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Abstract: To coordinate the economy, security and environment protection in the power system 

operation, a two-step many-objective optimal power flow (MaOPF) solution method is proposed. 

In step 1, it is the first time that knee point-driven evolutionary algorithm (KnEA) is introduced to 

address the MaOPF problem, and thereby the Pareto-optimal solutions can be obtained. In step 2, 

an integrated decision analysis technique is utilized to provide decision makers with decision 

supports by combining fuzzy c-means (FCM) clustering and grey relational projection (GRP) 

method together. In this way, the best compromise solutions (BCSs) that represent decision makers’ 

different, even conflicting, preferences can be automatically determined from the set of Pareto-

optimal solutions. The primary contribution of the proposal is the innovative application of many-

objective optimization together with decision analysis for addressing MaOPF problems. Through 

examining the two-step method via the IEEE 118-bus system and the real-world Hebei provincial 

power system, it is verified that our approach is suitable for addressing the MaOPF problem of 

power systems. 

Keywords: optimal power flow; optimal operation; power systems; multi-objective optimization; 

knee point-driven evolutionary algorithm; decision analysis; best compromise solutions 

 

1. Introduction 

Optimal power flow (OPF) plays a major part role in guaranteeing the safe and economical 

operation of power systems [1,2], and it has been receiving the wide-spread attention of professionals 

and researchers from academia and industry [3,4], especially in the case of large-scale integrations of 

renewable energy resources [5,6]. The key idea of OPF is to find the optimal operating point with the 

lowest generation/operating costs under the premise of constraints [7–9], which contain a series of 

equality and inequality equations [10,11]. However, the conventional mono-objective OPF, which 

generally seeks optimum economy [12,13], such as active power losses or generation costs, becomes 

unable to meet the diversified needs of electricity consumers. In [12], an OPF model is proposed for 

determining optimal operating points of a power system, and the operating costs of the system are 

set to the mono-objective function in the model. In [13], the adjustable direct current OPF is presented 

and the objective function is taken as the total generation cost of units. And at the same time, the 

power flow characteristics of a modern power system are becoming increasingly complex due to the 

growing penetration of distributed generations [14–17] and the deployments of novel power 

electronic loads [18–22]. In this context, multi-objective OPF (MOPF) has received the extensive 

attention of researchers in the field of OPF [23–28], since it can coordinate different-weight or even 

conflicting multiple objectives. However, MOPF poses challenges in terms of computational 

complexity due to its inherent non-linear, non-convex, and non-smooth characteristic [23,24], which 

is hard to solve directly. 
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Recent research suggests that multi-objective evolutionary algorithms (MOEAs) are promising 

tools for addressing various challenging optimization tasks in engineering fields [29–32]. In order to 

optimal distributed generation planning, a MOEA is employed in [29]. Reference [30] reviews the 

most representative MOEAs that have been reported, and MOEA has developed as an effective 

method to solve such an optimization problem. In [31], MOEA is employed for planning overtime of 

software engineers. The layout of wind farms is optimized via MOEA in [32]. In particular, MOEAs 

can be also applied to solve the OPF issue [23–28]. Unfortunately, the MOPF can only cope with the 

optimization issue with two to three objectives, which, to a certain extent, limits the practicality of 

this type of methods. In addition, many-objective optimization problems (MaOPs), considering four 

or more objective functions in the OPF problem [33–36], are commonly existed phenomenon in the 

practice of real-world power system operation [33]. In [34], a specially tailored MOEA is presented 

for tackling the current large-scale MaOPs. Another MOEA based on adaptive search strategy is 

presented for coping with MaOPs in [35]. In [36], six different evolutionary algorithms (EAs) are 

tested, and the results prove that MOEAs exhibit their own capabilities in dealing with different 

MaOPs. For this reason, MaOPs have recently gained a great deal of attention as most existing 

MOEAs are inadequate for solving OPF problems with four or more objectives, and it has become a 

hotspot to enhance the ability of MOEAs for addressing MaOPs issues [37–39]. However, many-

objective OPF (MaOPF) is quite challenging for solving since it is generally non-convex and non-

deterministic polynomial-time hard (NP-hard). Motivated by the recent work in literature [23], a new 

powerful MOEA, called knee point-driven evolutionary algorithm (KnEA), is applied for solving this 

problem in the paper, which is helpful to better adapt the increasingly diversified operating 

requirements for the construction of the modern power systems. 

