic
or transversely isotropic rocks has been a significant topic in rock mechanics.

Engineering practice has suggested that the rock anisotropy is of importance in the stabilization
of underground excavations in bedded rock masses [2,3]. Previous studies indicate that drilling
through bedding planes was quite dangerous. The boreholes might become unstable if the deviation
angle of drilled well applied to sub-horizontal bedding planes is very high due to rock strength
anisotropy [4–8]. Particularly, Okland et al. [4] carried out hollow cylinder tests to study the critical
bedding inclination angle of shale that can induce severe borehole damage during extended reach
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drilling. Meier et al. [6] also claimed that the lowest stress is required to induce borehole breakout
when the borehole is sub-parallel to the bedding planes. Moreover, Zhou et al. [9] reported that in the
Wudongde hydropower station on the Jinsha River in China, instability of high sidewalls, particularly
separation of bedding planes and the accompanying remarkable deformation, is likely to happen in
those sections where strata are almost parallel to the cavern axis with a thickness less than 10 cm.
For better engineering design, the mechanical properties of aforementioned anisotropic rock materials
are suggested to be determined through the field tests or through rock mass classification [10].

However, due to the inherent difficulty and inaccuracy in conducting field tests or rock mass
classification, many investigators tend to investigate the mechanical properties of anisotropic rock
materials through laboratory tests. To be specific, Gatelier et al. [11], according to laboratory tests,
stated a decrease in uniaxial compressive strength with increasing inclination angle in Adamswiller
sandstone. Kim et al. [12] through X-ray CT (Computed Tomography) study and uniaxial compression
tests found that Berea sandstone in northern Ohio is composed of cross-bedded loose layers and
relatively thin tightly packed layers, and its uniaxial compressive strength (UCS) value decreases
with increasing porosity as well as with increasing inclination of the bedding plane. Heng et al. [13]
investigated the directional shale samples obtained from the Longmaxi Formation in Shizhu County,
China, and three types of shear failure modes were identified that were dependent on the shearing
angle, which were sliding failure across the bedding plane, sliding failure along the bedding planes,
and sliding failure across the bedding planes combined with tensile splitting along the bedding planes.
Besides these real rock materials prepared from engineering sites, some rock-like materials have also
been utilized to investigate the anisotropic or transversely isotropic mechanism. Kulatilake et al. [14]
carried out uniaxial compressive tests on the jointed rock-like material blocks having existing joint sets.
Their findings show that for rock samples with dip angles of 0◦ to 15◦, the failure mechanism was the
tensile failure through the intact model material, while for rock samples with joint dip angles of 40◦ to
60◦, the main failure mechanism was the combined shear and tensile failure through the joints. A mixed
mechanism of the above two modes accounted for the failure of jointed blocks having dip angles of 20◦

to 35◦. Yang et al. [15] performed a series of physical model tests for jointed rock masses with persistent
discontinuities and indicated that the failure modes of these models with different dip angles can be
divided into split mode, sliding mode, and mixed mode. Recently, an experimental investigation was
implemented by Yang et al. [16] on jointed rock models made of rock-like materials. In accordance
with the experimental results, the failure of simulated rock models with varied orientations is classified
into one of four modes: (a) tensile failure across the joint plane, (b) shear failure along the joint
plane, (c) tensile failure along the joint plane, and (d) intact material failure. These above-mentioned
researchers explained the anisotropic or transversely isotropic mechanism of rock materials with weak
planes/layers presence. These studies broaden our understanding of weak planes/layers geometry on
the mechanical property of rock materials.

As one important research methodology in rock mechanics as well as in geotechnical engineering,
the numerical modeling method has significantly enriched the data bank of anisotropic rock behavior
besides those obtained from laboratory experiments. Particularly, the particle flow modeling method
with the basis of the discrete element theory has obtained a pronounced development from being
applied to rock and soil mechanics to greatly broader applications. This approach is capable of
deriving the rock mass response based on the relatively simple particle contact laws at joints and
in rock instead of more complex constitutive models [17,18]. Therefore, a particle flow modeling
approach could be utilized directly to extend the experimental results obtained in the laboratory.
For example, Chiu et al. [19] put forward a modified smooth-joint model utilizing the particle flow
modeling approach to mimic the anisotropic behavior of a rock mass, and the failure modes of the rock
mass obtained by Yang et al. [15] in the laboratory were perfectly reproduced. The load-deformation
curves in different joint orientations were also well mimicked. Bahaaddini et al. [18], by using particle
flow modeling, thoroughly investigated the effect of geometric parameters of joints on the rock
mass failure mechanism, deformation modulus, and uniaxial compression strength, and critically
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compared these with the physical experiments [20]. Park and Min [21] also conducted particle
flow simulations with embedded smooth joints for mimicking the strength and failure behavior
of transversely isotropic rocks with systematic verification and extensions to laboratory and field
problems. They succeeded in capturing the failure modes observed in anisotropic rock in which
weak planes significantly matter. Furthermore, the particle flow modeling has been utilized as well to
study the failure behavior of transversely isotropic rock mass through Brazilian tests [1,22]. Although
the particle flow modeling promotes the understanding of the anisotropic or transversely isotropic
rock mass mechanical behavior, the concentration is still mainly put on the geometrically structural
effect. On the other hand, the influence of bedded planes/layers’ mechanical properties on the failure
response of anisotropic or transversely isotropic rock masses is not well understood.

This study aims to better understand the influence of mechanical properties of bedded layers
(interfaces) on the failure behavior of transversely isotropic rocks through a particle flow modeling
method. Thus, this paper is organized in the following matter. First, the physical experiment on
simulated transversely isotropic rocks is briefly introduced in Section 2.1 as a benchmark for particle
flow modeling. After that, the procedure to establish particle flow models, which consists of intact
materials and interfaces, and the calibration of their mechanical parameters, are illustrated in Section 2.2.
With these numerically simulated models, the failure mechanism of transversely isotropic rocks is
analyzed at the mesoscale under uniaxial compressive loading in Section 3.1. In Section 3.2, a sensitivity
study is carried out systematically to estimate the influence of mechanical parameters of interfaces on
the failure strength of transversely isotropic rocks.

