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Abstract: Cell-free protein expression has emerged as an important approach in systems and
synthetic biology, and a promising technology for personalized point of care medicine. Cell-free
systems derived from crude whole cell extracts have shown remarkable utility as a protein synthesis
technology. However, if cell-free platforms for on-demand biomanufacturing are to become a reality,
the performance limits of these systems must be defined and optimized. Toward this goal, we modeled
E. coli cell-free protein expression using a sequence specific dynamic constraint-based approach in
which metabolite measurements were directly incorporated into the flux estimation problem. A
cell-free metabolic network was constructed by removing growth associated reactions from the
iAF1260 reconstruction of K-12 MG1655 E. coli. Sequence specific descriptions of transcription and
translation processes were then added to this metabolic network to describe protein production.
A linear programming problem was then solved over short time intervals to estimate metabolic
fluxes through the augmented cell-free network, subject to material balances, time rate of change and
metabolite measurement constraints. The approach captured the biphasic cell-free production of a
model protein, chloramphenicol acetyltransferase. Flux variability analysis suggested that cell-free
metabolism was potentially robust; for example, the rate of protein production could be met by
flux through the glycolytic, pentose phosphate, or the Entner-Doudoroff pathways. Variation of the
metabolite constraints revealed central carbon metabolites, specifically upper glycolysis, tricarboxylic
acid (TCA) cycle, and pentose phosphate, to be the most effective at training a predictive model,
while energy and amino acid measurements were less effective. Irrespective of the measurement set,
the metabolic fluxes (for the most part) remained unidentifiable. These findings suggested dynamic
constraint-based modeling could aid in the design of cell-free protein expression experiments for
metabolite prediction, but the flux estimation problem remains challenging. Furthermore, while we
modeled the cell-free production of only a single protein in this study, the sequence specific dynamic
constraint-based modeling approach presented here could be extended to multi-protein synthetic
circuits, RNA circuits or even small molecule production.

Keywords: dynamic constraint-based modeling; cell-free protein synthesis; systems biology

1. Introduction

Cell-free protein expression has become a widely used research tool in systems and synthetic
biology, and a promising technology for personalized point of use biotechnology [1]. Cell-free systems
offer many advantages for the study, manipulation and modeling of metabolism compared to in
vivo processes. Central amongst these is direct access to metabolites and the biosynthetic machinery,
without the interference of a cell wall or the complications associated with cell growth. This allows
us to interrogate (and potentially manipulate) the chemical microenvironment while the biosynthetic
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machinery is operating, potentially at a fine time resolution. Cell-free protein synthesis (CFPS) systems
are arguably the most prominent examples of cell-free systems used today [2]. However, CFPS in
crude E. coli extracts has been used previously to explore fundamental biological questions. For
example, Matthaei and Nirenberg used E. coli cell-free extracts to decipher the genetic code [3,4].
Later, Spirin and coworkers continuously exchanged reactants and products in a CFPS reaction, which
improved protein production. However, while these extracts could run for up to tens of hours, they
could only synthesize a single product and were likely energy limited [5]. More recently, energy and
cofactor regeneration in CFPS has been significantly improved; for example, ATP can be regenerated
using substrate level phosphorylation [6] or even oxidative phosphorylation [2]. Today, cell-free
systems are used in a variety of applications ranging from therapeutic protein production [7] to
synthetic biology [1,8]. There are also several CFPS technology platforms, such as the PANOx-SP (PEP,
Amino Acids, NAD, Oxalic Acid, Spermidine, and Putrescine) and Cytomin platforms developed by
Swartz and coworkers [2,9], and the transcription and translation (TX-TL) platform of Noireaux [10].
Taken together, CFPS is a promising technology for protein production. However, if CFPS is to
become a mainstream technology for applications such as point of care biomanufacturing, we must
first understand the performance limits of these systems, and eventually optimize their yield and
productivity. Toward this unmet need, we have developed a dynamic constraint-based modeling that
can be used to interrogate cell-free systems.

Genome scale stoichiometric reconstructions of microbial metabolism popularized by static,
constraint-based modeling techniques such as flux balance analysis (FBA) have become standard
tools [11]. Since the first genome scale stoichiometric model of E. coli, developed by Edwards and
Palsson [12], well over 100 organisms, including industrially important prokaryotes such as E. coli [13]
or B. subtilis [14], are now available [15]. Stoichiometric models rely on a pseudo-steady-state
assumption to reduce unidentifiable genome-scale kinetic models to an underdetermined linear
algebraic system, which can be solved efficiently even for large systems using linear programming.
Traditionally, stoichiometric models have also neglected explicit descriptions of metabolic regulation
and control mechanisms, instead opting to describe the choice of pathways by prescribing an
objective function on metabolism. Interestingly, similar to early cybernetic models, the most common
metabolic objective function has been the optimization of biomass formation [16], although other
metabolic objectives have also been estimated [17]. Recent advances in constraint-based modeling
have overcome the early shortcomings of the platform, including describing metabolic regulation and
control [18] and incorporating genome sequence into the model [19,20]. Dynamic constraint-based
methods have also been developed in which the metabolic flux is computed over short-time intervals
subject to time-varying constraints [21]. These methods are common, have been used in varied
applications, [22–25], and there are open source packages to support this class of calculation [26–28].
Thus, constraint-based approaches, and their dynamic extensions, have proven useful in the discovery
of metabolic engineering strategies and represent the state of the art in metabolic modeling [29,30].
However, while constraint-based tools have been used extensively to analyze whole cells systems,
they have not yet been widely applied to study cell-free reactions.

In this study, we constructed a dynamic constraint-based model of cell-free protein expression.
This approach avoids the pseudo-steady-state assumption found in traditional constraint-based
approaches, which allowed for the direct integration of dynamic metabolite measurements into
the flux estimation problem, along with the accumulation or depletion of network metabolites.
We adapted the sequence specific constraint-based model of Vilkhovoy and coworkers [31] into
a dynamic constraint-based model of cell-free E. coli metabolism and protein production, and
leveraged the kinetic model of Horvath and coworkers [32] to provide synthetic data to inform
metabolite constraints. CFPS synthesis is often (but not always) conducted in small scale batch
reactors. Thus, the concentration of the components of the reaction mixture, and the associated
rates of the metabolic processes in the reaction are not always constant. The Vilkhovoy et al. study
considered only the first hour of the CFPS reaction producing the model protein, chloramphenicol



Processes 2018, 6, 132 3 of 28

acetyltransferase (CAT). During this initial phase, the metabolic rates were approximately constant
and a classical sequence specific flux balance analysis approach was sufficient to describe protein
synthesis [31]. However, after this initial phase, there was a significant shift in productivity following
the exhaustion of glucose (which occurred at approximately 1.5 h). Horvath and coworkers developed
a fully kinetic model that described the complete three hour reaction time course, including the shift
in productivity following glucose exhaustion [32]. While this model described the CFPS dynamics,
and the decrease in productivity following the exhaustion of glucose, the identification of the model
from 37 measured metabolite trajectories was difficult. Thus, there was an unmet need for a tool that
could describe the dynamics of a CFPS reaction, without the burden of identifying a full kinetic model.
Toward this need, we developed a dynamic constraint-based modeling approach for CFPS reactions
which directly incorporated metabolite measurements (as constraints) into the flux calculation. The
dynamic constraint-based model satisfied time-dependent metabolite constraints, while predicting the
concentration of the CAT protein and unconstrained metabolite concentrations. Model interrogation
suggested the most important metabolite constraint was glucose, as excluding glucose yielded the
greatest metabolite prediction error, and the greatest uncertainty in the estimated metabolic flux.
Furthermore, we evaluated metabolite constraint sets with one more and one fewer metabolites
than the base case (the 37 measured metabolites) to explore the impact of measurement selection
on model performance. The single addition of metabolites yielded no significant improvement
in the predictive power, while the single exclusion suggested glucose to be the most important
measured metabolite in the base case. Next, we selected measurement species based on the results of
singular value decomposition on the stoichiometric matrix. The top 36 species from the singular value
decomposition (SVD) analysis with the addition of glucose improved the predictive power and reduced
flux uncertainty compared with the base case. Finally, we developed a heuristic optimization approach
to estimate the optimal list of metabolite measurements. This approach significantly improved
metabolite prediction compared to the base case. However, both the base measurement set and the
heuristically optimized experimental design poorly characterized flux uncertainty. Taken together, this
suggested that dynamic constraint-based modeling can aid in experimental design and measurement
selection for metabolite prediction, but the flux estimation problem remains challenging. Furthermore,
while we modeled the cell-free production of only a single protein in this study, the sequence specific
dynamic constraint-based modeling approach presented here could be extended to multi-protein
synthetic circuits, RNA circuits [33] or even small molecule production.