In recent years, MOEAs have been successfully utilized in the field of multi-objective OPF 

(MOPF) problems in some significant pioneering works. In [24], one of MOEAs, artificial bee colony 

algorithm, is applied for addressing MOPF issues. For solving similar MOPF issues, the improved 

strength Pareto evolutionary algorithm is adopted in [25]. In [26], the gravitational search algorithm 

is employed to cope with this issue. In [27], MOEA is applied for solving the MOPF problems in 

combined heat and power economic emission dispatch. An approach based on the improved MOEA 

is proposed to generate Pareto-optimal solutions efficiently in [28]. In [40], a hybrid MOEA is put 

forward to deal with the MOPF issue by taking into account a set of various constraints. In [41], a 

model with two optimization objectives representing economy and stability is built for the system, 

then it can be solved due to the adoption of non-dominated sorting genetic algorithm II (NSGA-II) 

[42,43]. In [44], an improved MOEA/D algorithm is used for solving MOPF issues of power systems, 

and the used OPF model considers two and three objective functions in the indices relevant to cost, 

emissions, power losses, and stability. Unfortunately, most of all the above investigations focus on 

the OPF problems with two or three objectives for the power system, which is unable to meet the 

electricity consumers’ needs of an increasingly diverse. In particular, there are many requirements 

that should be satisfied both for electricity suppliers and for users in the actual operation of power 

systems, which explains the reason why MaOPF is an urgent practical problem. As a matter of fact, 

the MaOPF has arisen as a consequence of some difficulty to overcome in the context of a research 

and development project. However, as far as the authors know, very few studies have investigated 

the MaOPF issue in literatures, thus this work focuses on solving the MaOPF problem. 

This paper proposes a novel two-step MaOPF method by combining KnEA and integrated 

decision making for addressing this problem. The approach includes two-folds: many-objective 

optimization and decision support. At step 1, the Pareto-optimal solutions can be obtained, through 

solving the model of MaOPF with employing KnEA; at step 2, the best compromise solutions (BCSs) 

can be identified according to priority memberships in each group, and each group represents 

different objective preference. While the fuzzy c-means (FCM) clustering is applied to divide the 

solutions into several groups, grey relational projection (GRP) method is employed to calculate 

priority memberships. The primary contribution of the proposal is the innovative application of 

many-objective optimization into the optimal power flow field. 
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The rest of this paper is organized as follows. In Section 2, a MaOPF model is built; Section 3 

displays the solution methodology based on the model; and then, Section 4 contains case studies; 

lastly, conclusions are drawn in Section 5. 

2. MaOPF Model 

This section outlines the model of MaOPF, including the objective functions and related 

constraints. With the current development of power systems, different requirements need to be met, 

such as economy, safe and environmental protection. Thus, four objective functions are contained in 

the MaOPF model. What’s more, the equality and inequality constraints are also included in the 

novelty MaOPF model, and those common constraints in OPF issues are employed in this paper. 

2.1. Objective Function 

To satisfy the requirements of economic, safety and environmental in power system, the 

objective functions of MaOPF problem consider generation cost, voltage deviation, L-index, and 

emissions of polluting gases in this work. 

2.1.1. Generation Costs 

Generally, the minimum generation cost f1 is the main objective function that must be considered 

in the OPF problem, which represents the economy of operation of power systems. The expression 

of the generation cost is [45–47]: 
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where 
,G i

P  denotes the active output power produced by generator i, and 
G

N  is the total number of 

generators;  ,  , and   indicate the quadratic, linear and constant factors of a generator, 

respectively. 

