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Abstract: This paper presents an extensive analysis of the properties of different control horizon
sets in an Extended Prediction Self-Adaptive Control (EPSAC) model predictive control framework.
Analysis is performed on the linear multivariable model of the steam/water loop in large-scale
watercraft/ships. The results indicate that larger control horizon values lead to better loop
performance, at the cost of computational complexity. Hence, it is necessary to find a good trade-off
between the performance of the system and allocated or available computational complexity. In this
original work, this problem is explicitly treated as an optimization task, leading to the optimal control
horizon sets for the steam/water loop example. Based on simulation results, it is concluded that
specific tuning of control horizons outperforms the case when only a single valued control horizon is
used for all the loops.

Keywords: model predictive control; control horizon; steam power plant; steam/water loop;
multi-input and multi-output system; loop design

1. Introduction

The steam/water loop is a water supply process in a steam power plant with highly interconnected
equipment. Good steam/water loop performance is a prerequisite for the steam power plant to operate
properly [1]. However, due to the complicated interactions between the dynamic variables and the
harsh working environment of the watercraft, there are difficulties in obtaining satisfying performance
for the complex dynamics of such a steam/water loop [2]. The ever-increasing system complexity and
demand for high performance of this sub-system within the broader operation system of the watercraft
also pose challenges to operations. In this context, an effective control method is required to guarantee
safe operation of the steam/water loop.

In order to design an effective controller for the steam/water loop, constraints such as:
input saturations or rate limits have to be taken into consideration. There are several possibilities to
deal with the constraints in the literature [3–6], including also model predictive control (MPC) [7,8],
applied specifically in steam power plants. For example, an economic model predictive control
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was developed for the boiler-turbine system [9]. The economic index was utilized directly as a cost
function, and the economic model predictive control realized the economic optimization as well
as the dynamic tracking. In order to guarantee the stability of the closed loop system, a Sontage
controller and corresponding region were designed. A stable model predictive tracking controller
(SMPTC) for coordinated control of a large-scale power plant was proposed [10]. By using fuzzy
clustering and a subspace identification method, a Takagi–Sugeno (TS) fuzzy model was established.
Then, through the SMPTC method, the system obtained good set-point tracking performance while
guaranteeing input-to-state stability and the input constraints of the system. A non-linear generalized
predictive controller based on neuro-fuzzy network (NFGPC) is proposed in [11], which consists
of local generalized predictive controllers (GPCs) designed using the local linear models of the
neuro-fuzzy network that models the plant. Liu discussed the performance of coordinated control
on the steam-boiler generation plant using two non-linear model predictive control methods [12].
One of these methods is the input output feedback linearization technique based on a suitably chosen
approximated linear model. The other method is based on neuro-fuzzy networks to represent a
non-linear dynamic process using a set of local models. To improve the learning ability of the MPC
method, Liu proposed a non-linear model predictive controller based on iterative learning control [13].
In practice, the MPC method was also applied to the boiler control system to enable tight dynamical
coordination of selected controlled variables, particularly the coordination of air and fuel flows during
transients [14].

The works introduced above are mainly about the application of model predictive control on the
boiler-turbine system installed on land. However, the steam power plants installed on the large-scale
watercraft or ships have more differences compared to those installed on land. Some of these are:
(i) receiving more disturbances from the ocean waves; (ii) of smaller capacity; (iii) used at multiple
operation points with varying state processes. According to these characteristics, there is a need to
develop more effective control methods for the steam/water loop.

The impact of tuning different prediction horizon sets on the steam/water loop has already been
studied in our previous work, and an optimized prediction horizon set was obtained according to the
specific dynamics of this complex system [15].

However, in the present paper, we summarize our findings upon the effect of tuning different
control horizon sets. In [16], Rossiter analyzed the effect of varying the control horizon, and he
summarized that as control horizon increases, the nominal closed-loop performance improves if the
prediction horizon is large enough. However, for many models, there is not much change beyond a
control horizon equal to 3 samples. For a system with an unstable equilibrium point, the sensitivity of
the trajectory sometimes is very high if the input sequence and the initial state are near the unstable
equilibrium point. In this case, it is necessary to reduce the sensitivity by choosing a shorter horizon
length [17], while ignoring the performance increase with large control horizon length. Cortés proposed
that larger values for the control horizon length will, in general, provide better performance [18].
However, the computational complexity will also increase with the horizon length.