2. Results

2.1. Cell-Free E. coli Metabolic Network

We constructed the cell-free stoichiometric network by removing growth associated reactions
from the iAF1260 reconstruction of K-12 MG1655 E. coli [13], and removing reactions not present in
the cell-free system (see Materials and Methods). We then added the transcription and translation
template reactions of Allen and Palsson for the CAT protein [19]. Thus, our stoichiometric network
described the material and energetic demands for transcription and translation at sequence specific
level. The metabolic network consisted of 264 reactions and 146 species; a schematic of the central
carbon metabolism is shown in Figure 1. The network described the major carbon and energy
pathways and amino acid biosynthesis and degradation pathways. Lastly, we removed genes from
the network that were knocked out in the E. coli host strain used to make the cell-free extract (A19
∆tonA ∆tnaA ∆speA ∆endA ∆sdaA ∆sdaB ∆gshA); see Jewett et al. for further details of the host
strain and the cell-free extract preparation [34]. Using this network, we simulated time-dependent
cell-free production of the model protein CAT. We used dynamic modified flux balance analysis,
a stoichiometric modeling technique that does not make the pseudo steady state assumption and
allows the accumulation and depletion of metabolite species. Horvath and coworkers predicted
time-dependent cell-free production of CAT using a fully kinetic model trained against an experimental
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dataset of 37 metabolites, including the substrate glucose, the protein product CAT, organic acids,
amino acids, and energy species [32]. This model was used to generate the metabolite constraints used
in this study. Transcription and translation rates were subject to resource constraints encoded by the
metabolic network, and transcription and translation model parameters were largely derived from
literature (Table 1). In this study, we did not explicitly consider protein folding. However, the addition
of chaperone or other protein maturation steps could easily be accommodated within the approach by
updating the template reactions (see Palsson and coworkers [20]). The cell-free metabolic network and
all model code and parameters can be downloaded under an MIT software license from the Varnerlab
website [35].
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Figure 1. Schematic of the core portion of the cell-free E. coli metabolic network. The network
consisted of 264 reactions and 146 metabolites. Metabolites of glycolysis, pentose phosphate pathway,
Entner-Doudoroff pathway, and the tricarboxylic acid (TCA) cycle are shown. Metabolites of oxidative
phosphorylation, amino acid biosynthesis and degradation, transcription/translation, chorismate
metabolism, and energy metabolism are not shown.
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Table 1. Reference values for transcription, translation, and mRNA degradation from literature.
Transcription rate calculated from elongation rate, mRNA length, and promoter activity level.
Translation rate calculated from elongation rate, protein length, and polysome amplification constant.
The mRNA degradation rate calculated from a characteristic mRNA half-life. CAT: chloramphenicol
acetyltransferase.

Description Parameter Value Units Reference

T7 RNA polymerase concentration RT 1.0 µM
Ribosome concentration RX 2 µM [10]
CAT mRNA length lG 660 nt [36]
CAT protein length lP 219 aa [36]

Transcription saturation coefficient KT 100 nM estimated
Transcription elongation rate v̇T 25 nt/s [10]
Translation saturation coefficient KX 45 µM estimated
Translation elongation rate v̇X 1.5 aa/s [10]

T7 Promoter activity level u 0.9 estimated

Transcription rate kT
cat =

(
v̇T
lG

)
u 123 h−1 calculated

Polysome amplification constant KP 10 estimated

Translation rate kX
cat =

(
v̇X
lP

)
KP 247 h−1 calculated

mRNA degradation time t1/2 8 min BNID 106253

mRNA degradation rate kdeg =
ln(2)
t1/2

5.2 h−1 calculated

2.2. Dynamic Constrained Simulation of cell-free Protein Synthesis

Cell-free synthesis of the CAT protein showed two production phases, an initial fast production
phase before glucose exhaustion (at approximately 1.5 h) and a slow production phase following
glucose exhaustion. The metabolite profile varied significantly between these phases; for example,
pyruvate and lactate were produced during the first phase but consumed during the second. Thus,
a static pseudo steady state flux balance approach was not possible for this system. However, a central
advantage of cell-free systems is direct access to metabolite measurements, and the biosynthetic
machinery during production. If we could directly integrate dynamic metabolite and protein
concentration measurements into the flux estimation problem, we could potentially get a better
estimate of the flux distribution. Toward this question, we developed a dynamic modeling approach
in which metabolic fluxes were estimated so that all metabolites were non-negative and the simulated
metabolites were constrained to lie within a bounded range of the measured value. Using this
technique, we simulated the cell-free production of CAT subject to dynamic metabolite measurements.

We explored the influence of uncertainty in the transcription (TX) and translation parameters (TL)
by sampling different values for the abundance and elongation rates of RNA polymerases and
ribosomes, the polysome amplification constant, the mRNA degradation rate and other kinetic
parameters appearing in the transcription and translation bounds. The base values for the TX/TL
parameters are given in Table 1, and the uniform sampling procedure is described in the Materials
and Methods. Central carbon metabolites (Figure 2), amino acids (Figure 3), and energy species
(Figure 4) in the synthetic measurement set were captured, within experimental error, by an ensemble
of dynamic constraint-based simulations. The synthetic metabolite constraints (blue regions) shown in
each of the simulation figures was derived from the kinetic model of Horvath et al. [32], which was
trained on experimental measurement of the 37 metabolites shown in Figures 2–4. Thus, the metabolite
constraints used in this study were calculated based upon the kinetic model, which shows high fidelity
with the experimental measurements. The flux estimation problem converged in greater than 99%



Processes 2018, 6, 132 6 of 28

of the simulation time intervals, given these metabolite constraints. This suggested there were not
gross measurement errors in the measurement constraints, as the stoichiometric constraints were
satisfied. Moreover, it suggested the error introduced by the time discretization scheme did not lead
to inconsistent metabolite estimates. The ensemble of models captured the time evolution of protein
biosynthesis, and the consumption and production of organic acid, amino acid and energy species.
Arginine and glutamate were excluded from the constraint set, but were still largely captured by
the ensemble of dynamic constraint-based models, although with wide variance than the synthetic
measurement set. During the first hour, glucose was consumed as the primary carbon source for ATP,
amino acids, and protein synthesis. After glucose was depleted, lactate and pyruvate were consumed
as alternate substrates for energy production and CAT synthesis. Taken together, we captured the
37 metabolite measurements in the base synthetic data set, and captured the biphasic behavior of CAT
production, although we significantly over-predicted the translation rate for some elements of the
ensemble. This suggested that there was excess capacity in the metabolic network, which could be
used to enhance protein production.

0

10

20

30

40

G
lu

co
se

 (
m

M
)

0

30

60

90

120

C
A

T
 (
µ
M

)

0

5

10

15

20
P
y
ru

v
a
te

 (
m

M
)

0

5

10

15

20

La
ct

a
te

 (
m

M
)

0 1 2 3
Time (h)

0

20

40

60

A
ce

ta
te

 (
m

M
)

0 1 2 3
Time (h)

0

2

4

6

S
u
cc

in
a
te

 (
m

M
)

0 1 2 3
Time (h)

0

5

10

M
a
la

te
 (

m
M

)

0 1 2 3
Time (h)

0

5

10

E
n
e
rg

y
 T

o
ta

l 
(m

M
)

Figure 2. Simulated metabolite concentration versus synthetic data as a function of time. Central
carbon metabolism, including glucose (substrate), chloramphenicol acetyltransferase (CAT) (product),
and intermediates, as well as total concentration of energy species (energy total). The energy total
denotes the summation of all energy species in the model (all bases and all phosphate states). The
95% confidence interval for the simulation conducted over the ensemble of transcription/translation
parameter sets is shown in the orange shaded region, while the 95% confidence interval for the synthetic
constraint data is shown in the blue shaded region. The synthetic data constraints were generated from
the kinetic model of Horvath et al., which was trained using experimental measurements of the system
simulated in this study [32].

We quantified the uncertainty in the estimated metabolic flux distribution, given constrained
CAT production using flux variability analysis (FVA) for the base synthetic data across the three
hours of measurement (Tables 2 and 3). The analysis was divided into two phases: phase 1 where
glucose was consumed as the carbon source, and phase 2 when glucose was depleted and lactate
and pyruvate were utilized. The reactions associated with protein synthesis (translation initiation,
translation, tRNA charging, mRNA degradation) were unsurprisingly the most constrained, as CAT
production was forced to remain the same. Transcription was not varied in this analysis. On the other
hand, glycolytic, pentose phosphate, and Entner-Doudoroff reactions were not highly constrained,
indicating the robustness of substrate utilization. However, one exception to this was the net reaction
through zwf reaction, which was tightly constrained, suggesting that glycolysis alone cannot support
protein production. Interestingly, although the two phases consumed different carbon sources,
the flux variability remained similar. Taken together, these results suggested that there was significant
flexibility in the ability of the metabolic network to meet the carbon and energy demands of protein
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synthesis. Next, we explored alternative measurement sets to constrain the simulation of cell-free
protein synthesis.
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Figure 3. Simulation of amino acid concentration versus synthetic data as a function of time. The 95%
confidence interval for the simulation conducted over the ensemble of transcription/translation
parameter sets is shown in the orange shaded region, while the synthetic constraint data is shown in
the blue shaded region. Arginine and glutamate were excluded from the constraint set. The synthetic
data constraints were generated from the kinetic model of Horvath et al., which was trained using
experimental measurements of the system simulated in this study [32].