2.1.2. Index of Voltage Deviation 

Taking into account that the voltage deviation is an important measure to reflect the voltage 

quality and safety level of a power system [24,26], the minimize voltage deviation index f2 is taken as 

one of the optimization objectives for evaluating system security [47,48]. The expression of f2 is given 

by: 
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where 
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U  indicates the voltage amplitude of bus i in the system, and the total number is N, ,ref i
U  

is the pre-defined voltage amplitude of 
i

U . 

2.1.3. Static Voltage Stability Margin 

For the static security issue, L-index is another evaluation merit in OPF problems. The value of 

L-index can judge how far from the operation point of voltage collapse to that of normal, and L-index 

is defined as [49,50]: 
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where θ is the phase-angle difference between two buses, and δ is the voltage phase angle of the bus, 

LL
Y  and 

L G
Y  are subarrays in the admittance matrix for nodes. Then, the objective function f3, 
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which is the minimum value of L-index, is employed to describe the static voltage stability margin. 

The equation of the third objective is shown as follows [49,50]: 

 f  
3

max , 1,...,
j b

L j N  (4)

where 
b

N  is the number of load buses in the system. 

2.1.4. Emissions of Polluting Gases 

In the proposed MaOPF model, the fourth objective function f4 considers the environmental 

demand of power system, thus the minimum emissions of polluting gases are utilized. The 

expression of f4 is as follows [51,52]: 
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where 
i

a , 
i

b  and 
i

c  denote the quadratic, linear and constant polluting gases emissions coefficients 

of generator i. 

2.2. Constraints in Power Systems 

In the power system, the used main constraints in the MaOPF model are introduced in this 

section. 

2.2.1. Constraints of Equality 

In the OPF problem, the equality constraints are universally considered and enforced, which can 

be written as nonlinear equations as follows [24,26]: 
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where ,g i
P  and 

,d i
P  are the injected active power and active load in bus i, while ,g i

Q  and 
,d i

Q  are 

the reactive injected power and reactive load, ij
G  and ij

B  are respectively the conductance and 

susceptance between buses i and j. This equation suggests that the active and reactive powers need 

to keep balance in the power system. 

2.2.2. Constraints of Inequality 

Herein, the bounds of variables in the power system are considered for the purpose of ensuring 

the power system in a safe state during operation, and they can be formulated as [24,26]: 
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where 
,G i

Q  represents the reactive power produced by generator i; 
i

T  indicates the tap of adjustable 

transformer i, and the number of transformers is 
T

N ; 
,C i

Q  expresses the reactive power of 

compensation device i, and the number of devices is 
C

N ; 
,L i

S  denotes the power flow in the branch 
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i of the system, and 
L

N  expresses the number of branches; each variable has its upper and lower 

limits, which are respectively represented by the subscript ‘max’ and ‘min’. 

3. Two-Step Solution Approach 

The proposal is divided into two phases: an optimization process with many objectives and the 

following decision support procedure. At step 1, the set of Pareto optimal solutions is gained with 

the employment of KnEA. Then at step 2, FCM clustering is adopted to classify the set obtained in 

the first step. GRP method is applied to automatically select BCSs from each group. 

3.1. Optimization Process with Many Objectives 

The first step is introduced in this section. By solving MaOPF model with KnEA, the set of Pareto 

optimals is obtained. 

3.1.1. KnEA-Based Many-Objective Optimization 

The key concept of the KnEA is knee points (KPs). Different from other MOEAs, the KnEA 

employs a prevailing non-dominance selection criterion strategy and a secondary selection criterion 

strategy whose reference is the KPs in the optimization process [33]. After the environmental selection 

process, the diversity of the population is improved. In addition, mating selection adopting 

tournament strategy is applied in KnEA, and weighted distance is a metric of the strategy. The 

weighted distance  WD p  of solution p is defined as [33]: 
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where 
i

p  is the ith nearest neighbor of solution p; 
ip

wd  and 
ip

rd  are respectively the weight and 

rank of 
i

p ; 
ipp

dis  denotes the Euclidean distance between p and 
i

p . 

