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Abstract: Lignin valorization is a key aspect to design sustainable management systems for
lignocellulosic biomass. The successful implementation of bio-refineries requires high value
added applications for the chemicals derived from lignin. Without effective separation processes,
the achievement of this purpose is difficult. Supported ionic liquid membranes can play a relevant
role in the separation and purification of lignocellulosic components. This work investigated different
supported ionic liquid membranes for selective transport of two different types of technical lignins
(Kraft lignin and lignosulphonate) and monosaccharides (xylose and glucose) in aqueous solution.
Although five different membrane supports and nine ionic liquids were tested, only the system
composed by [BMIM][DBP] as an ionic liquid and polytetrafluoroethylene (PTFE) as a membrane
support allowed the selective transport of the tested solutes. The results obtained with this selective
membrane demonstrated that lignins were more slowly transferred from the feed compartment to the
stripping compartment through the membrane than the monosaccharides. A model was proposed to
calculate the effective mass transfer constants of the solutes through the membrane (values in the
range 0.5–2.0 × 10−3 m/h). Nevertheless, the stability of this identified selective membrane and its
potential to be implemented in effective separation processes must be further analyzed.
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1. Introduction

Among renewable raw materials, wood must be highlighted, because more effective,
cost-competitive and sustainable alternatives have not been identified for some applications. Forest
exploitation provides economic and social values from this natural resource and promotes a sustainable
development chance for rural areas [1]. The wood processing industrial sector obtains forest products
such as lumber, engineered wood, and pulp. Traditional wood pulping has been focused on the
fractionation of the main lignocellulosic components (cellulose, hemicellulose, and lignin), but paying
special attention to the cellulosic fraction, which is the relevant one for the production of paper.
In this framework, hemicellulose and lignin have been only employed for energy recovery by direct
combustion [2]. However, recent research interest is being targeted to hemicellulose and lignin as raw
materials for renewable chemicals to replace those derived from petroleum. Therefore, the integral use
of the lignocellulosic biomass must take into account the valorization of hemicellulose and lignin [3–5].
For example, lignin must be considered the most promising renewable source to produce aromatic
chemicals at a real industrial scale because of its structure (Figure 1) and its abundance in nature [6].
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Figure 1. Example of lignin structure. Reproduced with permission from Chávez-Sifontes, Lignina, 
estructura y aplicaciones: métodos de despolimerización para la obtención de derivados aromáticos 
de interés industrial; published by Avances en Ciencias e Ingeniería, 2013. 

In this new scenario, biorefineries have been introduced to provide an alternative to traditional 
petroleum refineries. A biorefinery is a facility that integrates the biomass conversion processes to 
produce bioenergy, biofuels, and bio-based chemicals from biomass [7]. While the valorization of 
cellulose and hemicellulose has been successfully implemented in biorefineries [8], the optimal 
valorization of lignin remains as a great challenge to be solved. Enzymatic hydrolysis of cellulose and 
hemicellulose results in fermentable sugars, which can be easily transformed to biofuels (bioethanol) 
or precursors for production of valuable bio-based chemicals. Delignification is a necessary 
prerequisite for enzymatic hydrolysis, as lignin interferes the reaction and blocks the process [9,10]. 
Therefore, lignin must be separated during the pretreatment of lignocellulosic biomass, which 
facilitates its posterior valorization. 

The production of commercially available lignin-derived chemicals has been very limited until 
recent days: only dispersing and emulsifying agents obtained from lignosulphonates and plywood 
panels can be mentioned. This lack of commercial application can be justified by the heterogeneous 
structure of lignin, which, unlike cellulose or hemicellulose, is not formed by the systematic series of 
regular monomers. Despite this irregular and complex structure, research efforts have been applied 
to find the most suitable options for lignin conversion to valuable products [11–16]. Although some 
possibilities have been identified for direct valorization of raw lignin, lignin depolymerization is a 
more promising route. On the one hand, aggressive unselective depolymerization to break C-C and 
C-O linkages results in aromatic compounds mixtures like benzene, toluene, xylene, and phenol 
[17,18]. In addition, some short aliphatic (C1-C3) and, in less extent, longer cycloaliphatic (C6-C7) 
hydrocarbons can be obtained. On the other hand, highly selective depolymerization processes are 
based on the cleavage of only determined links. This way, products that are not easily produced by 
traditional petrochemical routes can be obtained, like substituted coniferols, aromatic polyols, or 
oxidized monomers [19]. 