2. Materials and Methods

2.1. Physical Experiment on Simulated Transversely Isotropic Rocks

To investigate the failure mechanism of the transversely isotropic rocks through particle flow
modeling, associated experimental results are required. The present modeling study refers to artificial
transversely isotropic rocks, as implemented by Tien et al. [23], and utilized their test data for the base
of the particle flow simulations. The physical experiment program and results are described as follows.

Two model materials, referred to as material A and material B, respectively, were chosen to
combine into the transversely isotropic rock samples. Material A was composed of cement, kaolinite,
and water in a weight ratio of 4:1:1.2, while material B was composed of cement, kaolinite, and water
in a weight ratio of 1:1:0.6. According to the test results of the materials’ mechanical properties,
the uniaxial compressive strength (UCS), Young’s modulus, and Poisson’s ratio of material A are
104.2 MPa, 21.7 GPa, and 0.23, respectively, representing rocks with high strength and stiffness.
On the other hand, the uniaxial compressive strength, Young’s modulus, and Poisson’s ratio of material
B are 43.3 MPa, 11.9 GPa, and 0.21, respectively, representing rocks with relatively low strength
and stiffness.

Tien et al. [23] incorporated eight steps to develop these transversely isotropic rock samples.
After the mold assembly and model material preparation steps (steps 1 and 2), the preliminary
compaction step (step 3) was conducted by using the MTS (Mechanical Testing and Simulation)
servo-controlled loading frame to apply an axial load of 20 kN on the model materials to make them
into a preliminary square rock mass soft enough for cutting into slices. In the cutting into slices step
(step 4), the preliminarily compacted model materials (material A and material B) were put on a
cutting platform and cut with a slice cutter into slices with a thickness of 5 mm in each layer. After that,
a suction lifter was utilized to pile material A slices and material B slices up in sequence, which is
referred to as the stacking slices step (step 5). Following the repairing step (step 6), the final compaction
step (step 7) was implemented to apply a final load of 114 kN on those sliced materials, and then it was
held for one hour until a steady settlement was achieved. Finally, upon the curing and drilling step
(step 8), the transversely isotropic rock samples having different dip angles (α = 0◦, 15◦, 30◦, 45◦, 60◦,
75◦, and 90◦) were created for the subsequent compression tests. These artificial transversely isotropic
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rock samples were developed to represent the anisotropic behavior of sandstone-shale interlayered
rock masses. Figure 1 shows the physical dimension of a typical transversely isotropic rock sample.
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Figure 1. A typical transversely isotropic rock sample (α = 0◦).

These artificial transversely isotropic rock samples were then subjected to compression tests.
In accordance with the test results [23], with zero confining pressure, three failure modes were
identified. When the dip angles were relatively low (α = 0◦, 15◦, and 30◦), the artificial transversely
isotropic rock samples failed in a mode of tensile fracture across discontinuities; whereas, when the dip
angles were medium (α = 45◦, 60◦, and 75◦), the artificial transversely isotropic rock samples failed in a
mode of sliding failure along discontinuities. Moreover, for artificial transversely isotropic rock sample
having a vertical dip angle, its failure mode was defined as the tensile-split along discontinuities.

2.2. Particle Flow Modeling of Material A and Material B

The particle flow code in three dimensions (PFC3D) is a commercial software package based on
the discrete element method [24,25]. In this study, PFC3D was utilized to develop the particle flow
models of transversely isotropic rocks. In PFC3D, the intact materials (material A and material B)
were mimicked through a composite of particles that interact with each other at contacts (Figure 2a).
A linear contact model provides an elastic relationship between the relative displacements and forces
of particles at the point contact (Figure 2b). This model consists of the contact normal force component,
Fn, contact overlap, Un, shear increment, ∆Fs, and shear displacement increment, ∆Us, as follows:

Fn = knUn (1)

∆Fs = −ks∆Us (2)

with kn and ks being the contact normal and shear stiffness.
The frictional resistance of the contact is as follows:

Fs ≤ µFn (3)

with µ being the friction coefficient between particles.
To numerically mimic a relatively rock-like material, it is required to stick these granular particles

through a bonded model [26]. The bonded model, herein, is a parallel bond model that resists not
only the contact forces but also the moments between the particles at a cemented contact (Figure 2c).
The function mechanism of the parallel bond model is described as:

∆Fn = kn A∆Un (4)

∆Fs = −ks A∆Us (5)
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and
∆Mn = −ks J∆θn (6)

∆Ms = −kn I∆θs (7)

with Fn, Fs, Mn, and Ms being the force components and moments about the center of the
cemented-contact zone, respectively; kn and ks being the normal and shear bond stiffness per unit area,
respectively; θn and θs being the rotation angle components, respectively; and A, J, and I being the
area, polar moment of inertia, and moment of inertia of the bond contact cross-section, respectively.
The strength value of the bonded contact is given by:

σmax =
−Fn

A
+

∣∣Ms
∣∣R

I
< σc (8)

τmax =
−Fs

A
+

∣∣Mn
∣∣R

J
< τc (9)

with R being the radii of the cemented contact plane between particles (Figure 2c); and σc and τc being
the tensile and shear strength of the bond contact, respectively.
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Figure 2. The contact model and parallel bond model: (a) intact material, (b) particle contact, and (c)
parallel bond.

Tensile cracks occur when the applied normal stress exceeds the specified tensile strength of the
parallel bond, σc, while shear cracks happen as the applied shear stress surplus the shear strength,
τc, either through rotation or through sliding of particles. The tensile strength at the contact soon
falls to zero once the cracks occur, while the shear strength decreases as the residual friction strength
(Equation (3)).