Table 2. Flux uncertainty calculated using flux variability analysis for the base synthetic dataset during
the first production phase (0 h to 1.5 h), normalized to the glucose consumption rate.

Enzyme/Pathway Reaction Uncertainty

RNA polymerase Translation <0.01
RNA polymerase Translation initiation <0.01

tRNA charging of alanine tRNA charging (ALA) <0.01
tRNA charging of cysteine tRNA charging (CYS) <0.01

tRNA charging of aspartate tRNA charging (ASP) <0.01
tRNA charging of histidine tRNA charging (HIS) <0.01

tRNA charging of serine tRNA charging (SER) <0.01
tRNA charging of tyrosine tRNA charging (TYR) <0.01

tRNA charging of phenylalanine tRNA charging (PHE) <0.01
tRNA charging of arginine tRNA charging (ARG) <0.01

tRNA charging of glutamate tRNA charging (GLU) <0.01
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Table 2. Cont.

Enzyme/Pathway Reaction Uncertainty

mRNA degradation mRNA degradation <0.01
tRNA charging of tryptophan tRNA charging (TRP) <0.01

tRNA charging of proline tRNA charging (PRO) <0.01
tRNA charging of asparagine tRNA charging (ASN) <0.01
tRNA charging of isoleucine tRNA charging (ILE) <0.01

tRNA charging of glycine tRNA charging (GLY) <0.01
tRNA charging of glutamine tRNA charging (GLN) <0.01

tRNA charging of lysine tRNA charging (LYS) <0.01
tRNA charging of threonine tRNA charging (THR) <0.01

tRNA charging of valine tRNA charging (VAL) <0.01
tRNA charging of methionine tRNA charging (MET) <0.01

tRNA charging of leucine tRNA charging (LEU) <0.01
Step 6 of AMP synthesis R_A_syn_6 <0.01

Orotate synthase 1 R_or_syn_1 <0.01
Metionine biosynthesis R_met 0.01

Valine biosynthesis R_val 0.01
Leucine biosynthesis R_leu 0.01

Aldhyde-alcohol dehydrogenase R_adhE_net 0.01
Malate dehydrogenase R_mdh_net 0.01

Glycine biosynthesis R_gly_deg 0.02
Threonine degradation 2 R_thr_deg2 0.02

Acetate kinase R_ackA_net 0.02
Alanine biosynthesis R_alaAC_net 0.02

Isoleucine biosynthesis R_ile 0.03
Tyrosine biosynthesis R_tyr 0.03

Histidine biosynthesis R_his 0.03
Methylglyoxal degradation R_mglx_deg 0.03

Transaldolase R_talAB_net 0.04
Glycine cleavage system R_gly_fol_net 0.04

Ribulose-phosphate 3-epimerase R_rpe_net 0.04
Phosphate acetyltransferase R_pta_net 0.04

Phosphoglycerate kinase R_pgk_net 0.05
Glyceraldehyde-3-phosphate dehydrogenase R_gapA_net 0.05

Fructose 1,6-bisphosphate aldolase R_fbaA_net 0.05
Enolase R_eno_net 0.05

Phenylalanine biosynthesis R_phe 0.05
Transketolase 2 R_tkt2_net 0.06

Fumarate hydratase R_fum_net 0.06
Transketolase 1 R_tkt1_net 0.07

Orotate synthase 2 R_or_syn_2 0.07
Phosphoglycerate mutase R_gpm_net 0.08

Ribose-5-phosphate isomerase R_rpi_net 0.09
CTP synthetase 1 R_ctp_1 0.09
CTP synthetase 2 R_ctp_2 0.09

Triosephosphate isomerase R_tpiA_net 0.1
Step 7 of AMP synthesis R_A_syn_7 0.15

Step 12 of AMP synthesis R_A_syn_12 0.17
Lactate dehydrogenase R_ldh_net 0.17

Step 5 of AMP synthesis R_A_syn_5 0.2
Methylenetetrahydrofolate reductase R_mthfr2a 0.2
Glucose-6-phosphate dehydrogenase R_zwf_net 0.21

Methylenetetrahydrofolate dehydrogenase R_mthfd_net 0.21
UMP synthesis R_ump_syn 0.22
OMP synthesis R_omp_syn 0.22

Lysine degradation R_lys_deg 0.23
Lysine biosynthesis R_lys 0.23

Isocitrate dehydrogenase R_icd_net 0.23
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Table 2. Cont.

Enzyme/Pathway Reaction Uncertainty

Threonine degradation 3 R_thr_deg3 0.24
Step 8 of AMP synthesis R_A_syn_8 0.26
Tryptophan degradation R_trp_deg 0.27

Methylenetetrahydrofolate dehydrogenase R_mthfc_net 0.28
Tryptophan biosynthesis R_trp 0.28

Aconitase R_acn_net 0.33
Phosphoglucose isomerase R_pgi_net 0.33

Step e of folate synthesis R_fol_e 0.34
Step 4 of AMP synthesis R_A_syn_4 0.4

GMP synthetase R_gmp_syn 0.44
Step 9 of AMP synthesis R_A_syn_9 0.48

XMP synthase R_xmp_syn 0.53
Step 3 of AMP synthesis R_A_syn_3 0.6

Step 10 of AMP synthesis R_A_syn_10 0.63
Step 2b of folate synthesis R_fol_2b 0.63

Glutamate dehydrogenase R_gdhA_net 0.71
Step 3 of folate synthesis R_fol_3 0.74
Step 4 of folate synthesis R_fol_4 0.79

Pyruvate formate lyase R_pflAB 0.8
Step 2 of AMP synthesis R_A_syn_2 0.81

Step 2a of folate synthesis R_fol_2a 0.81
Step 1 of folate synthesis R_fol_1 0.99

Glucokinase R_glk_atp 1
Step 1 of AMP synthesis R_A_syn_1 1

Arginine degradation R_arg_deg 1.23
Glycine biosynthesis R_glyA 1.33

Phosphoribosylpyrophosphate synthase R_prpp_syn 1.34
Chorismate synthesis R_chor 1.35
Succinate thiokinase R_sucCD 1.55

2-Ketoglutarate dehydrogenase R_sucAB 1.55
GABA degradation 1 R_gaba_deg1 1.56
GABA degradation 2 R_gaba_deg2 1.56

Glutamate degradation R_glu_deg 1.56
Arginine biosynthesis R_arg 1.68

Pyruvate dehydrogenase R_pdh 2.06
Malate synthase R_aceB 2.3

Threonine degradation 1 R_thr_deg1 2.32
Isocitrate lyase R_aceA 2.36

Threonine biosynthesis R_thr 2.48
Citrate synthase R_gltA 2.62

6-Phosphogluconate dehydrogenase R_gnd 2.62
Cysteine biosynthesis R_cysEMK 4.59
Cysteine degradation R_cys_deg 4.6

Proline biosynthesis R_pro 5.45
Proline degradation R_pro_deg 5.47

6-Phosphogluconate dehydrase R_edd 5.96
2-Keto-3-deoxy-6-phospho-gluconate aldolase R_eda 5.96

Serine degradation R_ser_deg 6.43
Nucleotide diphosphatase (ATP) R_atp_amp 6.53
Nucleotide diphosphatase (UTP) R_utp_ump 6.53
Nucleotide diphosphatase (GTP) R_gtp_gmp 6.53
Nucleotide diphosphatase (CTP) R_ctp_cmp 6.53

Cytidylate kinase R_atp_cmp 6.56
Guanylate kinase R_atp_gmp 6.6

UMP kinase R_atp_ump 6.62
6-Phosphogluconolactonase R_pgl 6.67

Serine biosynthesis R_serABC 6.72
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Table 2. Cont.