However, classic fractionation processes for lignocellulosic biomass (Kraft process, Organosolv 
process, alkaline treatment, steam explosion ...) result in low-purity lignin, mostly because of the 
presence of impurities derived from cellulose and hemicellulose. Consequently, new research efforts 
must be applied to develop an efficient and selective process to obtain a purified lignin fraction. 
Membrane separation technologies have been implemented in biorefineries because they show very 
advantageous properties: no phase change, no heat requirements, low energy consumption, and 
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estructura y aplicaciones: métodos de despolimerización para la obtención de derivados aromáticos de
interés industrial; published by Avances en Ciencias e Ingeniería, 2013.

In this new scenario, biorefineries have been introduced to provide an alternative to traditional
petroleum refineries. A biorefinery is a facility that integrates the biomass conversion processes
to produce bioenergy, biofuels, and bio-based chemicals from biomass [7]. While the valorization
of cellulose and hemicellulose has been successfully implemented in biorefineries [8], the optimal
valorization of lignin remains as a great challenge to be solved. Enzymatic hydrolysis of cellulose and
hemicellulose results in fermentable sugars, which can be easily transformed to biofuels (bioethanol) or
precursors for production of valuable bio-based chemicals. Delignification is a necessary prerequisite
for enzymatic hydrolysis, as lignin interferes the reaction and blocks the process [9,10]. Therefore,
lignin must be separated during the pretreatment of lignocellulosic biomass, which facilitates its
posterior valorization.

The production of commercially available lignin-derived chemicals has been very limited until
recent days: only dispersing and emulsifying agents obtained from lignosulphonates and plywood
panels can be mentioned. This lack of commercial application can be justified by the heterogeneous
structure of lignin, which, unlike cellulose or hemicellulose, is not formed by the systematic series of
regular monomers. Despite this irregular and complex structure, research efforts have been applied
to find the most suitable options for lignin conversion to valuable products [11–16]. Although some
possibilities have been identified for direct valorization of raw lignin, lignin depolymerization is a
more promising route. On the one hand, aggressive unselective depolymerization to break C-C and
C-O linkages results in aromatic compounds mixtures like benzene, toluene, xylene, and phenol [17,18].
In addition, some short aliphatic (C1-C3) and, in less extent, longer cycloaliphatic (C6-C7) hydrocarbons
can be obtained. On the other hand, highly selective depolymerization processes are based on the
cleavage of only determined links. This way, products that are not easily produced by traditional
petrochemical routes can be obtained, like substituted coniferols, aromatic polyols, or oxidized
monomers [19].

However, classic fractionation processes for lignocellulosic biomass (Kraft process, Organosolv
process, alkaline treatment, steam explosion ...) result in low-purity lignin, mostly because of the
presence of impurities derived from cellulose and hemicellulose. Consequently, new research efforts
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must be applied to develop an efficient and selective process to obtain a purified lignin fraction.
Membrane separation technologies have been implemented in biorefineries because they show
very advantageous properties: no phase change, no heat requirements, low energy consumption,
and compact and easily scalable design [20]. Research works have investigated the potentiality of
membrane techniques for lignin separation and purification. Lignin-rich liquors can be treated with
ultrafiltration and nanofiltration membranes for purification of lignin and separation of other inorganic
compounds [21–26]. Other authors have applied membrane separations for different tasks aimed
to lignin valorization, such as concentration of lignin solutions and elimination of lower molecular
weight impurities [27], fractionation of lignin fragments according to their molecular weight [28,29],
or separation of different lignin derivatives [30–32].