In this paper, a comprehensive analysis was made, studying the effect of different control horizons
in a linear Extended Predictive Self-Adaptive Control (EPSAC) MPC framework [19]. The results were
obtained on the steam/water loop in a large-scale ship. It was found that larger control horizon values
improve the loop performance, at the cost of computational complexity. Consequently, an optimization
scheme was designed by minimizing an optimal performance index consisting of the tracking error and
the computing time for solving the MPC problem. In the end, the best control horizon set was obtained
which provides a good trade-off between the closed-loop performance and allocated or available
computational complexity. According to the simulation results, there are always ripples in the system’s
outputs when applying different control horizon sets, with Nc ≥ 2. Hence, a modified cost function
penalizing both the control effort and the tracking error was imposed in EPSAC, which effectively
removed the ripple.
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The rest of the paper is structured as follows: A description of the steam/water loop is given
in Section 2. In Section 3, a brief introduction of the proposed EPSAC strategy with optimized
control horizon is described. The simulation results and analysis are shown in Section 4. Finally,
the conclusions are given in Section 5.

2. Description of the Steam/Water Loop

In the steam/water loop, there are mainly five loops, as briefly introduced in Figure 1: (i) drum
water level control loop, (ii) deaerator water level control loop, (iii) deaerator pressure control loop,
(iv) condenser water level control loop, and (v) exhaust manifold pressure control loop.

Processes 2018, 6, x FOR PEER REVIEW  3 of 14 

 

In the steam/water loop, there are mainly five loops, as briefly introduced in Figure 1: (i) drum 
water level control loop, (ii) deaerator water level control loop, (iii) deaerator pressure control loop, 
(iv) condenser water level control loop, and (v) exhaust manifold pressure control loop. 

There are two main loops, one for steam indicated by red line, and another for water indicated 
by the green line. The system works as follows. Firstly, the water from the water tank goes to the 
condenser. Secondly, the water will be deoxygenated in the deaerator and be pumped to boiler. Due 
to a higher density of feed water, it goes into the mud drum. After being heated in the risers, the feed 
water turns into a mixture of steam and water. Thirdly, steam gets separated from the mixture and 
heated in the superheater. Finally, the steam with a certain pressure and temperature services the 
steam turbine. The used steam will be sent back to exhaust manifold and most of the steam gets 
condensed in the condenser, while the remainder services the deaerator for deoxygenation. 

 

Condenser

Condensate 
pump

Deaerator

Water tank

 

 

Booster 
pump

Feed 
pump

Replenishment valve

 

 

 

Micro-
superheated 

steam 
manifold

Turbocharged 
unit

 

Turbine 
connecting 

pipe

Other 
auxiliary 
machine

Exhaust 
manifold
Pressure
Output y2 To turbine

Mud 
drum

Furnace
Fuel 
oil

Economizer

Feed water

Drum

 

Input u1

Input u2

Input u3

Input u5

Input u4
Recirculation 

valve

Output y1

water level in drum 

Output y3 and y4

 water level and 
pressure in deaerator

Output y5

water level in condensor 

Water
 supply valve

Exhaust 
valve

Deaerator 
pressure valve

From 
turbine

 
Figure 1. Scheme of complete steam/water loop investigated in this paper. 

The references of these models for each equipment are described as follows. The model of the 
boiler comes from [20]; the model of exhaust manifold is approximated as a second-order model 
according to [21]; the models of the deaerator and condenser are obtained according to [22]. Through 
linearization around the operating point, the overall model shown in Equation (1) is obtained. The 
input vector u = [u1,u2,u3,u4,u5] contains the positions of the valves that control the flow rates of 
feedwater to the drum (u1), exhaust steam from the exhaust manifold (u2), exhaust steam to the 
deaerator (u3), water from the deaerator (u4) and water to the condenser (u5), respectively. The output 
vector y = [y1,y2,y3,y4,y5] contains the values of the water level in drum (y1), pressure in exhaust 
manifold (y2), water level (y3) and pressure (y4) in the deaerator, and water level of the condenser (y5), 
respectively. Table 1 includes the ranges and operating points of the output variables. 