Enzyme/Pathway Reaction Uncertainty

NADH:ubiquinone oxidoreductase R_nuo 7.39
NADH dehydrogenase 1 R_ndh1 7.39
NADH dehydrogenase 2 R_ndh2 7.39

Fumurate reductase R_frd 7.44
Succinate dehydrogenase R_sdh 7.93

Malic enzyme A R_maeA 7.99
Malic enzyme B R_maeB 8.01

Cytochrome oxidase bo R_cyo 8.03
Cytochrome oxidase bd R_cyd 8.03

ATP synthase R_atp 11.71
PEP synthase R_pps 12.98

Fructose-1,6-bisphosphate aldolase R_fdp 12.98
Adenosinetriphosphatase R_atp_adp 12.98

PEP carboxykinase R_pck 12.98
Asparagine biosynthesis R_asnB 13
Glutamate biosynthesis R_gltBD 13
Glutamine degradation R_gln_deg 13
Glutamine biosynthesis R_glnA 13.05
Acetyl-CoA synthetase R_acs 13.06

Inorganic pyrophosphatase R_ppa 13.08
Adenylate kinase R_adk_atp 13.36
PEP carboxylase R_ppc 14.22

Phosphofructokinase R_pfk 14.9
Pyruvate kinase R_pyk 15.89

Transhydrogenase R_pnt2 22.45
Transhydrogenase R_pnt1 25.5

Aspartate degradation R_asp_deg 25.5
Aspartate biosynthesis R_aspC 25.83

Asparagine biosynthesis R_asnA 247.53
Asparagine degradation R_asn_deg 247.53

Table 3. Flux uncertainty calculated using flux variability analysis for the base synthetic dataset during
the second production phase (1 h to 3 h), normalized to the glucose consumption rate.

Enzyme Reaction Uncertainty

Step 6 of AMP synthesis R_A_syn_6 <0.01
Orotate synthase 1 R_or_syn_1 <0.01
Orotate synthase 2 R_or_syn_2 <0.01

Aldhyde-alcohol dehydrogenase R_adhE_net <0.01
RNA polymerase Translation <0.01

tRNA charging of phenylalanine tRNA charging (PHE) <0.01
tRNA charging of alanine tRNA charging (ALA) <0.01

tRNA charging of glutamine tRNA charging (GLN) <0.01
tRNA charging of threonine tRNA charging (THR) <0.01
tRNA charging of aspartate tRNA charging (ASP) <0.01

tRNA charging of glutamate tRNA charging (GLU) <0.01
tRNA charging of histidine tRNA charging (HIS) <0.01

tRNA charging of lysine tRNA charging (LYS) <0.01
tRNA charging of tyrosine tRNA charging (TYR) <0.01

tRNA charging of asparagine tRNA charging (ASN) <0.01
tRNA charging of serine tRNA charging (SER) <0.01

tRNA charging of methionine tRNA charging (MET) <0.01
tRNA charging of isoleucine tRNA charging (ILE) <0.01

tRNA charging of valine tRNA charging (VAL) <0.01
tRNA charging of proline tRNA charging (PRO) <0.01
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Table 3. Cont.

Enzyme Reaction Uncertainty

tRNA charging of leucine tRNA charging (LEU) <0.01
tRNA charging of arginine tRNA charging (ARG) <0.01

tRNA charging of tryptophan tRNA charging (TRP) <0.01
tRNA charging of cysteine tRNA charging (CYS) <0.01
tRNA charging of glycine tRNA charging (GLY) <0.01

RNA polymerase Translation initiation <0.01
mRNA degradation mRNA degradation <0.01

Glycine cleavage system R_gly_fol_net 0.01
Transaldolase R_talAB_net 0.02

Transketolase 1 R_tkt1_net 0.02
Ribulose-phosphate 3-epimerase R_rpe_net 0.02

Ribose-5-phosphate isomerase R_rpi_net 0.03
Transketolase 2 R_tkt2_net 0.04

Valine biosynthesis R_val 0.05
Leucine biosynthesis R_leu 0.05

Malate dehydrogenase R_mdh_net 0.06
Triosephosphate isomerase R_tpiA_net 0.07

Fructose 1,6-bisphosphate aldolase R_fbaA_net 0.07
Glycine biosynthesis R_gly_deg 0.09

Threonine degradation 2 R_thr_deg2 0.09
Phosphoglucose isomerase R_pgi_net 0.09
Methylglyoxal degradation R_mglx_deg 0.09

Methylenetetrahydrofolate dehydrogenase R_mthfd_net 0.13
Glucose-6-phosphate dehydrogenase R_zwf_net 0.18

Tyrosine biosynthesis R_tyr 0.2
Enolase R_eno_net 0.2

Phosphoglycerate mutase R_gpm_net 0.2
Phosphoglycerate kinase R_pgk_net 0.21

Glyceraldehyde-3-phosphate
dehydrogenase R_gapA_net 0.21

Methylenetetrahydrofolate dehydrogenase R_mthfc_net 0.28
Metionine biosynthesis R_met 0.34

Phosphate acetyltransferase R_pta_net 0.4
Acetate kinase R_ackA_net 0.41

Fumarate hydratase R_fum_net 0.43
Phenylalanine biosynthesis R_phe 0.53

Glucokinase R_glk_atp 1
Step 5 of AMP synthesis R_A_syn_5 1
Step 7 of AMP synthesis R_A_syn_7 1

OMP synthesis R_omp_syn 1.09
Isoleucine biosynthesis R_ile 1.13

Alanine biosynthesis R_alaAC_net 1.49
Step 8 of AMP synthesis R_A_syn_8 1.76

Methylenetetrahydrofolate reductase R_mthfr2a 1.85
Isocitrate dehydrogenase R_icd_net 1.87

Histidine biosynthesis R_his 1.95
Step 4 of AMP synthesis R_A_syn_4 2.02
Threonine degradation 3 R_thr_deg3 2.08

CTP synthetase 1 R_ctp_1 2.09
CTP synthetase 2 R_ctp_2 2.09

Lysine biosynthesis R_lys 2.13
Lysine degradation R_lys_deg 2.13

Lactate dehydrogenase R_ldh_net 2.27
Tryptophan degradation R_trp_deg 2.55
Tryptophan biosynthesis R_trp 2.7

Aconitase R_acn_net 2.82
UMP synthesis R_ump_syn 2.85

Step 3 of AMP synthesis R_A_syn_3 3.07
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Table 3. Cont.

Enzyme Reaction Uncertainty

XMP synthase R_xmp_syn 4.04
GMP synthetase R_gmp_syn 4.04

Step 12 of AMP synthesis R_A_syn_12 4.13
Step e of folate synthesis R_fol_e 4.37
Step 2 of AMP synthesis R_A_syn_2 4.74
Step 9 of AMP synthesis R_A_syn_9 4.83

Step 10 of AMP synthesis R_A_syn_10 4.83
Step 1 of AMP synthesis R_A_syn_1 5.02

Glutamate dehydrogenase R_gdhA_net 5.14
Phosphoribosylpyrophosphate synthase R_prpp_syn 6.11

Step 4 of folate synthesis R_fol_4 6.24
Step 3 of folate synthesis R_fol_3 6.24

Step 2b of folate synthesis R_fol_2b 7.03
Step 2a of folate synthesis R_fol_2a 8.04

Step 1 of folate synthesis R_fol_1 9.04
Glycine biosynthesis R_glyA 9.58

Chorismate synthesis R_chor 13.98
Arginine degradation R_arg_deg 14.97

Succinate thiokinase R_sucCD 17.94
GABA degradation 1 R_gaba_deg1 17.95
GABA degradation 2 R_gaba_deg2 17.95

Glutamate degradation R_glu_deg 17.95
2-Ketoglutarate dehydrogenase R_sucAB 18.06

Arginine biosynthesis R_arg 18.14
Threonine degradation 1 R_thr_deg1 19.06

Pyruvate formate lyase R_pflAB 19.97
Threonine biosynthesis R_thr 22.23

Malate synthase R_aceB 28.81
Isocitrate lyase R_aceA 28.81

Pyruvate dehydrogenase R_pdh 29.86
6-Phosphogluconate dehydrogenase R_gnd 31.9

Citrate synthase R_gltA 32.2
Cysteine biosynthesis R_cysEMK 48.93
Cysteine degradation R_cys_deg 49.31

Proline biosynthesis R_pro 61.2
2-Keto-3-deoxy-6-phospho-gluconate

aldolase R_eda 61.86

6-Phosphogluconate dehydrase R_edd 61.86
Proline degradation R_pro_deg 62.62
Serine degradation R_ser_deg 68.5

6-Phosphogluconolactonase R_pgl 70.12
Serine biosynthesis R_serABC 72.05

Nucleotide diphosphatase (ATP) R_atp_amp 74.22
Nucleotide diphosphatase (UTP) R_utp_ump 74.22
Nucleotide diphosphatase (GTP) R_gtp_gmp 74.22
Nucleotide diphosphatase (CTP) R_ctp_cmp 74.22

Cytidylate kinase R_atp_cmp 74.74
Guanylate kinase R_atp_gmp 76.11

UMP kinase R_atp_ump 76.78
NADH dehydrogenase 1 R_ndh1 86.63

NADH:ubiquinone oxidoreductase R_nuo 86.63
Malic enzyme A R_maeA 86.77

NADH dehydrogenase 2 R_ndh2 87.01
Fumurate reductase R_frd 87.01

Malic enzyme B R_maeB 88.17
Succinate dehydrogenase R_sdh 90.66

Cytochrome oxidase bo R_cyo 92.08
Cytochrome oxidase bd R_cyd 92.08
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Table 3. Cont.