For presenting the aforesaid mechanical properties of material A and material B, this numerical
modeling method requires a calibration of the microparameters to describe contact and bond deforming
and strength behavior, and the selected package of microparameters are expected to derive the macro
mechanical properties of simulated material used in physical experiments [23]. Therefore, a calibration
procedure was carried out to determine these microparameters for intact rock materials (material A
and material B). Several steps [25,27–29] are followed to reproduce certain properties of the artificial
materials. First, the particle and parallel bond moduli and the ratios of normal to shear stiffness are set
to be equal between the particles and parallel bonds, which aims to decrease the number of independent
parameters. Second, the Young’s modulus is determined through setting the material strengths to a
large value and varying Ec (particle Young’s modulus) and Ec (parallel bond Young’s modulus) to
match the Young’s modulus between the particle flow modeling and laboratory samples (with the
size of ϕ 50 mm × 100 mm). Then, through varying kn/ks (particle normal stiffness/shear stiffness)
and kn/ks (parallel bond normal stiffness/shear stiffness), the Poisson’s ratio of the intact synthetic
cylindrical sample was matched to the laboratory samples. Afterwards, the strength between the
numerical and laboratory samples were matched by decreasing the normal and shear bond strengths
of the parallel bonds. During this procedure, it is of importance to fix the ratio of normal to shear bond
strength (σc/τc) for the reason that it influences the failure pattern of the sample. The determined
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microparameters of the intact rock material were listed in Table 1. A comparison between particle
flow modeling and experiment results in Table 2 claims a good capability of this numerical modeling
method to reproduce these simulated mechanical properties under uniaxial compression loading.
The deviations for uniaxial compressive strength (UCS), Young’s modulus (E), and Poisson’s ratio (ν)
of material A and material B were all less than 5.0%.

Table 1. Microparameter values of intact rock materials (material A and material B).

Property Parameter Value1 (Material A) Value2 (Material B)

Particle ρ (kg/m3) 2150 1760
kn/ks 1.65 1.55

Ec (GPa) 18.8 10.3
µ 0.554 0.466

Rrat = Rmax/Rmin 1.66 1.66
Rmin (mm) 0.65 0.65

Parallel bond λ 1.0 1.0
kn/ks 1.65 1.55

Ec (GPa) 18.8 10.3
σc (mean ± std.dev., MPa) 76.0 ± 19.0 31.7 ± 7.9
τc (mean ± std.dev., MPa) 152.0 ± 38.0 63.4 ± 15.9

Note that ρ is the density of the synthetic rock material; λ is the radius multiplier used to set the parallel bond
radii; Rrat is the radius of the particle; Rmax and Rmin are the maximum radius and minimum radius of the
particle, respectively.

Table 2. Comparison of mechanical properties of intact material between the physical experiment and
the particle flow modeling results.

Material Macro Properties Experimental Results Numerical Results Abs. Deviation

Material A
UCS (MPa) 104.2 105.8 1.53%

E (GPa) 21.7 20.8 4.15%
ν 0.230 0.224 2.61%

Material B
UCS (MPa) 43.3 44.1 1.85%

E (GPa) 11.9 11.4 4.20%
ν 0.210 0.202 3.81%

2.3. Particle Flow Modeling of Interface between Material A and Material B

2.3.1. Smooth Joint Model

As aforementioned, the simulated transversely isotropic rock samples were prepared through
piling up the material A slices and material B slices in sequence [23]. The interfaces between material
A and material B (as shown in Figure 1) were discontinuities that behave quite differently from the
adjacent intact materials. Hence, to better describe the mechanical behavior of transversely isotropic
rocks the interfaces were intersected between material A and material B slices and represented with the
smooth joint model. The numerically developed transversely isotropic rock samples having different
interface dip angles are shown in Figure 3.
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Figure 3. Numerically developed transversely isotropic rock samples having different interface dip
angles: (a) α = 0◦, (b) α = 15◦, (c) α = 30◦, (d) α = 45◦, (e) α = 60◦, (f) α = 75◦, and (g) α = 90◦.

The smooth joint model is shown in Figure 4. Once a joint plane is defined, a smooth joint is
defined at contacts between the particles whose centers are lying on the opposite sides of the joint
plane. At the contacts, the existing parallel bonds will be removed first, and the smooth joints are
assigned in the direction parallel to the joint plane. These contacts will act in accordance with the
rules defined through the smooth joint model with particular parameter values assigned by the user.
The particles having such contacts may overlap or overpass through each other rather than to roll
around one another (Figure 4).
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Figure 4. Smooth joint model: (a) numerical analog, and (b) physical analog.

The newly defined contacts act mechanically like a set of elastic springs uniformly distributed on
a circular cross-section disc with the center at the contact point. The area A of the smooth joint disc is
defined as:

A = πR2 (10)
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where R is the disc radius:
R = λmin(R1, R2) (11)

where λ is a radius multiplier (usually set as 1.0), and R1 and R2 are particle radii, as shown in Figure 4.
The smooth joint model can behave with respect to the following basic modes: (i) not bonded

and never fail mode, (ii) not bonded and fail in tension mode, (iii) not bonded and fail in shear mode,
and (iv) bonded mode. Through these modes, the smooth joint model could be used to simulate
various discontinuity conditions. In the present paper, we use the smooth joint model with the bonded
mode (mode (iv)) to mimic the interfaces between material A slices and material B slices. Besides the
stiffness provided by the aforementioned springs, the bonded smooth joint model also possesses both
the normal and shear strengths. The shear strength is given by:

τcj = σnj tan ϕj + cj (12)

In Equation (12), σnj implies the normal stress acted on the joint surface; ϕj implies the bonded
joint friction angle; while cj implies the bonded joint cohesion, given in MPa. If the normal or shear
stress exceeds the corresponding bond strength, the joint bond between the joint surfaces fails and the
bond stiffness will be removed. As long as the joint bond fails either in shear or tensile pattern, the shear
strength reduces as its residual value and the tensile strength will be set to be zero. The residual shear
strength is a function of the normal stress, σnj, as well as the joint friction coefficient, µj. Figure 5 shows
the constitutive law for the bonded smooth joint model.
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Figure 5. Constitutive law for a bonded smooth joint model: (a) normal force, Fnj, versus normal
displacement, Unj; (b) shear force, Fsj, versus shear displacement, Usj; and (c) strength envelope.