In the KnEA, a KP is defined as the point with the maximum distance to the hyperplane within 

neighborhood scope in the objective functions space [53]. In the gth generation, the neighborhood 

scope 
i

g
R  corresponding to the objective function fi is given by: 
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where the upper and lower limits of the ith objective function fi are respectively represented by the 

superscript ‘max’ and ‘min’, and the total number of functions is obj
N ; r denotes the proportion of 

neighborhood scope in the objective span; g represents the gth generation; t is the proportion of the 

KPs in the whole population;  0 1TH  expresses the boundary. 

3.1.2. Procedure of Many-Objective Optimization 

The flowchart of the optimization procedure using the KnEA is shown in Figure 1, and the 

specific steps are as follows [33]. 
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g < gmax？

Generate population Popg
’

Update Popg = Popg ∪ Popg
’

Compute the values of 
objective functions F

 generate the next generation 
population Popg+1

Output Pareto-optimal solutions

Start

End

g = g + 1

Create the initial population Pop0

K = Ø，g = 0，r0 = 1，t0 = 0

Yes

No

Enter the initial variables

Renovate the set of knee points K

 

Figure 1. Process of optimization scheme by using knee point-driven evolutionary algorithm (KnEA). 

Step 1: Enter the initial variables. The variables mainly incorporate three-folds as follows. 

(1) The network parameters: the related information of power systems. 

(2) The controlled variable parameters: the bounds which are shown as (7), and the steps of T  and 

C
Q . The considering controlled variable are listed as follow: 

 
 
  
 

       
 ,1 , , ,1 , , 1 ,1 , ,

continuous variables discrete variables

, , , , , , , , , , , , , , , , , , ,
G G T CG G i G N G G i G N i N C C i C N

P P P U U U T T T Q Q Q  

where 
G

U  is the generator terminal voltage. 

(3) The algorithm parameters: the population size pop
N , the maximum generation number 

m ax
g , 

the set of KPs K , the ratio of size r, the rate of KPs in population t, the number of objectives obj
N  

which is taken as 4 in this paper. 

Step 2: Create an initial population 
0

Pop , initial the set of KPs K  which is an empty set, and set 

the generation counter 0g , 
0

1r ,  
0

0t  Considering that the variables T  and 
C

Q  are discrete 

variables while others are continuous variables, a hybrid coding scheme is employed in the 

initialization process. 

Step 3: Generate population '
g

Pop  by adopting binary tournament mating selection with three 

strategies for distinguishing solutions, that is, dominance comparison, KP criterion, and  WD p  in 

Equation (8) [33]. If the non-dominance selection and the secondary selection criterion strategy fail to 

discriminate solutions in '
g

Pop , they can be chosen eventually according to the value of  WD p . 

Then, the population '
g

Pop  is formed by the solutions with the mating selection. 
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Step 4: Update the population g
Pop  with genetic variations. The two operations, simulated 

binary crossover, and polynomial mutation, are implemented in '
g

Pop . The population g
Pop  is 

then updated based on the individuals in g
Pop  and '

g
Pop , and g

Pop  = g
Pop  ∪ '

g
Pop . 

Step 5: Compute the values of objective functions 1 2 3 4{ , , , }F f f f f , and then the non-dominated 

solutions are identified from g
Pop . 

Step 6: Renovate the set K . The KPs are chosen according to (9), and the set of KPs K  are 

recorded and renovated in the optimization process. 

Step 7: Based on the set K  and the objective function values, generate the next generation 

population 1g
Pop  based on the environmental selection strategy [33]. 

Step 8: Judge the termination criteria. If 
m ax

g g , return to Step 3 after adding 1 to the current 

generation g; otherwise, output the Pareto-optimal solutions. 

3.2. Decision Support 

In real-world practice, it is quite challenging for decision makers to figure out whether a Pareto-

optimal solution is a BCS or not from among the non-inferior solutions. First, considering the fact 

that there are a lot of generated Pareto-optimal solutions, the references of decision makers might be 

different for a specific operation point. Another issue is that for a specific system the preference of 

the same decision maker may also vary according to changing operational requirements. Therefore, 

in the second step, that is, the decision support process, FCM and GRP method are adopted to 

evaluating Pareto optimal solutions, and BCSs are identified which are represent decision-makers’ 

different, even conflicting, preferences. 