Enzyme Reaction Uncertainty

ATP synthase R_atp 134.61
PEP synthase R_pps 148.45

Asparagine biosynthesis R_asnB 148.45
Glutamine degradation R_gln_deg 148.45
Glutamate biosynthesis R_gltBD 148.45
Acetyl-CoA synthetase R_acs 148.45

Adenosinetriphosphatase R_atp_adp 148.45
Fructose-1,6-bisphosphate aldolase R_fdp 148.45

PEP carboxykinase R_pck 148.45
Glutamine biosynthesis R_glnA 149.67

Inorganic pyrophosphatase R_ppa 150.79
Adenylate kinase R_adk_atp 152.88
PEP carboxylase R_ppc 158.68

Phosphofructokinase R_pfk 161.64
Pyruvate kinase R_pyk 170.95

Transhydrogenase R_pnt2 258.03
Aspartate degradation R_asp_deg 286.46

Transhydrogenase R_pnt1 286.46
Aspartate biosynthesis R_aspC 290.86

Asparagine biosynthesis R_asnA 4421.48
Asparagine degradation R_asn_deg 4421.48
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Figure 4. Simulation of energy species and energy totals by base versus synthetic data as a
function of time. The 95% confidence interval for the simulation conducted over the ensemble of
transcription/translation parameter sets is shown in the orange shaded region, while the synthetic
constraint data is shown in the blue shaded region. The synthetic data constraints were generated from
the kinetic model of Horvath et al., which was trained using experimental measurements of the system
simulated in this study [32].
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2.3. Alternative Measurement Sets

The base synthetic data set, consisting of 36 metabolite time series and the protein product CAT,
was the measurement set used to train the kinetic model of Horvath et al. [32]. Thus, the confidence
intervals on the synthetic data used in this study as constraints on the flux estimation problem were
informed by experimental measurements of glucose, organic and amino acids, energy species and
the protein product CAT. However, we have no a priori reason to suppose that this experimental
design was optimal. Toward this question, we performed simulations and flux variability analysis
(FVA) for alternative synthetic data sets to understand the importance of measurement selection when
characterizing CFPS (Figures 5 and 6). In all cases, we assumed the same sampling frequency as the
base synthetic dataset, but we varied which species were measured. First, we removed each of the
37 metabolites from the base set, one at a time, to create 37 measurement exclusion sets, consisting of
36 metabolites each (Figure 5, light gray dots). For each set, the state the dynamic model was used
to calculate a value of error against the synthetic data, and FVA was used to calculate a value of flux
uncertainty. Most of the exclusion sets clustered around the base case, with error values between 75%
and 110%, and flux uncertainties between 93% and 103%, of the base case. The exception to this was
the glucose exclusion set, which showed 89% higher error and 7% greater flux uncertainty. Within the
primary cluster, a slight pattern emerged: the sets in which an organic acid were removed tended to
result in increased error, while the removal of an amino acid tended to reduce error; however, this was
not true across all metabolites. We also performed the analysis on several inclusion sets to determine
which additional metabolites could improve predictive power (Figure 5, black dots). In particular,
we added unmeasured central carbon metabolites to the base case, which resulted in 23 inclusion sets,
consisting of 38 metabolites each. As with the exclusion sets, most of the inclusion sets clustered around
the base case, with error values between 72% and 103%, and flux uncertainties between 94% and
102%, of the base case. Considering all exclusion and inclusion sets, there was generally no correlation
between the metabolite prediction error and flux uncertainty. Taken together, these suggested central
carbon metabolites, especially glucose, were important to characterize the network, but performing
single additional measurements was not enough to significantly increase predictive power. Next,
we explored whether measurement selection could be based upon the structural features of a metabolic
network. Toward this question, we used singular value decomposition (SVD) of the stoichiometric
matrix to suggest which metabolites should be measured.

Singular value decomposition (SVD) measurement selection outperformed the base case, with a
prediction error improvement of 11% and similar flux variability (Figure 5, open square). SVD was
used to decompose the stoichiometric matrix into 105 modes. The top 36 metabolites that had the
greatest weighted sum across the modes that accounted for 95% of the network were estimated. Since
our exclusion analysis identified glucose as the single most important metabolite, we added it to the
top metabolites as determined by SVD to obtain a 37-metabolite constraint set, consisting of: GTP,
GDP, GMP, ATP, ADP, AMP, UTP, UMP, CTP, CMP, GLN, GLU, ASP, LYS, LEU, HIS, THR, PHE, ALA,
VAL, TYR, GLY, SER, H, ASN, ILE, MET, AKG, PYR, ARG, CYS, NH3, FUM, SUCC, TRP, ACCOA,
and glucose. The SVD measurement set suggested that energy, and amino acid species carried the most
information compared to central carbon species, which made up a relatively smaller fraction of the
list. Surprisingly, the measurement set selected by SVD was approximately 80% similar to the original
synthetic data generated by hand. However, the 20% difference was enough to improve the prediction
error by approximately 11%. Taken together, measurements selected by SVD decomposition of the
stoichiometric matrix improved the prediction of metabolite abundance, but SVD-based measurement
selection did not improve flux variability.
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Figure 5. Flux uncertainty versus metabolite prediction error against synthetic data, normalized
to the base case (white star), for exclusion (gray) and inclusion (black) metabolite constraint sets.
The performance of the singular value decomposition (SVD)-determined metabolite constraint set is
shown by the white square.

Next, we used heuristic optimization to systematically investigate the effect of changing the
dimension and identify the measurement constraints (Figure 6). In particular, we minimized the error
and flux variability of model predictions by varying the metabolites that appeared in the synthetic
constraint set. We used a binary simulated annealing algorithm to switch metabolite membership in
the constraint set on or off, and thus generated an ensemble of >200 measurement constraint sets
(Figure 6A). While there was no strict error threshold, the simulated annealing algorithm was less
likely to accept high-error sets into the ensemble; thus, the error of most sets in the ensemble was
less than that of the base case. Specifically, the error varied from just over double to less than one
ten-thousandth of the base case. Flux uncertainty was also a component of the objective function,
but was only improved by 7%, suggesting this performance metric was tightly constrained; network
flux values were not well characterized, even with comprehensive training datasets. As expected,
there was an inverse relationship between the number of metabolite constraints and the prediction
error (Figure 6B). However, the slope of that trend was striking; error was improved by three to four
orders of magnitude, simply by increasing the number of constraints by 11 or fewer. Furthermore,
the base synthetic measurement set was outperformed by the majority of the ensemble; often, the
simulated annealing approach achieved the same error with fewer constraints, or much lower error
with the same, or even fewer, constraints. This suggests that, while comprehensive, the original
synthetic dataset was not optimal in terms of predictive power per measurement. However, the base
case was one of the best in terms of reducing flux uncertainty.

Lastly, we investigated which metabolites were most effective at improving predictive power by
considering how often it appeared in the ensemble (Table 4). Glucose unsurprisingly appeared most
often (tied with G6P), but interestingly was not in every constraint set. Those that did not contain
glucose had some of the highest errors, but also some of the smallest constraint set sizes (Figure 6B,
black dots). The most frequent metabolites from the heuristic method were largely from glycolysis,
pentose phosphate, and the TCA cycle (compared to the SVD analysis which gave greater consideration



Processes 2018, 6, 132 16 of 28

to energetic and amino acid species). To further understand the species selection, we calculated the
frequency of appearance in the 57 best sets, those with error of least three orders of magnitude lower
than the base case (Table 5). Nineteen metabolites appeared in all of these sets, and all but Alanine
were central carbon metabolites (defined here as glycolysis, pentose phosphate, TCA). Taken together,
measurement selection made a significant difference in capturing dynamic metabolite abundance in
cell-free protein synthesis. Although the error decreased with increasing measurement number overall,
the specific combination of metabolites was arguably even more important. Metabolic fluxes, however,
remained unknown despite the large number of measurements taken.
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Figure 6. Flux uncertainty and metabolite prediction error for the simulated annealing experimental
design approach. (A) normalized flux uncertainty versus normalized metabolite prediction error;
(B) number of metabolite constraints versus normalized metabolite prediction error. Error was
computed for the synthetic experimental designs normalized to the base synthetic dataset (white
star). Sets that include glucose are show as gray circles, while those that do not are represented with
black circles.
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Table 4. Metabolites by frequency of appearance in the simulated annealing constraint sets.