2.3.2. Calibration and Validation of Smooth Joint Mechanical Parameters

The smooth joint parameters consist of the joint normal stiffness, knj; joint shear stiffness, ksj; joint
tensile strength, σcj; joint shear strength, τcj; joint coefficient of friction, µj; and joint dilation angle,
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ψj. These mechanical parameters have been determined through a calibration procedure utilizing the
data of experiments carried out by Tien et al. [23] on simulated transversely isotropic rock samples.
The calibration process is illustrated in Figure 6. During the calibration procedure, sets of trial-and-error
tests were implemented on numerically developed transversely isotropic rock samples (Figure 3) to
reproduce the uniaxial compressive strength data with those obtained by Tien et al. [23].
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Through the above calibration procedure, the mechanical parameters of the smooth joint model
for simulating interfaces are determined as listed in Table 3. Note that the value for each smooth
joint parameter is not unique. That is to say, each joint parameter in Table 3 is changeable along with
re-adjusting other joint parameters. Strong coupling effects exist between various joint parameters
such that the macro mechanical properties of the simulated transversely isotropic rock models is a
result of the complicated interaction among these joint parameters [30]. Based on the calibrated smooth
joint mechanical parameters, the UCS of transversely isotropic rock samples are matched well with
those obtained by Tien et al. [23]. Table 4 shows a comparison of unconfined strength values (UCS)
between the experiments and the particle flow simulations. The comparison given claims the capability
of the particle flow modeling method to derive the strength property of transversely isotropic rock
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models under uniaxial compressive loading. The uniaxial compressive strength values obtained
through particle flow simulations agree well with those obtained through physical experiments.
The particle flow models with the determined intact material and smooth joint mechanical parameters
are subsequently utilized to investigate the failure mechanism of transversely isotropic rocks.

Table 3. Mechanical parameter values used for the smooth joint model.

Mechanical Parameter Determined Value Mechanical Parameter Determined Value

knj (N/m3) 1.81 × 1012 σcj (MPa) 23.8
ksj (N/m3) 0.79 × 1012 cj (MPa) 13.0

µj 0.78 ϕj 22.5◦

ψ 0 - -

Table 4. Comparison of UCS values between physical experiment and numerical simulation results.

Comparison Condition UCS Value for Different Interface Dip Angle

Dip angle, α (deg.)
Physical experiment (MPa)

0
53.0

15
47.0

30
50.0

45
38.0

60
30.0

75
38.0

90
66.0

Numerical simulation (MPa) 51.6 56.8 51.5 36.7 32.0 36.2 52.4

3. Results and Discussion

3.1. Failure Mechanism of Transversely Isotropic Rocks

For better understanding of the failure mechanism of transversely isotropic rocks under uniaxial
compressive loading, the created particle flow models, of which the mechanical parameters are
determined through the above calibration procedure, were investigated under differing interface dip
angles. The interface dip angles were varied from 0◦ to 90◦ with an interval of 15◦. In this section,
failure modes of transversely isotropic rock models are analyzed in terms of newly generated cracks
which present the breakage of parallel bonds as well as the smooth joint bonds. Figure 7 plots the
failure process of transversely isotropic rock models having different interface dip angles. Note that the
breakage of parallel bonds is shown as red (tensile) or blue (shear) crack items, whereas the breakage of
smooth joint bonds is marked as magenta (tensile) or black (shear) crack items. As shown in Figure 7,
when the interface dip angles, α, are 0◦ and 15◦, under uniaxial compressive loading the cracks
initiate in the soft material (material B) rather than in the hard material (material A). With subsequent
compression, the cracks (tensile and shear) increasingly occur both in material A and material B,
and eventually coalesce into a macro failure plane penetrating the transversely isotropic rock models.
This macro failure plane comes across the simulated interfaces, the rock models fail, and resistance
capability was lost. At α = 30◦, the cracks also initiated in material B under uniaxial compressive
loading, as shown in Figure 7. With increasing compression stress, the cracks develop not only in intact
materials (material A and material B), but also in interfaces. As a result, the final failure planes were
generated along the soft intact material as well as the interfaces. At α = 45◦, although considerable
cracks developed in the soft intact material and interfaces, the failure planes that penetrated and failed
the whole rock samples only occurred along the interfaces. When the interface dip angle increased to
60◦ and 75◦, similar failure processes were observed, as shown in Figure 7, and the final failure planes
were generated along the interfaces. When the beddings were vertical (α = 90◦), numerous cracks
occurred both in material A and material B, and were mainly concentrated in the top and bottom ends
of the simulated rock sample at the final stage.
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Figure 8 shows a comparison of the failure modes of artificial and simulated transversely isotropic
rock samples with dip angles of 0◦, 15◦, and 30◦. This figure shows that the numerically simulated
failure modes matched well with those obtained by Tien et al. in the physical experiments [23].
Therefore, the numerically simulated failure modes could be referred to as tensile fractures across
discontinuities as defined in physical experiments. To be more specific, in this study the failure
mechanism was further analyzed at the mesoscale. Figure 9 illustrates the microcrack number evolution
of transversely isotropic rock models having interface dip angles of 0◦, 15◦, and 30◦. As shown in
this figure, under uniaxial compressive loading, the crack number increased slowly at the beginning,
and increased sharply when the axial stress reached the peak. Additionally, the crack number in intact
materials was consistently larger than that in interfaces. That is to say, the intact materials rather than
the interfaces dominated the resistance capability of the whole transversely isotropic rock models.
Moreover, as shown in Figure 10, in intact materials, the tensile crack number was dramatically larger
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than that of shear cracks. Therefore, tensile failure of an intact material is thought to be the main cause
of the transversely isotropic rock models failing when the interface dip angles are relatively low, e.g.,
α = 0◦ and 15◦. Taking the effect of interfaces into consideration, this type of failure mode, herein,
was redefined as the tensile failure across interfaces. As the interface dip angle increased from 0◦ to 30◦

through 15◦, the difference of crack number in intact materials and in interfaces decreased, as shown
in Figure 9. Furthermore, at α = 30◦, the crack number in interfaces almost equaled that in interfaces.
Therefore, when the interface dip angle was 30◦ the transversely isotropic rock sample partially fails in
the mode of tensile failure across interfaces.
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Figure 8. Failure modes of transversely isotropic jointed rock models having dip angles of (a) α = 0◦,
(b) α = 15◦, and (c) α = 30◦. (Note that the failure images of physical samples were adopted from
Ref. [23]).