3.2.1. Fuzzy c-Means 

FCM is a classical unsupervised clustering algorithm. After processing of FCM clustering, the 

similarities between the solutions in the same group are the largest, while the similarities between 

the solutions in different groups are the smallest. The model of FCM can be formulated as [54–56]: 
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where J  expresses loss function for judging the convergent degree,  1m m  is a constant for 

controlling the clustering fuzziness,      0,1
ij ij  is the membership degree between solution 

i
w  

and center j
c , while 

i
w  denotes the ith Pareto optimal solution in the whole set, j

c  is the jth 

clustering center; p
N  and 

c
N  are the number of solutions and clusters, respectively. Here, 

c
N  is 

taken as 4 (corresponding to the considered four objective functions). 

3.2.2. GRP Method 

As one of the decision methods, GRP method is especially suitable for evaluating the solutions 

with grey relationships in the MaOPs, which is based on grey system theory and vector projection 

[23]. The projection 
 ( )

l
V  of the lth solution in the ideal scheme can be written as [57,58]: 
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where plus sign denotes positive scheme, minus sign represents negative scheme, 
lk

 indicates the 

grey relational factor of the kth objective in lth solution. 
k

 is the weight of the kth objective, the 

corresponding weights of four objectives are set to the same value in this paper, and the operators 

can adjust the weights according to the actual working condition or personal preference. Then, the 

priority membership   0 1
l l

PM PM  of solution l can be written as follows: 
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where 
0

V  equals to the value of 
l

V  when 
l

V  takes 1. The greater the membership of the 

solutions is, the closer it is to the ideal scheme; and vice versa. In this way, the solutions with the 

highest PM values in each group are regarded as the BCSs. 

4. Case Studies 

For examining validity of the approach provided in this paper, two test systems with varied 

complexity levels, i.e., the IEEE standard system and the system applied in Hebei province, are taken 

as test cases. And furthermore, to properly measure the optimization performance of our approach, 

two state-of-the-art MOEAs for solving MaOPs, i.e., the reference vector guided evolutionary 

algorithm (RVEA) and non-dominated sorting genetic algorithm III (NSGA-III), are employed as 

comparison algorithms. All programs in this work are carried out by a desktop computer with 3.40 

GHz CPU basic frequency and 4 GB memory. 

4.1. IEEE 118-Bus System 

The first step is introduced in this section. By solving MaOPF model with KnEA, the set of Pareto 

optimals is obtained. 

4.1.1. Introduction to the System 

As a well-known test system, IEEE 118-bus system is extensively studied in previous literature 

[26]. This system with base capacity 100 MVA includes 14 active generators, 132 branches, 9 

adjustable transformers. In the system, bus 69 is the slack bus. The related coefficients of generator i, 

such as 
i
, 

i
, 

i
, 

i
a , 

i
b , and 

i
c , are extracted from literature [26]. 

The limits of controlled variables are listed as follows: the lower and upper bounds of the voltage 

are respectively 0.95 p.u. and 1.10 p.u., the tap T  varies from 0.9 p.u. to 1.1 p.u., and the lower and 

upper bounds of 
C

Q  are 0 and 0.5 p.u.; the step-size of T  and 
C

Q  are respectively 0.0125 p.u. and 

0.01 p.u.; the upper bound of the branch transmission capacity is 300 MVA. 

4.1.2. Algorithm Comparison 

As mentioned above, three algorithms are employed to solve MaOPF problem. In order to 

facilitate comparison, pop
N  and 

m ax
g  of all three algorithms are respectively 50 and 100. The three 

algorithms repeatedly run 20 times independently. Among all the results of the 20 runs for each 

algorithm, without loss of generality, one result (i.e., a set of Pareto optimals) is randomly taken as 

an instance for the consequent analysis. The distributions of three selected results with four objective 

functions are shown in Figures 2–4. 
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Figure 2. Distribute condition of Pareto-optimal solutions of KnEA. 
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Figure 3. Distribute condition of Pareto-optimal solutions of reference vector guided evolutionary 

algorithm (RVEA). 
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Figure 4. Distribution of Pareto-optimal solutions of non-dominated sorting genetic algorithm III 

(NSGA-III). 