Since lignin is not easily solubilized in conventional solvents, the use of ionic liquids (ILs) for
fractionation of lignocellulosic biomass has been deeply investigated. ILs are organic salts formed by
high-volume organic cations and smaller organic or inorganic anions. Some of the most interesting ILs
have melting points below 100 ◦C, so they are liquid at room temperature. These ILs present some
common characteristics, like negligible vapor pressure or high thermal and mechanic stabilities [33].
The physicochemical properties can be customized by an optimal combination of the most convenient
cations and anions for each application. The viability of ILs for dissolution, separation, and recovery
of the main components of lignocellulosic biomass has been investigated [34–42]. Imidazolium based
ILs (with different radicals joined to the central ring and combined with simple inorganic and more
complex organic anions) have been deeply investigated for the selective dissolution of lignin, since they
are not good solvents for cellulose or hemicellulose [43–45]. The ILs based on 1,3-dialkyl-imidazolium
have been object of most research works. However, the limited stability of these ILs in alkaline and
oxidant media must be taken into account because posterior treatment of lignin can take place under
these conditions [12]. Therefore, alternative ILs non-based on imidazolium have been tested for lignin
processing, paying special attention to ILs based on ammonium, phosphonium, pyridinium, and
pyrrolidinium [46–49]. Nevertheless, the high economic costs derived from the employment of this
type of IL remains the main drawback for real-scale implementation in the biorefinery processes [50].

Supported liquid membranes (SLMs) consist of porous supports that have been impregnated
with a specific solvent to get it imbedded in the pores. The solvent is kept there by capillary forces
and forms a three-phase system, since it separates the feed and stripping phases [51,52]. When this
solvent is an IL, a supported ionic liquid membrane (SILM) is obtained (Figure 2) [53]. SILMs require
the existence of three simultaneous processes to be applied for effective separation of solutes: the
extraction from the feed solution to the SILM, the diffusion through the SILM and the re-extraction
from the SILM to the stripping solution. SILMs present some advantages over SLMs, mainly because of
their improved stability, since the use of ILs reduces the solvent losses from the support by evaporation
or dispersion in the feed and stripping phases [54]. Moreover, ILs can provide very high specificity for
the solutes to be separated and the small amount of IL required in a SILM can reduce the economic
costs significantly.

Although scientific information about the use of membranes and ILs for lignocellulosic biomass
fractionation and further processing is abundant, the integration of both tools as SILMs has not been
deeply investigated. SILMs have been successfully applied for extraction of minor components that
appear during vegetal biomass fractionation (for example, lipophilic compounds linked to resin,
such as fatty acids or sterols) for analytical purposes [55]. The potential of these systems for extraction
and purification of lignin must be studied, since SILMs can be preferred over other technologies
for extraction and purification of lignin. Since the solute extraction from the feed phase and the
re-extraction to the stripping phase occur in a unique stage, very simple designs are possible, avoiding
complex configurations or high energy requirements (separation can be carried out without heat or
pressure application). The employment of highly porous materials to support the SILMs provides
a very high interfacial area for mass transfer, which allows very compact equipment. Moreover,
the coupling of the extraction and stripping results in mass transport without limitations due to the
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solubility limits [56]. The small amount of IL required to implement a SILM allows the selection of
non-traditional ILs, which can offer better permeability and specificity for lignin without compromising
the chemical structure and physicochemical properties of lignin or interfere in the characteristics of
the rest of the lignocellulosic components. Lastly, the most relevant disadvantage of the use of ILs
(their high economic costs) is minimized when SILMs are implemented, since the total volume of ILs
required is greatly reduced [51].
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A previous work began the analysis of the application of SILMs for lignin separation, but the
preliminary results revealed that the selective transport of lignin was not easily obtained [57]. The main
objective of this work was a complete study of the potentiality of different SILMs for fractionation
and separation of lignocellulosic biomass components, with special attention to lignin extraction
and purification. The flow of two lignin types (Kraft lignin and lignosulphonates) from the feed
compartment to the stripping one was characterized and compared with the flow of monosaccharides
(glucose and xylose were selected because cellulose is made with repeated glucose units and xylose is
the main sugar monomer in the structure of hemicellulose) to determine their potential for selective
transport of the developed SILMs.