Processes 2018, 6, x FOR PEER REVIEW  13 of 26 

 

angles are relatively low, e.g., α = 0° and 15°. Taking the effect of interfaces into consideration, this 
type of failure mode, herein, was redefined as the tensile failure across interfaces. As the interface dip 
angle increased from 0° to 30° through 15°, the difference of crack number in intact materials and in 
interfaces decreased, as shown in Figure 9. Furthermore, at α = 30°, the crack number in interfaces 
almost equaled that in interfaces. Therefore, when the interface dip angle was 30° the transversely 
isotropic rock sample partially fails in the mode of tensile failure across interfaces. 

      
(a) (b) (c) 

Figure 8. Failure modes of transversely isotropic jointed rock models having dip angles of (a) α = 0°, 
(b) α = 15°, and (c) α = 30°. (Note that the failure images of physical samples were adopted from Ref. [23]). 

  
(a) (b) 

 
(c) 

Figure 9. Crack number evolution of transversely isotropic rock models with dip angles of (a) α = 0°, 
(b) α = 15°, and (c) α = 30°. 

0

5

10

15

20

0

10

20

30

40

50

60

0.0 1.0 2.0 3.0 4.0 5.0 6.0

Cr
ac

k 
nu

m
be

r (
10

3 )

A
xi

al
 st

re
ss

 σ
1 

(M
Pa

)

Axial strain ε1 (10−3)

Stress-strain

Intact material crack

Interface crack

Stress–strain

0

5

10

15

20

0

10

20

30

40

50

60

0.0 1.0 2.0 3.0 4.0 5.0 6.0
Cr

ac
k 

nu
m

be
r (

10
3 )

A
xi

al
 st

re
ss

 σ
1(M

Pa
)

Axial strain ε1 (10−3)

Stress-strain

Intact material crack

Interface crack

Stress–strain

0

5

10

15

20

0

10

20

30

40

50

60

0.0 1.0 2.0 3.0 4.0 5.0

Cr
ac

k 
nu

m
be

r (
10

3 )

A
xi

al
 st

re
ss

 σ
1(M

Pa
)

Axial strain ε1 (10−3)

Stress-strain
Intact material crack
Interface crack

Stress–strain

Figure 9. Crack number evolution of transversely isotropic rock models with dip angles of (a) α = 0◦,
(b) α = 15◦, and (c) α = 30◦.
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Figure 10. Intact material crack number evolution of transversely isotropic jointed rock models having
dip angles of (a) α = 0◦, (b) α = 15◦ and (c) α = 30◦.

Figure 11 displays the comparison of failure modes of artificial and simulated transversely
isotropic rock models having dip angles of 45◦, 60◦, and 75◦. It shows that the numerically simulated
failure modes were also in good agreement with those obtained through physical experiments [23].
The numerically simulated failure modes could be defined as a sliding failure along discontinuities in
accordance with the physical experiments. Furthermore, Figure 12 displays the crack number evolution
of transversely isotropic rock models having interface dip angles of 45◦, 60◦, and 75◦. As shown in
this figure, under compressive loading, the crack number increases slowly for a relatively long period,
and increases sharply when the axial stress arrives at peak stress. Contrary to transversely isotropic
rock samples having low dip angles (α = 0◦, 15◦, and 30◦), the transversely isotropic rock samples
having medium dip angles (α = 45◦, 60◦, and 75◦) generated more cracks in interfaces than in intact
materials. That is to say, the interfaces rather than the intact materials dominated the resistance
capability of the whole rock models. Moreover, as shown in Figure 13, in interfaces, the shear crack
number was much larger than that of the tensile crack. Therefore, the shear failure of interfaces was the
main mechanism of the transversely isotropic rock models failing when the interface dip angles were
medium, e.g., α = 45◦, 60◦, and 75◦. To emphasize the failure mechanism of the transversely isotropic
rock models, this type of failure mode, herein, is redefined as the shear failure along interfaces.
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Figure 11. Failure modes of transversely isotropic jointed rock models having dip angles of (a) α = 45◦,
(b) α = 60◦, and (c) α = 75◦. (Note that the failure images of physical samples were adopted from
Ref. [23]).
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Figure 12. Crack number evolution of transversely isotropic rock models with dip angles of (a) α = 45◦,
(b) α = 60◦ and (c) α = 75◦.
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Figure 13. Intact material crack number evolution of transversely isotropic jointed rock models having
dip angles of (a) α = 45◦, (b) α = 60◦ and (c) α = 75◦.

Figure 14 plots the comparison of failure modes of transversely isotropic rock models with vertical
interfaces in numerical simulations and in physical experiments [23]. In the numerically simulated
rock model, there were many more cracks observed than those in the physical rock model. This might
be because the particle flow modeling method could recognize more microcracks than the eyes [18].
On the other hand, Figure 15 displays that before the peak stress, the number of interface cracks
was larger than that of intact material crack, which accounts for the failure planes mainly observed
in vertical interfaces of artificial rock models having a dip angle of 90◦. This failure mode, herein,
is referred to as tensile failure along interfaces.
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Figure 14. Failure modes of transversely isotropic jointed rock model having dip angle of 90◦:
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3.2. Effect of Interfaces on Strength of Transversely Isotropic Rocks

As aforesaid, the role of interfaces played an influence on the failure behavior of transversely
isotropic rocks. The failure mode of transversely isotropic rocks were classified into three types,
which are tensile failure across interfaces, shear failure along interfaces, and tensile failure along
interfaces. The failure mode are significantly dependent on the interface dip angle. However,
in laboratory experiments, the interfaces between material A and material B were somehow ignored
without taking their mechanical properties into account [23]. This section thus focuses on the effect of
interfaces on the strength behavior of transversely isotropic rock models.