1 1

5

11 12 15

2 21 22 25 2

5 51 52 55

=

    
    
    
    
    

     




     


y G G G u

y G G G u

y G G G u

 (1) 

Figure 1. Scheme of complete steam/water loop investigated in this paper.

There are two main loops, one for steam indicated by red line, and another for water indicated
by the green line. The system works as follows. Firstly, the water from the water tank goes to the
condenser. Secondly, the water will be deoxygenated in the deaerator and be pumped to boiler. Due to
a higher density of feed water, it goes into the mud drum. After being heated in the risers, the feed
water turns into a mixture of steam and water. Thirdly, steam gets separated from the mixture and
heated in the superheater. Finally, the steam with a certain pressure and temperature services the steam
turbine. The used steam will be sent back to exhaust manifold and most of the steam gets condensed
in the condenser, while the remainder services the deaerator for deoxygenation.

The references of these models for each equipment are described as follows. The model of
the boiler comes from [20]; the model of exhaust manifold is approximated as a second-order
model according to [21]; the models of the deaerator and condenser are obtained according to [22].
Through linearization around the operating point, the overall model shown in Equation (1) is obtained.
The input vector u = [u1,u2,u3,u4,u5] contains the positions of the valves that control the flow rates
of feedwater to the drum (u1), exhaust steam from the exhaust manifold (u2), exhaust steam to the
deaerator (u3), water from the deaerator (u4) and water to the condenser (u5), respectively. The output
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vector y = [y1,y2,y3,y4,y5] contains the values of the water level in drum (y1), pressure in exhaust
manifold (y2), water level (y3) and pressure (y4) in the deaerator, and water level of the condenser (y5),
respectively. Table 1 includes the ranges and operating points of the output variables.

y1

y2
...

y5

 =


G11 G12 · · · G15

G21 G22 · · · G25
...

...
. . .

...
G51 G52 · · · G55




u1

u2
...

u5

 (1)

where G11 = 0.0000987
(s+0.1131)(s+0.0085+0.032j)(s+0.0085−0.032j) , G22 = 0.7254

(s+1.2497)(s+0.0223) ,

G23 = −0.5
(s+1.9747)(s+0.0253) , G33 = 0.0132

(s+0.0265+0.0244j)(s+0.0265−0.0244j) ,

G34 = −0.009
(s+0.0997)(s+0.0411) , G41 = −0.0008

(s+0.012+0.126j)(s+0.012−0.126j) , G44 = 0.0005152
(s+0.012+0.038j)(s+0.012−0.038j) ,

G54 = −0.00015
(s+0.0175+0.0179j)(s+0.0175−0.0179j) , G55 = 0.00147

(s+0.025+0.0654j)(s+0.025−0.0654j) , and other transfer
functions G12 = G13 = . . . = G53 = 0.

Table 1. Parameters used in steam/water loop.

Output Variables Operating Points Range Units

Drum water level 1.79 1.39–2.19 m
Exhaust manifold pressure 100.03 87.03–133.8 MPa

Deaerator pressure 30 24.9–43.86 KPa
Deaerator water level 0.7 0.489–0.882 m
Condenser water level 0.5 0.32–0.63 m

The rates and amplitudes of the five inputs are constrained to:

−0.007 ≤ du1
dt ≤ 0.007 0 ≤ u1 ≤ 1

−0.01 ≤ du2
dt ≤ 0.01 0 ≤ u2 ≤ 1

−0.01 ≤ du3
dt ≤ 0.01 0 ≤ u3 ≤ 1

−0.007 ≤ du4
dt ≤ 0.007 0 ≤ u4 ≤ 1

−0.007 ≤ du5
dt ≤ 0.007 0 ≤ u5 ≤ 1

(2)

The inputs units are normalized percentage values of the valve opening (i.e., 0 represents a fully
closed valve, and 1 is completely opened). Additionally, the input rates are measured in percentage
per second.