2. Experimental

2.1. Chemicals and Materials

Nine different ILs were selected to prepare SILMs (Figure 3). Six imidazolium-based ILs
([BMIM]MeSO4, [BMIM][DBP], [BMIM][OTf] and [HMIM][OTf] from Iolitec, and [EMIM]EtSO4 and
[EMIM]Ac from Sigma-Aldrich, Munich, Germany), two phosphonium-based ILs (CYPHOS 101 and
CYPHOS 108 from Cytec, Woodland Park, NJ, USA) and a mixture of quaternary ammonium salts
(Aliquat 336 from Sigma-Aldrich, Munich, Germany) were used as supplied. Kraft lignin (low sulfonate
content), D-(+)-xylose (>99%) and D-(+)-glucose (>99.5%) were provided by Sigma-Aldrich, Munich,
Germany, while sodium lignosulphonate was purchased from TCI Chemicals, Tokyo, Japan.
The employed water was obtained by an Elix purification system (Millipore, Darmstadt, Germany).
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As membrane supports, membrane disc filters were employed. Five different polymeric materials
were tested: PP (polypropylene) and PTFE (polytetrafluoroethylene) from Filter-Lab, Barcelona, Spain,
PCTE (polycarbonate) from Sterlitech, Kent, WA, USA, PVDF (hydrophobic polyvinylidene fluoride),
and HPVDF (hydrophilic polyvinylidene fluoride) from Millipore, Darmstadt, Germany. All the
membranes had the same diameter (47 mm) and pore diameter (0.45 µm), except PCTE (0.40 µm).

2.2. SILMs Preparation

The SILMs were prepared using the different polymeric membranes and ILs. Firstly,
the corresponding membrane and IL were introduced in a vacuum oven (<35 mbar and 70 ◦C) within
separate Petri dishes to remove the humidity, gases, and any other traces of volatile compounds. Later,
the membrane was soaked in the IL, keeping the vacuum for 24 h to promote a proper impregnation
by removal of air from the membrane pores. Finally, the liquid excess over the membrane surface was
removed by allowing dripping overnight. This way, the SILM was ready to be employed.

2.3. Installation and Analytical Procedures

The experimental tests were carried out in a membrane cell designed for this specific purpose
(Figure 4). The glass cell was composed of two identical compartments (volume lower than 150 mL
each compartment), one for the feed solution and the other for the stripping one, which were separated
by the SILM. The feed and stripping solutions were poured into the cell at the same time and the
compartments were closed without inlet or outlet streams in the system. Samples were taken at regular
time intervals from both compartments. All the experiments were carried out at room temperature.
It was decided to stop the experiments after the capture of enough samples to characterize the transport.



Processes 2018, 6, 143 6 of 18

Processes 2018, 8, x FOR PEER REVIEW  6 of 18 

 

at regular time intervals from both compartments. All the experiments were carried out at room 
temperature. It was decided to stop the experiments after the capture of enough samples to 
characterize the transport. 

 
Figure 4. Image of the experimental cell selected for testing SILMs. 

Kraft lignin, lignosulphonate, glucose and xylose concentrations were determined by a 
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monosaccharides, according to the dinitrosalicylic acid method for determination of reducing sugars 
[60,61]. The calibration curves for the different solutes are compiled in Figure 5. 

 
Figure 5. Calibration curves for the determination by ultraviolet–visible (UV-VIS) spectrophotometry 
of the concentration of the different tested solutes. 