Metabolite Symbol Frequency

alpha-D-Glucose GLC 89.9%
Glucose 6-phosphate G6P 89.9%

Citrate CIT 85.7%
Isocitrate ICIT 84.9%
Fumarate FUM 84.5%

Fructose 6-phosphate F6P 83.6%
6-Phospho-D-glucono-1,5-lactone 6PGL 81.5%

sedo-Heptulose 7-phosphate S7P 79.4%
Alanine ALA 77.7%

Guanosine triphosphate GTP 77.3%
Malate MAL 75.6%

D-Ribulose 5-phosphate RU5P 74.8%
Erythrose 4-phosphate E4P 73.1%

Adenosine diphosphate ADP 72.3%
alpha-Ketoglutarate AKG 71.8%

Uridine diphosphate UDP 70.2%
Succinate SUCC 69.7%

Cytidine monophosphate CMP 69.3%
Guanosine diphosphate GDP 67.2%
6-Phospho-D-gluconate 6PGC 67.2%

Arginine ARG 66.8%
Ribose 5-phosphate R5P 66.4%

Methionine MET 65.5%
Glyoxylate GLX 65.5%
Glutamine GLN 63.9%

Phenylalanine PHE 63.4%
Valine VAL 62.6%

Glyceraldehyde 3-phosphate G3P 62.2%
Adenosine monophosphate AMP 62.2%

Proline PRO 60.1%
Fructose 1,6-diphosphate FDP 60.1%

Dihydroxyacetone phosphate DHAP 60.1%
Histidine HIS 59.7%

Glycine GLY 59.7%
Oxaloacetate OAA 58.4%

2-Dehydro-3-deoxy-D-gluconate 6-phosphate 2DDG6P 58.4%
Chloramphenicol acetyltransferase CAT 56.3%

Cysteine CYS 55.5%
Acetate AC 54.2%

Succinyl coenzyme A SUCCOA 53.8%
Uridine monophosphate UMP 52.9%

Tryptophan TRP 52.5%
Lactate LAC 52.5%

Uridine triphosphate UTP 52.1%
Aspartate ASP 51.7%

Guanosine monophosphate GMP 50.8%
Asparagine ASN 50.4%

Cytidine diphosphate CDP 50.0%
Phosphoenolpyruvate PEP 48.3%

3-Phosphoglycerate 3PG 47.9%
2-Phosphoglycerate 2PG 47.1%

Lysine LYS 43.3%
Threonine THR 42.0%
Glutamate GLU 38.7%

Tyrosine TYR 37.0%
Adenosine triphosphate ATP 37.0%
D-Xylulose 5-phosphate XU5P 35.7%

Acetyl coenzyme A ACCOA 34.9%
Cytidine triphosphate CTP 33.2%

Serine SER 31.9%
Isoleucine ILE 29.8%

Leucine LEU 26.5%
Pyruvate PYR 21.8%
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Table 5. Metabolites by frequency of appearance in the 57 best simulated annealing constraint sets,
those with error at least three orders of magnitude lower than the base synthetic dataset.

Metabolite Symbol Frequency

D-Xylulose 5-phosphate XU5P 100%
sedo-Heptulose 7-phosphate S7P 100%

D-Ribulose 5-phosphate RU5P 100%
Ribose 5-phosphate R5P 100%

Oxaloacetate OAA 100%
Isocitrate ICIT 100%

alpha-D-Glucose GLC 100%
Glucose 6-phosphate G6P 100%

Glyceraldehyde 3-phosphate G3P 100%
Fumarate FUM 100%

Fructose 1,6-diphosphate FDP 100%
Fructose 6-phosphate F6P 100%

Erythrose 4-phosphate E4P 100%
Dihydroxyacetone phosphate DHAP 100%

Citrate CIT 100%
Alanine ALA 100%

6-Phospho-D-glucono-1,5-lactone 6PGL 100%
6-Phospho-D-gluconate 6PGC 100%

2-Dehydro-3-deoxy-D-gluconate 6-phosphate 2DDG6P 100%
Uridine triphosphate UTP 98.2%
alpha-Ketoglutarate AKG 98.2%

Succinate SUCC 94.7%
Arginine ARG 94.7%

3-Phosphoglycerate 3PG 94.7%
Guanosine triphosphate GTP 91.2%
Uridine monophosphate UMP 89.5%

Glutamine GLN 87.7%
Cytidine monophosphate CMP 87.7%

Tyrosine TYR 82.5%
Threonine THR 82.5%
Aspartate ASP 80.7%

Cytidine diphosphate CDP 75.4%
Uridine diphosphate UDP 71.9%

Valine VAL 70.2%
Methionine MET 68.4%

Guanosine monophosphate GMP 68.4%
Glycine GLY 68.4%

Adenosine diphosphate ADP 68.4%
Tryptophan TRP 61.4%

Phenylalanine PHE 59.6%
Acetate AC 57.9%
Malate MAL 52.6%

Phosphoenolpyruvate PEP 50.9%
Leucine LEU 49.1%
Proline PRO 47.4%

Isoleucine ILE 47.4%
Histidine HIS 47.4%

Adenosine monophosphate AMP 45.6%
Glyoxylate GLX 43.9%

Lactate LAC 40.4%
Chloramphenicol acetyltransferase CAT 38.6%

Cysteine CYS 36.8%
Asparagine ASN 35.1%

Pyruvate PYR 33.3%
Glutamate GLU 31.6%

Succinyl coenzyme A SUCCOA 22.8%
Guanosine diphosphate GDP 22.8%

2-Phosphoglycerate 2PG 22.8%
Cytidine triphosphate CTP 14%

Acetyl coenzyme A ACCOA 14%
Lysine LYS 7%

Adenosine triphosphate ATP 5.3%
Serine SER 0%
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3. Discussion

In this study, we presented a dynamic constraint-based model of cell-free protein expression.
This approach avoids the pseudo-steady-state assumption found in traditional constraint-based
approaches, which allowed for the direct integration of metabolite measurements into the flux
estimation problem, and the the accumulation or depletion of network metabolites. The approach
used the E. coli cell-free protein synthesis metabolic network from Vilkhovoy and coworkers [31],
and the simulated metabolite trajectories from the kinetic model of Horvath et al. [32] as constraints
on the CFPS flux calculation. The dynamic constraint-based model satisfied time-dependent
metabolite measurement constraints, predicted unconstrained metabolite concentrations as well as
the concentration of a model protein, chloramphenicol acetyltransferase (CAT). Model interrogation
suggested the most important metabolite measurement within the dataset to be glucose, as excluding
the glucose yielded the greatest metabolite prediction error, and the greatest uncertainty in the
estimated metabolic flux. Furthermore, we evaluated metabolite constraint sets with one more and one
fewer metabolites than the base case (37 metabolites) to explore the impact of measurement selection
on model performance. The single addition of metabolites yielded no significant improvement in the
predictive power, while the single exclusion suggested glucose to be the most important measured
metabolite in the base case. Next, we selected measurement species based on the results of singular
value decomposition on the stoichiometric matrix. The top 36 species from the SVD analysis with
the addition of glucose improved the predictive power and reduced flux uncertainty compared
with the base case. Finally, we described a heuristic optimization approach to estimate the optimal
list of metabolite measurements. Measurement sets determined by heuristic optimization vastly
outperformed the accuracy of the base synthetic dataset; model precision, meanwhile, was virtually
unchanged despite comprehensive measurement sets. Taken together, model interrogation showed
that, even with a comprehensive dataset, there still exists a great amount of uncertainty associated with
metabolic fluxes. This highlights the need for fluxomic data to fully understand biological networks.