3. Model Predictive Control with Optimized Control Horizon

3.1. Brief Introduction to Extended Prediction Self-Adaptive Control (EPSAC)

The following is a short summary of EPSAC and more details can be found in [23]. Consider a
linear system described below:

y(t) = x(t) + n(t) (3)

where y(t) indicates the measured output of system; x(t) is the output of model and n(t) is the
model/process disturbance. The output of the model x(t) depends on the past outputs and inputs,
and can be expressed generically as:

x(t) = f [x(t− 1), x(t− 2), . . . , u(t− 1), u(t− 2), . . .] (4)

In EPSAC, the future input consists of two parts:

u(t + k|t) = ubase(t + k|t) + δu(t + k|t) (5)
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where ubase(t + k|t) indicates basic future control scenario and δu(t + k|t) indicates the optimizing
future control actions. Then following results will be obtained by applying Equation (5) as the
control effort.

y(t + k
∣∣t) = ybase(t + k

∣∣t) + yopt(t + k
∣∣t) (6)

where ybase(t + k|t) is the effect of base future control and yopt(t + k
∣∣t) is the effect of optimizing

future control actions δu(t|t) , . . . , δu(t + Nc − 1|t) . The part of yopt(t + k
∣∣t) can be expressed as a

discrete time convolution as follows:

yopt(t + k
∣∣t) = hkδu(t

∣∣t) + hk−1δu(t + 1
∣∣t) + . . . + gk−Nc+1δu(t + Nc − 1

∣∣t) (7)

where h1, . . . hNp are impulse response coefficients; g1, . . . gNp are the step response coefficients; Nc,
Np are control horizon and prediction horizon, respectively. Thus the following formulation can
be obtained:

Y = Y + G·U (8)

with, Y = [y(t + N1
∣∣t) . . . y(t + Np

∣∣t)] T , U = [δu(t|t) . . . δu(t + Nc − 1|t)] T ,
Y = [ybase(t + N1|t) . . . ybase(t + NP|t)] T and

G =


hN1 hN1−1 . . . gN1−Nc+1

hN1+1 hN1 . . . . . .
. . . . . . . . . . . .
hNP hNP−1 . . . gNP−Nc+1

 (9)

where N1 indicates the time-delay in the system.
The disturbance term n(t) is defined as a filtered white noise signal [19]. When there is no

information concerning the noise, the disturbance model used in Equation (3) can be chosen as an
integrator, to ensure zero steady-state error in the reference tracking experiment:

n(t) =
1

1− q−1 e(t) (10)

where e(t) denotes the white noise; q−1 is the backward shift operator.
In order to apply EPSAC for a MIMO (multiple-input and multiple-output) system, the individual

error of each output is minimized separately. The cost function for the steam/water system with five
sub-loops is as follows:

Ji =
NP

∑
k=N1

[ri(t + k|t)− yi(t + k|t)] 2(i = 1, 2, . . . , 5) (11)

By defining Gik as the influence from kth input to ith output, Equation (11) can be rewritten as:

(Ri − Yi)
T(Ri − Yi) = (Ri − Yi −

5

∑
k=1

GikUk)
T(Ri − Yi −

5

∑
k=1

GikUk) (12)

with Ri denoting the reference for loop i, and Yi denotes the predicted output for loop i.
Taking constraints from inputs and outputs into account, the process to find the minimum cost

function becomes an optimization problem which is called quadratic programming.
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min
Ui

Ji(Ui(= Ui
THiUi + 2fi

TUi + ci subject to AU ≤ b

with


Hi = GT

ii Giifi = −GT
ii (Ri − Yi −

5
∑

k=1
GikUk)

ci = (Ri − Yi −
5
∑

k=1
GikUk)

T(Ri − Yi −
5
∑

k=1
GikUk)

(13)

where A is a matrix; b is a vector according to the constraints and Ui is the input for sub loop i.
By solving the quadratic problem, the optimal U = [U1 U2 U3 U4 U5] can be obtained.

3.2. Ripple-Free Model Predictive Control (MPC)

Since MPC uses a discrete-time model, it is easy to get ripples in the system output when
controlling a continuous system with periodic control effort during the sampling time. According to
the simulation results of the steam/water loop in large-scale ships, there always exists ripple when
applying a control horizon Nc ≥ 2. To remove the ripple in the control effort, an alternative cost
function which also penalizes the control effort imposed in the EPSAC strategy [15], obtaining:

Ji = Je
i +

λ

1− λ
Ju
i (14)

where λ ∈ [0; 1) is a weighting parameter, and,

Je
i =

Np

∑
k=1

kei (t + k|t) 2, Ju
i =

Nc

∑
k=1

(ui(t + k|t)− ui(t + k− 1|t))2 (15)

are the cumulative sum that penalizes the predicted tracking error ei(t + k|t) over the prediction
horizon, and the cumulative term which corrects the deviations in postulated control effort ui(t + k|t)
over the control horizon, for each loop i, respectively.