Figure 4. Image of the experimental cell selected for testing SILMs.

Kraft lignin, lignosulphonate, glucose and xylose concentrations were determined by a
ultraviolet–visible (UV-VIS) spectrophotometer DR 5000 (Hach, Düsseldorf, Germany), using a
wavelength of 280 nm for Kraft lignin and lignosulphonate [58,59] and of 575 nm for monosaccharides,
according to the dinitrosalicylic acid method for determination of reducing sugars [60,61].
The calibration curves for the different solutes are compiled in Figure 5.
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The calibration curves showed good linearity in the defined intervals (until 0.05 g/L for Kraft
lignin, 0.10 g/L for lignosulphonate and 5.00 g/L for monosaccharides). From the obtained lines,
the corresponding absorptivity coefficients aλ were calculated according to the Beer–Lambert law:

A = aλ·b·C (1)

where A is the absorbance, b is the length of the path and C the solute concentration. The obtained
absorptivity coefficients are compiled in Table 1.

Table 1. The absorptivity coefficients for determination by UV-VIS spectrophotometry of the
concentration of the different tested solutes.

Absorptivity Coefficients (L/g·cm)

a280 a575

Kraft lignin 14.706 -
Lignosulphonate 7.604 -

Xylose - 0.687
Glucose - 0.608

2.4. Membrane Transport Characterization

The previously published paper with preliminary results presented a transport model for the
selective transport of solutes through the prepared SILMs [57]. However, the preliminary results
revealed that the transport through the SILMs was not selective. Therefore, in this section the previously
prepared model for the selective transport is summarized and the adaptations required to consider
non-selective transport are added.

The amount of a solute that passes by selective transport through a SILM per unit of time and
surface is called flux J and it is proportional to the gradient of concentration C between both solutions:

J = k·∆C (2)

where k is the proportionality constant that can be defined as the permeability. To model the evolution
of the concentration of the solute in the feed compartment CF, a mass balance to the feed compartment
can be applied:

V·dCF
dt

= −k·∆C·AM (3)

where V is the volume of the feed solution and AM the active surface of the SILM. The equation can be
reorder and modified considering the gradient between the feed (F) and stripping (S) compartments,
and the total mass balance with C0 as initial feed concentration

∆C = CF − CS (4)

C0 = CF + CS (5)

dCF
2CF − C0

= − k·AM·dt
V

(6)

All the constant can be grouped into a unique constant K, called effective mass transfer constant:

dCF

CF − C0
2

= −2·k·AM·dt
V

= −K·dt (7)
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Integration can be applied and the evolution of the concentration in the feed compartment CF can
be assessed:

CF =
C0

2
·
(

1 + e−K·t
)

(8)

In a totally equivalent way, the evolution of the concentration in the stripping compartment CS
can be obtained:

CS =
C0

2
·
(

1 − e−K·t
)

(9)

For the case of non-selective transport, the corresponding mass balance can be formulated, just by
replacement of the proportionality constant k by the permeate flux FP:

V·dCF
dt

= −FP·∆C·AM (10)

This way, the evolution of the concentrations in both compartments can be derived, defining a
new effective mass transfer constant KP:

CF =
C0

2
·
(

1 + e−KP ·t
)

(11)

CS =
C0

2
·
(

1 − e−KP ·t
)

(12)

KP =
2·FP·AM

V
(13)

3. Results and Discussion

During the preparation of the SILMs, some experimental drawbacks were identified. For example,
when lignosulphonate solutions were mixed with Aliquat 336 or CYPHOS 101, unstable systems were
obtained, since sticky precipitated solids appeared (Figure 6a,b). Under these conditions, a SILM with
CYPHOS 101 in PVDF support did not result in effective results for Kraft lignin transport, because of
the precipitation of solids on the membrane surface (Figure 6c).
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Figure 6. Identification of unstable IL and lignin systems: (a) 1.4 g Aliquat + 1.6 g lignosulphonate
solution (40 g/L). (b) 1.6 g CYPHOS 108 + 1.9 g lignosulphonate solution (40 g/L). (c) CYPHOS 108 in
PVDF support after contact with Kraft lignin solution (40 g/L).