Despite synthetic datasets consisting of greater than 30 metabolite time series, estimates of
metabolic flux were largely uncertain. Flux variability analysis suggested that the metabolite
constraints could be met with a wide range of different flux distributions. For instance, an open
question in cell-free systems is the balance between glycolytic versus pentose phosphate pathway
flux. In previous studies of E. coli cell-free protein synthesis, the kinetic model of Horvath and
coworkers suggested that glucose was consumed primarily by glycolytic reactions, with minimal flux
into the pentose phosphate pathway. However, Vilkhovoy et al. estimated, using sequence specific
flux balance analysis with the same experimental dataset, that the CAT production was unaffected
by the choice of pentose phosphate pathway versus glycolysis; deletion of either pathway did not
change protein productivity. To answer this discrepancy, model analysis showed, during the first
phase when glucose was being consumed, glycolytic and pentose phosphate fluxes (pgi and zwf,
respectively) exhibited large uncertainty, as either could be utilized to satisfy CAT production. The
measurement selection analysis was conducted by excluding or including a metabolite from the
constraint set. The exclusion sets were dominated by the removal of glucose, and to a lesser extent
the organic acids, suggesting that measurements of central carbon metabolism intermediates were
more important than energetic and amino acid measurements. However, the inclusion sets showed no
significant effect on error and flux uncertainty. There was generally no correlation between the error
and flux uncertainty of a model constrained to a particular metabolite set, except with respect to the
outlier glucose. Model calculations showed that, even with a comprehensive data set of 37 metabolite
measurements, there was significant flux uncertainty. This suggested that there were many flux
combinations that could give rise to the same set of time course measurements. This phenomenon was
further supported by analyzing the ensemble of constraint sets determined by heuristic optimization.
Although the optimization algorithm reduced the objective function by four degrees of magnitude,
the flux variability remained stagnant in comparison. An ensemble of measurement sets ranging
from 22 to 48 metabolite constraints was only able to reduce flux uncertainty by 7% from the base
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synthetic data set. The dynamic constraint-based model showed high flux variability in important
branch points, including the glucose-6-phosphate split between glycolysis and pentose phosphate,
the 6PGC split into pentose phosphate and Entner–Doudoroff, and the pyruvate split into TCA cycle
versus lactate production. This may be why the high overall flux variability was robust to the varying
of metabolite constraints. Using three different sampling approaches (single additions/exclusions,
singular value decomposition, simulated annealing) coupled with the dynamic constraint-based model,
we estimated key metabolites that could be prioritized in measurement selection, such as glucose.
Although measuring central carbon metabolites and amino acids is the intuition of most researchers,
model interrogation was able to provide the importance of certain species over others; for instance,
measuring G6P, G3P, and F6P would be more fruitful than measuring PEP. Interestingly, many of
the most valuable measurements were involved in upper glycolysis and pentose phosphate, such as
glucose, G6P, and 6PGL. This may be because upstream metabolites have an effect on more of the
network; any error or uncertainty in these metabolites will cascade down the rest of the network and
magnify throughout. Taken together, the dynamic constraint-based model quantitatively affirmed the
robustness of metabolism, and illustrated the complexity of inferring flux information from metabolite
concentrations. Ultimately, to determine the metabolic flux distribution occurring in a cell-free system,
we need to add additional constraints to the flux estimation calculation. This study suggested that
metabolite measurements alone were not sufficient. However, these are not the only experimentally
realizable types of constraints. For example, thermodynamic feasibility constraints may result in a
better depiction of the flux distribution [37,38], and 13C labeling constraints in cell-free systems could
provide significant insight. However, while 13C labeling techniques are well established for in vivo
processes [39], application of these techniques to cell-free systems remains an active area of research.

The use of cell-free systems as a personalized point of care biomanufacturing tools, as platforms
for vaccine development, or as the basis for portable pathogen detection are promising research
directions [1,40–43]. cell-free systems have significant advantages in these application areas compared
to in vivo systems. For example, as there is no longer a cell wall, we can experimentally observe
the system and intervene if need be. Moreover, cell-free synthetic circuitry is highly portable.
For example, it can be dried onto paper, easily transported, and potentially stored indefinitely [44].
Thus, after development and testing of the circuitry, and manufacturing of the devices, there is no
need for large, bulky and expensive equipment usually associated with in vivo bioprocesses. However,
to move beyond proof of concept and into industrial or medical practice will require extensive
optimization. Mathematical modeling is an important tool in this regard. In this study, we explored
the relationship between measurement selection and the ability to estimate metabolic flux in a cell-free
system. One of the central advantages of cell-free systems is the ability to measure the concentration of
metabolic intermediates. However, ultimately, we need to transform these measurements into testable
hypothesis about the performance of a cell-free system. The connection between flux estimation
and optimal measurement selection has been well studied for in vivo systems; for example, see
the classic work of Savinell and Palsson [45,46]. Moreover, the robust quantification of metabolic
flux in in vivo systems is also well developed, with both mature experimental and computational
tools available (see [39,47,48]). However, quantification of metabolic flux in cell-free systems from
metabolite measurements remains an open area of research. Certainly, techniques developed for the
identification and quantification of in vivo systems could be applied to cell-free. For example, Lucks
and coworkers used the D-optimal experimental design approach of Doyle and coworkers [49] to
parameterize a kinetic model of RNA-based cell-free circuits [33]. However, Lucks and coworkers
did not consider the resources required for the RNA circuits to function. Quantification of metabolic
flux, and the associated resource production and consumption in cell-free applications, is not common.
Instead, the synthetic biology community has focused on designing circuits and circuit components
with specific behaviors e.g., [50–52], assuming the resources required to express these components
will be available. At proof of concept scales, this is a reasonable assumption. However, as we move
toward industrial practice, careful attention must be paid to resource generation and consumption—for
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example, optimizing the expressed proteome for cell-free extract production, or balancing cofactor
utilization during the cell-free reaction [53,54]. Resource management has a direct impact on the
performance and industrial viability of cell-free applications—for example, potentially limiting the
rate of production and yield of circuit components, the size and complexity of possible synthetic
circuits, the operational lifetime of synthetic devices, or the titer and rate of production of protein and
small molecule products. Thus, as we move beyond technology development to realistic industrial
or medical applications, the performance of synthetic devices will become increasingly important.
Toward this need, we expect mathematical modeling will play an important role.

4. Materials and Methods

4.1. Formulation and Solution of the Model Equations

We modeled the time evolution of the ith metabolite concentration (xi), the scaled activity of
network enzymes (εi), transcription processes generating the mRNA m and translation processes
generating the protein P in an E. coli cell-free metabolic network as a system of ordinary
differential equations:

ẋi =
R
∑
j=1

σijrj (x, ε, k) i = 1, 2, . . . ,M, (1)

ε̇i = −λiεi i = 1, 2, . . . ,N , (2)

ṁ = rT − λm, (3)

Ṗ = rX . (4)

The quantityR denotes the number of metabolic reactions,M denotes the number of metabolites
andN denotes the number of metabolic enzymes in the model. The quantity rj (x, ε, k) denotes the rate
of reaction j. Typically, reaction j is a nonlinear function of metabolite and enzyme abundance, as well
as unknown kinetic parameters k (K× 1). The quantity σij denotes the stoichiometric coefficient for
species i in reaction j. If σij > 0, metabolite i is produced by reaction j. Conversely, if σij < 0, metabolite
i is consumed by reaction j, while σij = 0 indicates metabolite i is not connected with reaction j. Lastly,
λi denotes the scaled enzyme activity decay constant. The system material balances were subject to the
initial conditions x (to) = xo and ε (to) = 1 (initially, we have 100% cell-free enzyme activity).

The cell-free model equations were solved using a dynamic constraint-based approach in which
the rates of the metabolic fluxes, transcription and translation processes were estimated by solving
an optimization subproblem from t to t + ∆t. In particular, the biochemical fluxes r1, r2, . . . , rR which
appear in the balance equations were calculated from t to t + ∆t by solving a constrained optimization
subproblem with (potentially nonlinear) objective O (x1, x2, . . . , xM):

max
r1,r2,...,rR

O (x1, x2, . . . , xM) (5)

subject to species constraints and flux bounds:(
R
∑
j=1

σijrj − ẋi

)
≥ 0 i = 1, 2, . . . ,M, (6)

0 ≤ rj ≤ Uj (x1, x2, . . . , xM, κ) j = 1, 2, . . . ,R. (7)

In this study, we maximized the rate of translation rX unless otherwise specified. We discretized
the derivative term for each species using a constant width h forward different approximation (however,
this was done for convenience and more sophisticated techniques could have been used). The reaction
bounds Uj (x1, x2, . . . , xM, κ) are potentially non-linear functions of the system state, and can be updated
during each time step. Here, we modeled the upper bound for flux j as V̂maxεj(k), where V̂max denotes
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a characteristic maximum reaction velocity, and εj(k) denotes the scaled enzyme activity catalyzing
reaction j at time step k. The characteristic maximum reaction velocity was set to 600 mM/h (which
corresponds to an average kcat ' 1000 s−1 and and enzyme concentration of approximately 0.2 µM)
unless otherwise specified. Additional species constraints can be added to directly incorporate
metabolomic, proteomic or transcriptomic measurements into the flux calculation. In this study,
we incorporated metabolite measurement constraints of the form:

χL
m,k+1 ≤ xm,k+1 ≤ χU

m,k+1 m = 1, 2, . . . , Ξ, (8)

where χL
m,k+1 and χU

m,k+1 denote the lower and upper measurement bound for metabolite m at time
step k + 1, where Ξ metabolites were measured over the time course of the cell-free reaction. Lastly,
we imposed a user-configurable bound Bi on the maximum rate of change for metabolite i:

|ẋi| ≤ Bi i = 1, 2, . . . ,M (9)

and non-negativity constraints xi ≥ 0 for all metabolites and all time steps.
The bounds on the transcription rate (LT = rT = UT) were modeled as:

rT = Vmax
T

(
GP

KT + GP

)
, (10)

where GP denotes the concentration of the gene encoding the protein of interest, and KT denotes a
transcription saturation coefficient. The maximum transcription rate Vmax

T was formulated as:

Vmax
T ≡

[
RT

(
v̇T
lG

)
u (κ)

]
, (11)

where RT denotes the RNA polymerase concentration (nM), v̇T denotes the RNA polymerase
elongation rate (nt/h), lG denotes the gene length (nt). The term u (κ) (dimensionless, 0 ≤ u (κ) ≤ 1)
is an effective model of promoter activity, where κ denotes promoter specific parameters. The general
form for the promoter models was taken from Moon et al. [55], which was based on earlier studies
from Bintu and coworkers [56], and similar to the genetically structured modeling approach of
Lee and Bailey [57]. In this study, we considered only the T7 promoter model:

uT7 =
KT7

1 + KT7
, (12)

where KT7 denotes a T7 RNA polymerase binding constant. The values for all promoter parameters
are given in Table 1.