In order to minimize the Je
i in Equation (15), the tracking error must converge to zero rapidly.

However, the Ju
i term has a negative impact on the tracking error. By choosing an appropriate value

for λ, a good trade-off between the closed-loop performance and the control effort can be made.

3.3. Optimized Control Horizon

To our knowledge, the longer control horizon values can result in better performance, albeit the
computational complexity will also increase, which makes it more difficult to realize online
optimization. The relationship between performance, computational complexity and control horizon
can be described by Figure 2.
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According to Figure 2, it is possible to find a good trade-off between the tracking performance and
computational complexity. In this paper, the problem is explicitly treated as an optimization problem,
and the following index is applied to obtain the point of compromise for the five loops [24]:

Ii = Ti + ηiEi (i = 1, 2, . . . , 5)

Ti =
NS
∑

k=1
tis(k) Ei =

NS
∑

k=0
|ri(k)− yi(k)|/ri(k)

(16)

where Ti is the total simulation computation time, with tis the length of time required to perform the
optimization at each sampling time and Ns the number of total simulation samples; Ei is the integrated
absolute normalized tracking error; ηi denotes the weighting factor.

In order to obtain the optimal control horizon Nc for loop i, experiments are required to be
conducted with different control horizons. After minimizing the index Ii, the optimal control horizon
can be obtained. The value of η should be chosen according to the dynamic of the system. For example,
the dynamic of the system is slow in the steam/water loop, hence a large value of η should be chosen
to focus more on the error than the computation time.

4. Simulation Results and Analysis

In this section, the proposed EPSAC method is applied to the steam/water loop. Firstly,
the performance is shown after applying the cost function focus on penalizing the control effort
by tracking several step set points in different loops. Secondly, different control horizon sets are
imposed in the ripple-free EPSAC to verify their effect, and the optimal control horizon set is obtained
by minimizing the index in Equation (16).

4.1. Ripple-Free Validation

According to our previous work, the parameter configuration for the EPSAC method is shown in
Table 2, where the Ts is the sampling time; Np1, Np2, . . . , Np5 are prediction horizons of the five loops,
respectively. (The prediction horizons were selected taking into account the specific transient dynamic
for each loop). The step set points are provided in Table 3. In the experiments, the initial condition was
set at the operating point of the steam/water loop.

Table 2. Parameters applied in Extended Prediction Self-Adaptive Control (EPSAC) controller.

Controllers Nc Ts Np λ N1 Ns

EPSAC
10 5 s

Np1 = 20; Np2 = 15; Np3 = 15;
Np4 = 20; Np5 = 20

0
1 300

Ripple-free EPSAC 0.3

Table 3. Step set points changes in the experiments.

Time (s) 2–300 300–600 600–900 900–1200 1200–1500

Drum Water Level (m) 2 2 2 2 2
Exhaust Manifold Pressure (MPa) 100.03 116 116 116 116

Deaerator Pressure (KPa) 30 30 35 35 35
Deaerator Water Level (m) 0.7 0.7 0.7 0.8 0.8
Condenser Water Level (m) 0.5 0.5 0.5 0.5 0.6

The simulation results are shown in Figure 3, including the system outputs and the corresponding
control efforts. Note that the EPSAC performs better, with the cost function given in Section 3.2 that
also penalizes the control effort variations, thus eliminating the severe ripples on each loop input. Also,
it is noteworthy to mention that the output steady state error from loops 1, 4 and 5 is removed.

When only the tracking error is penalized in the cost function, there are ripples with Nc ≥ 2,
which means that the controller is allowed to give at least two different control values, to ensure
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that the predicted output reaches the imposed reference, within the prediction window. In order to
minimize the cost function, the first value of control effort will be optimized as large as possible under
the constraint of the system. Hence, the inputs of the system are aggressive which results in the ripples.
The amplitude of the ripples is influenced by the control horizon and the sampling time. By choosing
an appropriate λ value in Equation (14), the ripples can be effectively removed. It is worth mentioning
that when the control horizon is Nc = 1, there are no ripples.