For comparison, Figure 16 displays the failure modes of transversely isotropic rock models
without interfaces. This figure shows that the rock models having only inter-beddings of material A
and material B still behaved anisotropically. The microcracks mainly concentrated in the soft material,
i.e., material B, and most of them were tensile cracks (red), which was also observed by Kim et al. [12]
through experimental tests on Berea sandstone. However, as shown in Figure 17, which illustrates the
comparison of UCS of transversely isotropic rocks with and without weak interfaces, the UCS values
of rock models without weak interfaces were highly beyond those obtained in physical experiments.
On the contrary, the UCS values of rock models with weak interfaces agreed very well with the
physical experiment results. In addition, the shape of the compressive strength interface dip angle
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curve obtained in physical experiments could be classified as a shoulder type [31], which means that the
compressive strength was relatively high with low and high dip angles, while the compressive strength
was relatively low with medium dip angles. Some typical examples of such curves are verified by
Yasar [32], Autio et al. [33], Nasseri et al. [34], Cho et al. [35], and Fjaer and Nes [36]. In these studies,
the research objects included various rocks such as sandstone, siltstone, shale, gneiss, and schist.
In most of these works, it was noted that bedding planes acted as planes of weakness. The particle
flow modeling results of transversely isotropic rocks with interfaces fit this type of the compressive
strength interface dip angle curve. That is to say, the interfaces were very necessary elements to build
transversely isotropic rock models with particle flow modeling method. To further understand the
effect of interfaces on the failure behavior of transversely isotropic rocks, the mechanical properties of
interfaces were systematically investigated as follows.
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Figure 16. Failure modes of transversely isotropic rocks without weak interfaces: (a) α = 0◦, (b) α = 15◦,
(c) α = 30◦, (d) α = 45◦, (e) α = 60◦, (f) α = 75◦, and (g) α = 90◦.
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Figure 17. Comparison of UCS of transversely isotropic rocks with and without weak interfaces.

3.2.1. Joint Normal Stiffness

To look into the effect of the interface property on the failure behavior of transversely isotropic
rock models, the joint normal stiffness of interfaces, knj, was first investigated. A set of joint normal
stiffness values of 0.15 × 1013 N/m3, 0.50 × 1013 N/m3, 1.50 × 1013 N/m3, and 5.00 × 1013 N/m3 were
numerically tested, respectively, for the transversely isotropic rock samples having various interface
dip angles from 0◦ to 90◦ with an interval of 15◦ (Figure 3). Meanwhile, the joint shear stiffness, ksj,
was set to be 1/3knj for all tests. Furthermore, the other smooth joint parameters were kept constant,
i.e., σcj = 23.8 MPa, ϕj = 22.5◦, cj = 13.0 MPa, and µj = 0.40. Due to the planar surface of the
interfaces in the physical experiments, the joint dilation angle, ψj, was always set to be 0. Figure 18
shows the uniaxial compressive strength variation of transversely isotropic rock samples with different
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joint normal stiffness. It is shown that the joint normal stiffness had a dramatic effect on the uniaxial
compressive strength (UCS) of transversely isotropic rocks. Particularly, when the interface dip angle
was less than 30◦ (i.e., α = 0◦ and 15◦), the UCS basically increased with the increment of joint normal
stiffness. Whereas, when the interface dip angle was equal or more than 30◦ (α ≥ 30◦), the UCS
decreased with the increment of joint normal stiffness. Moreover, as the joint normal stiffness, knj,
was set to be 0.50 × 1013 N/m3, the numerically obtained set of UCS values of transversely isotropic
rock samples were close to those obtained in physical experiments [23].
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Figure 18. UCS variation of transversely isotropic rock samples with different joint normal stiffness.

3.2.2. Joint Shear Stiffness

Keeping the joint normal stiffness constant (i.e., knj = 0.5 × 1013 N/m3), the joint shear stiffness,
ksj, is subsequently adjusted from 1/10knj to 1.0knj through 1/3knj. Furthermore, the other smooth
joint parameters were set to be constant, that is to say, σcj = 23.8 MPa, ϕj = 22.5◦, cj = 13.0 MPa,
and µj = 0.40. Figure 19 shows the UCS variation of transversely isotropic rock samples with different
joint shear stiffness. As shown in this figure, the joint shear stiffness possessed a similar influence
to the joint normal stiffness with respect to the UCS values of transversely isotropic rock samples.
When the interface dip angle was less than 30◦, the UCS basically increased with the increment of
joint shear stiffness. Meanwhile, when the interface dip angle was equal to or more than 30◦ (α ≥ 30◦),
the UCS decreased with the increment of joint shear stiffness. Specially, as the joint shear stiffness, ksj,
was set to be 1/3knj, the numerically obtained set of UCS values of transversely isotropic rock samples
agreed well with those obtained by Tien et al. in the physical experiments [23].

The joint normal stiffness and joint shear stiffness had a similar influence on the UCS variation
of transversely isotropic rock models. When the interface dip angle was low (e.g., α = 0◦ and 15◦),
the uniaxial loading compressed the inter-layered materials (material A, material B, and interfaces) to
deform normally, which was dominated by the normal stiffness, and further to deform tangentially,
which was dominated by the shear stiffness because of the Poisson’s ratio effect, which means that
the normal deformation would induce the tangential deformation. If the joint stiffness was low,
the interfaces would have a large stiffness difference compared with the adjacent intact materials
(material A and material B), which resulted in a significant deforming difference between them.
Figure 20 shows the force chains in the transversely isotropic rock models having horizontal
interfaces (α = 0◦) with different joint normal stiffness values at the peak stress. It shows that
the deforming difference caused tensile force chains in the interfaces, and the lower joint stiffness
(e.g., knj = 0.15 × 1013 N/m3) introduced more tensile force chains. These tensile force chains further
cause tensile cracks and eventually lower the UCS values of transversely isotropic rock samples.
Therefore, the UCS decreased with the reduction of joint stiffness at low dip angles (i.e., α = 0◦ and 15◦),
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as shown in Figures 18 and 19. On the other hand, when the interface dip angle was higher (α ≥ 30◦),
both the high joint stiffness and the low joint stiffness induced substantial tensile force chains in the
interfaces. However, the lower joint stiffness (e.g., knj = 0.15 × 1013 N/m3) increased the deforming
capability of these interfaces and postponed their failure. This process motivated more intact material
to contribute to the bearing capability of the whole rock samples. Therefore, the UCS increased with
the reduction of joint stiffness at higher dip angles (i.e., α ≥ 30◦).
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Figure 19. UCS variation of transversely isotropic rock samples with different joint shear stiffness.
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Figure 20. Force chains in the transversely isotropic rock models having horizontal interfaces with
different joint normal stiffness at peak stress: (a) knj = 0.15× 1013 N/m3, and (b) knj = 5.0× 1013 N/m3.
Note that the black chain and red chain imply compression force and tension force, respectively, and the
force quantity is proportional to the chain thickness.