The translation rate (rX) was bounded by:

0 ≤ rX ≤ Vmax
X

(
m

KX + m

)
, (13)

where m denotes the mRNA abundance and KX denotes a translation saturation constant.
The maximum translation rate Vmax

X was formulated as:

Vmax
X ≡

[
KPRX

(
v̇X
lP

)]
. (14)
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The term KP denotes the polysome amplification constant, v̇X denotes the ribosome elongation
rate (amino acids per hour), and lP denotes the number of amino acids in the protein of interest.
The mRNA abundance m was estimated as:

mk+1 = mk + (rT −mkλ)h, (15)

where λ denotes the mRNA degradation rate constant (h−1). All translation parameters are given
in Table 1.

Metabolic fluxes were estimated at each time step using the GNU Linear Programming Kit (GLPK)
v4.55 [58]. The objective of the optimization subproblem was to maximize the translation rate, subject to
the stoichiometric and metabolite constraints. The model code, parameters and initial conditions used
in this study are available under an MIT software license at the Varnerlab website [35]. The model code
is written in the Julia programming language [59]. Default transcription and translation parameters are
stored in TXTLDictionary.jl, while specific simulations are described in the Solve_*.jl files. Lastly,
the figures for this study were produced using the Plot_*.jl scripts.

4.2. Sampling of Transcription and Translation Parameters

The influence of the uncertainty in the transcription (TX) and translation (TL) parameters was
estimated by sampling the expected physiological ranges for these parameters as determined from
literature. We generated uniform random samples between an upper (u) and lower (l) parameter
bound of the form:

p∗ = l + (u− l)×U (0, 1) , (16)

where U (0, 1) denotes a uniform random number between 0 and 1. The T7 RNA polymerase
concentration was sampled between 800 and 1200 nM, ribosome levels between 1.5 and 3.0 µM,
polysome amplification between 5 and 15, the RNA polymerase elongation rate between 20 and
30 nt/s, and the ribosome elongation rate between 1.0 and 3.0 aa/s [10,60]; see TXTL_ensemble.jl for
a complete list of parameter ranges.

4.3. Generation and Evaluation of Alternative Measurement Sets

The measurement sets consisted of the base (one set of 37 metabolites), inclusion sets (23 sets
of 38 metabolites each), exclusion sets (37 sets of 36 metabolites each), SVD-guided (one set of
37 metabolites), and simulated annealing samples (238 sets of varying length). In all cases, we assumed
the same sampling frequency as the base synthetic dataset, but we varied which species were measured.
The exclusion or inclusion measurement sets were constructed by removing or adding a metabolite
to the base set, while the SVD-guided measurement set was constructed from high importance
metabolites; the top 36 metabolites (plus glucose) that had the greatest singular value weighted
sum across the SVD-modes, accounting for 95% of the network structure, were designated the SVD
measurement set. Lastly, we used simulated annealing to generate potentially optimal measurements
sets, where the objective was to minimize the product of the prediction error, and flux uncertainty.
The prediction error, E , was computed by comparing the simulated versus the measured value of
a metabolite, for aMcore set of metabolites. On the other hand, the flux variability was computed
using flux variability analysis (FVA) [61], subject to constraints on the CAT production rate, and the
selected metabolite trajectories. In particular, the metabolite prediction error was calculated from the
time-dependent state array:

E =
Mcore

∑
i=1

T
∑
t=ti

(
max

(
xi(t)− yU

i (t), 0
)
+ max

(
yL

i (t)− xi(t), 0
))

,

where xi(t) denotes the simulated value of metabolite i at time t, yU
i (t) denotes the upper bound of the

95% confidence interval on the synthetic data for metabolite i at time t, yL
i (t) denotes the lower bound
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of the 95% confidence interval on the synthetic data for metabolite i at time t, andMcore denotes the
subset of metabolites in the core metabolism. For this calculation, the entire time course was considered
(ti = 0 h, T = 3 h). The flux uncertainty was calculated from the maximal and minimal flux arrays:

σoverall = ∑
rj∈Rcore

T
∑
t=ti

(
rmax

j (t)− rmin
j (t)

)2
,

where rmax
j (t) denotes the maximum value of flux j, while rmin

j (t) denotes the value of flux j at time
t, calculated using flux variability analysis. The quantity Rcore denotes the subset of reactions that
constitute the core metabolism. For the flux uncertainty calculations, either the entire reaction time
course was considered (ti = 0 h, T = 3 h), or the uncertainty was calculated separately for each phase
(phase 1: ti = 0 h, T = 1 h; phase 2: ti = 1 h, T = 3 h).

The simulated annealing algorithm began by evaluating the error and flux uncertainty of the base
case and multiplying these to obtain a cost function:

cost = E · σoverall. (17)

Then, each metabolite that was considered measurable was added to or removed from the
constraint set with a certain probability pswitch:

θnew
i =

{
1− θi, U (0, 1) < pswitch,

θi, U (0, 1) > pswitch,
i = 1, 2, . . . ,Mmeasurable, (18)

where θi ∈ {0, 1} denotes a binary parameter encoding whether or not metabolite i is in the
constraint set, U (0, 1) denotes a uniform random number taken from a distribution between 0 and 1,
andMmeasurable denotes the set of metabolites deemed to be measurable. For each newly generated
constraint set, we re-solved the dFBA and FVA problems, and re-calculated the cost function. All sets
with a lower cost were accepted into the ensemble. Sets with a higher cost were also accepted into the
ensemble, if they satisfied the acceptance constraint:

Runiform
0,1 < exp

(
−α · costnew − cost

cost

)
, (19)

whereRuniform
0,1 denotes a random number taken from a uniform distribution between 0 and 1, cost

denotes the cost of the current parameter set, costnew denotes the cost of the new parameter set, and α

denotes an adjustable parameter to control the tolerance to high-error sets. A total of 238 samples
were accepted into the ensemble, of which there were 219 unique sets. BothMcore and Rcore and
user-configurable are defined in the model code repository available from the Varnerlab website [35].

5. Conclusions

In summary, we used a dynamic constraint-based modeling approach to simulate cell-free
metabolism, and to study how measurement selection impacts model performance. We extended
sequence specific flux balance analysis, by removing the pseudo steady state assumption, and adding
synthetic metabolite measurement constraints to the flux calculation. Using this method, we simulated
the cell-free synthesis of a model protein, chloramphenicol acetyltransferase, we identified the most
important measured species in the cell-free system, and additional species that yielded the lowest
metabolite prediction error and flux uncertainty. Only synthetic metabolite measurements were used
in this study; however, this work built a foundation to rationally design experimental measurement
protocols that could be implemented with a variety of analytical techniques. Taken together, these
findings represent a novel tool for dynamic cell-free simulations, measurement selection and pathway
analysis, not only for E. coli, but potentially for align variety of metabolic networks, whether in vivo
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or cell-free. However, while this first study was promising, there were several issues to consider
in future work. First, while we described transcription and translation at a sequence specific level,
we have not considered the complexities of protein folding, or post-translational modifications such
as protein glycosylation. A more detailed description of transcription and translation reactions,
including the role of chaperones in protein folding, has been used in in-vivo genome scale ME
models; e.g., see O’Brien et al. [20]. These template reactions could easily be adapted to a cell-free
system, thereby providing a potentially higher fidelity description protein synthesis and folding.
Next, the inclusion of post-translational modifications such as protein glycosylation in the next
generation of models will be important to describe the cell-free synthesis of therapeutic proteins. DeLisa
and coworkers recently showed that glycoproteins can be synthesized in a cell-free system, using
extract generated from modified E. coli cells capable of asparagine-linked protein glycosylation [62].
Simulation of the generation and attachment of glycans to protein targets could be an important step
to optimizing cell-free glycoprotein production. Lastly, while we modeled the cell-free production of a
only single protein in this study, sequence specific dynamic constraint models could be developed
for multi-protein synthetic circuits, RNA circuits or even small molecule production. Thus, this
approach offers a unique tool to model and potentially optimize a wide variety of application areas in
synthetic biology.
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