Another identified problematic issue was the employment of [EMIM]Ac for the preparation of
SILMs. After the contact between [EMIM]Ac and the PCTE support for 24 h at 70 ◦C in the vacuum
oven, the membrane was totally dissolved in the IL (Figure 7a). Even when the temperature in the
vacuum oven was reduced to 30 ◦C, the PCTE membrane suffered severe degradation after contact
with this IL (Figure 7b). Other membranes, like PVDF or HPVDF, were highly modified (color changed)
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after impregnation with [EMIM]Ac at 70 ◦C (Figure 7c), but a decreased value of the temperature in
the vacuum oven (30 ◦C) resulted in stable SILMs.Processes 2018, 8, x FOR PEER REVIEW  9 of 18 
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The only virgin membrane that was permeable to Kraft lignin solution and allowed the transport
of the solute from the feed to the stripping compartment was the HPVDF membrane. The evolution
of the normalized concentration of Kraft lignin in the stripping compartment of the cell with respect
to time is shown in Figure 8, where the transport through the virgin membrane was compared to
the transport through some SILMs based on HPVDF. As can be observed in the graph, the virgin
membrane showed the fastest transport, while the performance of the permeable SILMs was very
similar and only minor differences could be identified among the different ILs.
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Figure 8. Evolution of the concentration of Kraft lignin in the stripping compartment with virgin
HPVDF membrane and three SILMs supported in HPVDF.

Higher permeation of Kraft lignin occurred during the initial experimental phase, when the solute
concentration gradient was maximum between both compartments of the cell. Then, the transport
was slowed down due to reduced gradient for concentrations getting closer to the equilibrium.
These experimental results fitted satisfactorily with the proposed model for non-selective transport
through permeable membranes. The corresponding equations were employed for direct assessment of
the effective mass transfer constants KP (values compiled in Table 2). The R2 values of the fitting of the
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experimental results ranged from 0.936 to 0.982. As expected from the experimental results in Figure 8,
the maximal KP value corresponded to the virgin HPVDF membrane (0.0334 h−1), with lower values
for the HPVDF-based SILMs. Taking into account the effective membrane area in the cell (14.6 cm2) and
the volume of each cell compartment (120 mL), the corresponding permeate flux FP were calculated
from the effective mass transfer constants KP (Table 2).

Table 2. Values of effective mass transfer constants KP, permeate fluxes FP, and resistances (attributable
to the membrane support and the IL) for virgin HPVDF membranes and SILMs based on these
membranes (viscosity and density values of the ILs are included).

KP
(h−1)

FP
(m/h)

RMEMB
(h/m)

RIL
(h/m)

Viscosity 1

(mPa·s)
Density
(g/cm3)

Virgin HPVDF 0.0334 1.37 × 10−3 729 - - -
HPVDF + [EMIM]EtSO4 0.0263 1.08 × 10−3 - 197 122 1.20 (80 ◦C)
HPVDF +[BMIM]MeSO4 0.0216 0.89 × 10−3 - 398 214 1.17 (80 ◦C)
HPVDF + CYPHOS 108 0.0238 0.98 × 10−3 - 294 409 1.07 (25 ◦C)

HPVDF + [EMIM]Ac 0.0248 1.02 × 10−3 - 253 93 1.07 (80 ◦C)
HPVDF + [BMIM][DBP] 0.0141 0.58 × 10−3 - 997 1539 1.04 (40 ◦C)
HPVDF + [HMIM][OTf] 0.0157 0.65 × 10−3 - 821 135 1.24 (29 ◦C)
HPVDF + [BMIM][OTf] 0.0225 0.92 × 10−3 - 353 75 1.30 (25 ◦C)