3.2.3. Bonded Joint Cohesion

Further investigation was implemented to look into the effect of interface strength parameters,
including joint shear strength, τcj, joint coefficient of friction, µj, and joint tensile strength, σcj, on the
strength behavior of transversely isotropic rock models. In accordance with Equation (9), the joint
shear strength consisted of bonded joint cohesion, cj, and bonded joint friction angle, ϕj. Herein,
the bonded joint cohesion was first adjusted to be 4.0 MPa, 8.0 MPa, 13.0 MPa, and 16.0 MPa, while the
other joint parameters were kept constant, i.e., knj = 0.5 × 1013 N/m3, ksj = 1/3knj, σcj = 23.8 MPa,
ϕj = 22.5◦, and µj = 0.40.
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Figure 21 shows the UCS variation of transversely isotropic rock samples with different bonded
joint cohesion. As shown in this figure, the bonded joint cohesion, cj, had a varying influence on
the UCS values depending on the interface dip angle. Specifically, when the interface dip angles, α,
were 0◦ and 15◦, the UCS values decreased slightly with the decrement of bonded joint cohesion.
Even though the transversely isotropic rock samples with dip angles of 0◦ and 15◦ failed in the mode of
tensile failure across interfaces (Figure 8), the shear cracks occurred in interfaces, as shown in Figure 22.
This figure displays the interface shear crack proportion at peak stress varying with bonded joint
cohesion of 13.0 MPa and 4.0 MPa. For a better understanding, the shear crack number in interfaces
was normalized by the total crack number in the whole rock model. With the decrement of bonded joint
cohesion, the shear crack number in the interfaces increased significantly. At α = 0◦, when the bonded
joint cohesion decreased from 13.0 MPa to 4.0 MPa, the interface shear crack proportion increased from
5.1% to 31.8%. The occurrence of more interface shear cracks accelerated the failure of the whole rock
model. Moreover, at α = 15◦, when the bonded joint cohesion decreased from 13.0 MPa to 4.0 MPa,
the interface shear crack proportion increased from 5.9% to 63.0%. Therefore, the shear failure, in this
case, became dominated when the bonded joint cohesion was small, and the failure mode changed
from tensile failure across interfaces to shear failure along interfaces.
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Figure 21. Strength variation of transversely isotropic rock samples with different bonded joint cohesion.

When the interface dip angles were medium (α = 30◦, 45◦, 60◦, and 75◦), the UCS values decreased
heavily with the decrement of the bonded joint cohesion (Figure 21). The decrement of bonded joint
cohesion directly reduced the shear resistance capability of interfaces, and made them much easier
to fail. As shown in Figure 22, with the bonded joint cohesion decreasing from 13.0 MPa to 4.0 MPa,
the shear cracks in the interfaces having medium dip angles were the main cracks occurring in the
whole rock models. The intact materials (material A and material B) could not play their role effectively
to contribute to the resistance capability of the whole models, which accounted for the decrement
of UCS values in Figure 21. When the interfaces were vertical (α = 90◦), even though the interface
shear crack proportion increased from 57.8% to 93.8% with the bonded joint cohesion decreasing from
13.0 MPa to 4.0 MPa, the UCS value decreased less significantly, as shown in Figure 21. This was
because the intact materials (material A and material B) could still resist the top and bottom loading
platens moving towards each other, and even their connections (interfaces) were very weak.



Processes 2018, 6, 171 21 of 26
Processes 2018, 6, x FOR PEER REVIEW  21 of 26 

 

 
Figure 22. Interface shear crack proportion variation with different bonded joint cohesion. 

3.2.4. Bonded Joint Friction Angle 

The bonded joint friction angle, jϕ , was then adjusted to 15°, 22.5°, and 30°, respectively, while 

the other joint parameters were kept constant, i.e., 13 30.5 10 N / mnjk = × , njsj kk 3/1= , 

23.8 MPacjσ = , MPa0.13=jc , and 0.40j =μ . Figure 23 shows the UCS variation of 

transversely isotropic rock samples with different bonded joint friction angles. As shown in this 
figure, the modification of the bonded joint fiction angle had certain influences on the UCS values of 
transversely isotropic rock samples when the interface joint angles were medium. However, this 
influence was negligible when the interface was horizontal (α = 0°) or vertical (α = 90°). Like bonded 
joint cohesion, the bonded joint friction angle contributed to the shear strength of interfaces. However, 
the contribution of the bonded joint friction angle depended on the normal stress component in 
accordance with Equation (9). Thus, the bonded joint friction had a negligible influence on the shear 
resistance of the interfaces when the dip angles were high, i.e., α = 75° and 90°, due to the small normal 
stress component. With respect to the case of α = 0°, although the normal stress component was 
considerable, which enhanced the interface shear strength, the shear behavior of the interfaces was 
not the main mechanism for the failure of the whole rock model. This accounted for the negligible 
variation of the UCS values with the bonded joint friction angle at α = 0° in Figure 23. Figure 24 further 
indicates that the change of bonded joint friction angle mainly influenced the failure behavior of 
transversely isotropic rock samples when the dip angles were medium. 

 
Figure 23. Strength variation of transversely isotropic rock samples with bonded joint friction angle. 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 15 30 45 60 75 90

In
te

rfa
ce

 sh
ea

r c
ra

ck
 p

ro
po

rti
on

Dip angle (deg.)

cj=4.0 MPa

cj=13.0 MPa

MPa0.4=jc

MPa0.13=jc

25

35

45

55

65

0 15 30 45 60 75 90

U
CS

 (M
Pa

)

Dip angle (deg.)

Lab experiment
φj=15
φj=22.5
φj=30

°= 5.22jϕ
°= 0.30jϕ

°= 0.15jϕ

Figure 22. Interface shear crack proportion variation with different bonded joint cohesion.