In the ship’s steam/water loop, the condenser and the deaerator have smaller capacity when
compared with the boiler. Therefore, as seen in Figure 3, there are large overshoot values at the
condenser water level and the deaerator water level when the setpoint is changing for the drum water
level. The steady errors exhibited in loops 1, 4 and 5 as shown in Figure 3, are caused by the intrinsic
coupling between the respective loops. The input u1 has a large influence on the deaerator water level
y4, which is controlled by u4. However, input u4 also modifies the condenser water level y5. On the
other hand, the inputs for each loop are calculated according to the cost function shown in Equation
(12), where the past sample time input values for the coupling variables are used.
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Figure 3. Responses of the steam/water loop under the EPSAC and ripple-free EPSAC for (a) drum
water level control loop, (b) deaerator water level control loop, (c) deaerator pressure control loop,
(d) condenser water level control loop and (e) exhaust manifold pressure control loop (The figures on
left-hand indicate the outputs, and on the right-hand indicate the inputs).
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4.2. Influence of Different Control Horizon Sets

This section summarizes the results for the five loops with different control horizon values.
The simulation study cases are described as follows:

• Case 1: Nc1, . . . ,Nc5 = 1 sample;
• Case 2: Nc1, . . . ,Nc5 = 2 samples;
• Case 3: Nc1, . . . ,Nc5 = 5 samples;
• Case 4: Nc1, . . . ,Nc5 = 10 samples.

The responses of the steam/water loop with different control horizon values, are shown in Figure 4
(left-hand side), whereas the corresponding control efforts are given in Figure 4 (right-hand side).
From the simulation results, one can remark that increasing the control horizon value in the proposed
ripple-free EPSAC leads to better tracking performance, with a smaller overshoot and settling-time
response, but with a higher control effort.
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The performance of the proposed ripple-free EPSAC algorithm was also analyzed in terms of the
integrated absolute normalized tracking error (Ei) and computation time (Ti) defined in Section 3.3,
in index (15). The numerical values are listed in Tables 4 and 5 respectively, and their relationship is
graphically depicted in Figure 5 (for different control horizon values).

Table 4. Normalized tracking error with different control horizon sets.

Loop 1 Loop 2 Loop 3 Loop 4 Loop 5

Nc = 1 1.342 2.039 2.08 1.933 4.603
Nc = 2 1.294 2.007 2.063 2.04 5.595
Nc = 5 1.242 1.976 2.038 1.999 5.012

Nc = 10 1.215 1.957 2.015 1.919 4.147

Table 5. Computing time in seconds with different control horizon sets.

Loop 1 Loop 2 Loop 3 Loop 4 Loop 5

Nc = 1 3.384 2.687 3.182 2.584 2.79
Nc = 2 4.778 3.217 4.083 4.432 4.297
Nc = 5 6.058 4.456 5.716 5.757 5.822

Nc = 10 5.959 4.393 5.195 5.332 5.455
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Next, the information from Tables 4 and 5 is combined, and the index (16) is calculated,
with ηi = 0.76, for each loop i (i = 1,2, . . . ,5). Note that this value compromises the computational
complexity (i.e., the required computation time) in favor of a better tracking error. Given the graphical
results plotted in Figure 6 and their significance, the optimal Nc set is selected as Nc1 = 4, Nc2 = 1,
Nc3 = 1, Nc4 = 4, Nc5 = 6 samples, which gives a good trade-off between the two components from
index (15).
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5. Conclusions

In this paper, the effect of control horizon is studied for an EPSAC model predictive control
framework, and the results are validated on a complex steam/water loop process example. Since a
larger control horizon improves the performance of the system at the price of a higher computational
complexity and control effort, a trade-off is required. By minimizing an objective function defined as a
combination between the system error and computational time, the best control horizon set of values
is obtained. According to the simulation results, when applying different control horizon sets (Nc ≥ 2)
in the steam/water loop, there are always ripples in the output of the system. Hence, a cost function in
terms of tracking error and deviations in the control effort was imposed in EPSAC. The simulation
results show the effectiveness of the alternative cost function from EPSAC.
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