1 Measured at room temperature.

The maximal permeate flux of the virgin membrane can be directly justified taking into
consideration the resistances in the series model, since the ILs supported in the membranes provide an
additional resistance to the permeate transport:

FP =
1

RTOT
=

1
RMEMB + RIL

(14)

The value of the membrane resistance RMEMB was calculated from the FP value of the virgin
membrane and the resistance values attributable to the ILs were derived from the corresponding FP
values once RMEMB was known. According to the figures in Table 2, the RIL values were lower than the
RMEMB value for all the SILMs but the ones with [BMIM][DBP] and [HMIM][OTf]. The high resistance
exhibited by [BMIM][DBP] can be directly attributed to its high viscosity, but the value corresponding
to [HMIM][OTf] was not easily related to the viscosity or density of the IL because other more viscous
or denser ILs showed lower resistance [62–67].

Apart from HPVDF, the rest of the virgin membranes were impermeable to water or aqueous
solutions. The SILMs prepared with these impermeable membranes were initially tested with Kraft
lignin and lignosulphonate solutions. The results obtained with some of these SILMs are graphed
in Figure 9, where the evolution of the solute concentration in both compartments is presented.
The differences among the experimental data for SILMs with different ILs and solutes were not
obvious and very similar results were obtained for all the SILMs that exhibited solute transport.
When additional experiments were carried out with monosaccharides (glucose and xylose) as solutes,
the performance of the tested SILMs was comparable and the evolution of the monosaccharides
concentration in the cell compartments followed a similar trend to the identified one for Kraft
lignin or lignosulphonates (Figure 10). A further analysis of the experimental results shown in
Figures 8–10 suggested non-selective transport through the SILMs, as the different investigated
membranes, ILs or solutes had not relevant influence on the performance of the SILMs. For example,
the performance of the SILMs based on impermeable membranes could be compared to the SILMs
based on permeable HPVDF.
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Figure 10. Evolution of the concentration of lignosulphonate (LS), glucose (G), or xylose (X) in the feed
compartment with three different SILMs.

The lack of selectivity of the studied SILMs was previously reported during the preliminary works
of this research group [57]. Those results demonstrated that the performance of the freshly prepared
SILMs was totally similar to SILMs used repeatedly in consecutive cycles, even when the IL had been
apparently lost from the membrane support. The mass loss of the SILMs once the first cycle was
finished corresponded to the amount of IL previously immobilized in the membrane. Scanning electron
microscope (SEM) images confirmed this fact, since the appearance of the membrane before the second
cycle was much more similar to the virgin membrane than the SILM before the first cycle (Figure 11).
Therefore, the transport through the SILMs seemed to be more closely related to the modification of the
membrane supports than the presence of ILs in the membranes. Further experiments were carried out
to understand the transport through the SILMs and tests to analyze the permeability of the SILMs to
water and aqueous solutions were proposed. While the feed compartment was filled with water or an
aqueous solution of Kraft lignin, the stripping compartment remained empty. Surprisingly, nearly all
the tested SILMs that exhibited solute transport were identified as permeable and the only SILM that
maintained its impermeability was that one based on [BMIM][DBP] supported in PTFE (Figure 12).
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PVDF (b), and SILM with [BMIM][DBP] in PTFE (c).

As a summary, Table 3 compiles all the calculated KP values of the tested SILMs. Moreover,
the same table identifies the SILMs that were not tested because of the technical drawbacks
during their preparation and the SILMS that did not show any solute transport. The reported KP
values ranged between 0.0139 and 0.0284 h−1 for [BMIM][DBP] in PP and [BMIM]MeSO4 in PCTE,
respectively. These figures fell in the range of the SILMS prepared with HPVDF (0.0141–0.0263 h−1).
This concordance once again confirmed the common transport mechanisms between both types of
SILMs: convective transport of the solute as consequence of the permeation of the solutions.