3.2.4. Bonded Joint Friction Angle

The bonded joint friction angle, ϕj, was then adjusted to 15◦, 22.5◦, and 30◦, respectively, while the
other joint parameters were kept constant, i.e., knj = 0.5 × 1013 N/m3, ksj = 1/3knj, σcj = 23.8 MPa,
cj = 13.0 MPa, and µj = 0.40. Figure 23 shows the UCS variation of transversely isotropic rock samples
with different bonded joint friction angles. As shown in this figure, the modification of the bonded joint
fiction angle had certain influences on the UCS values of transversely isotropic rock samples when the
interface joint angles were medium. However, this influence was negligible when the interface was
horizontal (α = 0◦) or vertical (α = 90◦). Like bonded joint cohesion, the bonded joint friction angle
contributed to the shear strength of interfaces. However, the contribution of the bonded joint friction
angle depended on the normal stress component in accordance with Equation (9). Thus, the bonded
joint friction had a negligible influence on the shear resistance of the interfaces when the dip angles
were high, i.e., α = 75◦ and 90◦, due to the small normal stress component. With respect to the case of
α = 0◦, although the normal stress component was considerable, which enhanced the interface shear
strength, the shear behavior of the interfaces was not the main mechanism for the failure of the whole
rock model. This accounted for the negligible variation of the UCS values with the bonded joint friction
angle at α = 0◦ in Figure 23. Figure 24 further indicates that the change of bonded joint friction angle
mainly influenced the failure behavior of transversely isotropic rock samples when the dip angles
were medium.
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Figure 23. Strength variation of transversely isotropic rock samples with bonded joint friction angle.
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Figure 24. Interface shear crack proportion variation with different bonded joint friction angle.

3.2.5. Joint Coefficient of Friction

The joint coefficient of friction began to work only after the joint bond broke to provide the
residual shear strength. To learn about the effect of the interface residual shear strength on the failure
behavior of transversely isotropic rock models, the joint coefficient of friction, µj, was set to be 0.10,
0.25, and 0.40, whereas, the other joint parameters were kept constant, i.e., knj = 0.5 × 1013 N/m3,
ksj = 1/3knj, σcj = 23.8 MPa, cj = 13.0 MPa, and ϕj = 22.5◦. Figure 25 displays the UCS variation of
transversely isotropic rock samples with different joint coefficients of friction. As shown in this figure,
the joint coefficient of friction had a negligible influence on the resistance capability of transversely
isotropic rock samples. For rock samples having low dip angles, e.g., α = 0◦ and 15◦, the increment of
the interface shear strength was not effective enough to affect UCS values because the rock samples
tended to fail in the mode of tensile failure across interfaces. Furthermore, when the dip angle increased
to be medium, such as α = 30◦, 45◦, 60◦, and 75◦, even though the shear strength of interfaces mattered,
the joint coefficient of friction could not contribute to the peak stress of the whole rock model. This was
due to the fact that the interface shear cracks began to occur quite close to the peak stress stage,
as shown in Figure 12. Therefore, the joint coefficient of friction mainly contributed to the residual
strength rather than to the UCS of the whole rock models, which agreed very well with Ref. [25].
For α = 90◦, the transversely isotropic rock model failed according to tensile failure along interfaces,
which accounted for the negligible influence of the joint coefficient of friction on UCS values.
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3.2.6. Joint Tensile Strength

A parametric study on the influence of the joint tensile strength, σcj, on the strength behavior of
transversely isotropic rock models was carried out as well through varying this joint micro-mechanical
parameter from 15.90 MPa to 31.80 MPa through 23.80 MPa while setting the other parameters
constant. In accordance with Figure 26, the joint tensile strength had a slight influence on the UCS
values of transversely isotropic rock models. For rock samples having low dip angles (α = 0◦, 15◦,
and 30◦), although the increment of the joint tensile strength somehow affected the strength behavior
of transversely isotropic rock models, the influence was not significant. When the dip angle was
medium, because the rock models failed in the mode of shear failure along interfaces, the increment
of the interface tensile strength had a negligible influence on the strength of the whole rock models.
Furthermore, although the rock model failed in the mode of tensile failure along interfaces, the UCS of
the transversely isotropic rock sample was mainly contributed by the vertical intact materials. Thus,
the change of joint tensile strength also had a negligible influence on the UCS value.
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4. Conclusions

Particle flow modeling was undertaken to investigate the failure mechanism of transversely
isotropic rocks under uniaxial compressive loading. After setting up a particle flow model with the
PFC3D software package according to the conceptual model proposed by Tien et al. [23], a parametric
study was then carried out to investigate the effect of the interface dip angle and interface mechanical
parameters on the failure mode and uniaxial compressive strength of the transversely isotropic rock
models. The following conclusions can be drawn from the obtained particle flow modeling results:

(1) The interfaces interspaced in intact materials were pivotal elements to successfully build
transversely isotropic rock models with a particle flow modeling method. With careful calibrations
of the interface mechanical parameters, these simulated transversely isotropic rock models
derived quite similar failure modes and UCS values to those obtained in physical experiments.

(2) To highlight the effect of interfaces, the failure mode of transversely isotropic rock models was
redefined according to the observed crack revolution at the meso level. Three basic failure
modes were identified in the transversely isotropic rock models under uniaxial compressive
loading: (a) tensile failure across interfaces, (b) shear failure along interfaces, and (c) tensile
failure along interfaces.

(3) The joint normal stiffness and joint shear stiffness had a dramatic influence on the failure
strength of transversely isotropic rock models. The difference of mechanical response to uniaxial
compressive loading for each layered material accounted for the UCS variation with varying
stiffness values.
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(4) The mechanical parameters for the bonded joint shear strength property had quite a different
influence on the failure behavior of transversely isotropic rock models. The bonded joint cohesion
and bonded joint friction angle, which contributed to the shear strength of interfaces, had a
considerable influence on the UCS values, while the joint coefficient of friction, which contributed
to the residual strength of interfaces, had a negligible influence on the UCS values.

(5) The shear failure of interfaces was the dominant mechanism for anisotropic behavior of layered
rock models, the change of joint tensile strength had a negligible influence on the UCS values of
transversely isotropic rock models.

The present study put the emphasis on the failure mechanism of transversely isotropic
rocks under the unconfined compression condition, whilst a further study on the anisotropic
behavior of transversely isotropic rocks under the triaxial stress condition is undergoing. Moreover,
the hydromechanical behavior of the transversely isotropic rocks is also a challenge topic that is of
our interest. The following studies would provide useful guidelines for the stabilization control of
engineering structures constructed in or on the transversely isotropic rocks.
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