The SILM with [BMIM][DBP] supported in PTFE membrane, which was the only one that
showed impermeability to the tested solutions, was the only case that exhibited selective solute
transport. As can be observed in Figure 13, the evolution of the concentration in the stripping
compartment was very different for the two graphed solutes: the transport of glucose is much
faster than the transport of lignosulphonate. While in the case of glucose, 70 h was time enough to
achieve a concentration that could be considered an equilibrium situation; after 100 h the normalized
concentration of lignosulphonate in the stripping compartment was still below 0.38.
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Table 3. Summary table with the values of effective mass transfer constants KP of the different tested SILMs.

Membrane
Support

KP (h−1)

CYPHOS 101 CYPHOS 108 ALIQUAT [BMIM]MeSO4 [BMIM][DBP] [BMIM][OTf] [HMIM][OTf] [EMIM]EtSO4 [EMIM]Ac

HPVDF No tested 0.0238 No tested 0.0216 0.0141 0.0225 0.0157 0.0263 0.0248
PVDF No tested 0.0254 No tested 0.0238 0.0247 0.0221 0.0171 0.0237 0.0186
PCTE No tested No tested No tested 0.0284 0.0225 No tested 0.0227 No tested No tested

PP No tested 0.0248 No tested No transport 0.0139 0.0179 0.0182 No transport No transport
PTFE No tested No transport No tested No transport Selective transport No transport No transport No transport No transport
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Figure 13. Evolution of the concentration of lignosulphonate (LS), glucose (G) in the stripping
compartment with SILM with [BMIM][DBP] in PTFE.

When Kraft lignin and xylose were selected as solutes, the results were equivalent. The transport
of xylose was much faster, with very similar results to glucose, and the results of Kraft lignin
and lignosulphonates were comparable. The corresponding effective mass transfer constants were
calculated (Table 4). These values revealed that glucose was the most easily transported solute,
followed by xylose. The lignin compounds showed lower values: 0.67 × 10−3 m/h for lignosulphonate
and 0.71 × 10−3 m/h for Kraft lignin. Therefore, the transport of monosaccharides was favored against
lignin compounds. Further work will be carried out in order to improve the understanding of the
mechanisms of the selective transport through the SILM and its stability. Furthermore, the design of
effective separation processes based on this SILM will be investigated.

Table 4. Values of effective mass transfer constants K, and permeabilities k of the SILMs based on
[BMIM][DBP] supported in PTFE membranes.

K (h−1) k (m/h)

Kraft lignin (KL) 0.0172 0.71 × 10−3

Lignosulphonate (LS) 0.0162 0.67 × 10−3

Glucose (G) 0.0453 1.86 × 10−3

Xylose (X) 0.0429 1.76 × 10−3

4. Conclusions

This study investigated the potential of SILMs for selective transport of two different types of
technical lignins (Kraft lignin and lignosulphonate) and monosaccharides (xylose and glucose) in an
aqueous solution. The SILMs obtained by the combination of five different membrane supports and
nine ILs were tested. Some ILs (CYPHOS 101 and Aliquat 336) were not useful, since they resulted
in unstable SILMs because of precipitation problems. [EMIM]Ac was another problematic IL as it
degraded some of the membrane supports. Although the virgin hydrophobic membranes did not allow
the permeation of the aqueous solutions, most membranes became permeable after the impregnation
with the ILs. Therefore, the solutes were able to cross these SILMs by non-selective transport. However,
the SILM based on [BMIM][DBP] as IL and PTFE as membrane support maintained its hydrophobicity
and allowed selective transport of the tested solutes. The effective mass transfer constants of the
solutes were determined according to the proposed transport model: lignosulphonate was the



Processes 2018, 6, 143 15 of 18

least easily transported solute (0.67 × 10−3 m/h), while glucose was the most easily transported
one (1.86 × 10−3 m/h). Nevertheless, the stability of this identified selective SILM and its applicability
to separation processes must be investigated more deeply and further work will be carried out.
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