The comparison of extreme values of the four objective functions obtained by each algorithm is 

shown in Table 1, and the smallest values in each line of Table 1 have been marked with bold fonts. 

According to the results in Table 1, it is obvious that the extreme values of the four objectives obtained 

by KnEA are smaller than that of the other two algorithms when solving the MaOPF problem. To a 

certain extent, the extreme value can evaluate the performance of MOEAs. The smaller extreme value 

means that the optimization performance is more effective, thus KnEA has the best performance in 

the three algorithms only from the view of extreme values. 

Table 1. Comparison of extreme values of KnEA, RVEA, and NSGA-III. (KnEA: knee point-driven 

evolutionary algorithm; RVEA: reference vector guided evolutionary algorithm; NSGA-III: non-

dominated sorting genetic algorithm III). 

Objective Function Extreme Value KnEA RVEA NSGA-III 

f1/(104 $/h) 
Maximum value 2.3062 2.3413 2.3507 

Minimum value 2.2808 2.2826 2.2831 

f2/(p.u.) 
Maximum value 0.0224 0.3147 0.0408 

Minimum value 0.0165 0.2451 0.0177 

f3/(p.u.) 
Maximum value 0.0449 0.0456 0.0496 

Minimum value 0.0301 0.0406 0.0361 

f4/(104 lb/h) 
Maximum value 2.2539 2.3151 2.2857 

Minimum value 2.2036 2.2078 2.2058 

How to assess the performance of MOEAs has recently been attracting concerns. Unfortunately, 

this is still an open question at the moment. In general, a good evaluation indicator should have good 

convergence and distribution characteristic [23]. Two quantitative indicators, which can assess the 

optimization performances of three different algorithms in different aspects, are employed in this 

study. 

(1) Generational distance 

The first indicator is the well-known generational distance (GD), which represents the 

convergence conditions of the set [23]. For measuring the convergence of obtained solutions, the 

formulation of GD is given as follows: 
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where 
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D  denotes the Euclidean distance in objective function space, which is calculated between 

each two nearest solutions. 

(2) Spacing 

The spacing (SP) is another popular indication for estimating the distribution of a Pareto front, 

and its expression is given by [23]: 
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where D  represents the average value of 
i

D . It should be noted that a solution with smaller values 

of the above two metrics has better performances about convergence and diversity. 

In view of the randomness of MOEAs to optimal results [23], all the used three algorithms are 

independently carried out 20 times. In Table 2, the obtained best, average and worst values of two 

metrics are listed. 

Table 2. Statistical values of two metrics for the three algorithms (GD: generational distance; SP: 

spacing). 

Algorithm Metrics Best Average Worst 

KnEA 
GD 4133.68 4515.35 4868.10 

SP 15.23 16.40 17.92 

RVEA 
GD 5347.71 5893.61 6286.75 

SP 40.16 65.99 69.43 

NSGA-III 
GD 4879.06 5430.93 6250.68 

SP 17.37 19.67 21.35 

From Table 2, we can see that the metrics GD and SP of the KnEA are better than those of the 

RVEA and NSGA-III. These results suggest that the KnEA has advantages over the other alternatives 

in the convergence and distribution performances. 

Subsequently, the average calculation times of the three algorithms in 20 runs are presented in 

Table 3. And it is easy to judge from the average times in Table 3, comparing with RVEA and NSGA-

III, the optimization speed of KnEA for solving MaOPF problem is better. 

Table 3. Average times of each algorithm. 

Algorithm KnEA RVEA NSGA-III 

Average Time (s) 88.12 93.45 90.69 

From the above comparison, it is clear that KnEA is superior to RVEA and NSGA-III in 

optimization effects and solution efficiency in solving the MaOPF problem. 

4.1.3. Result Analysis 

Taking the representative Pareto-optimal solutions obtained by KnEA as an example, the 

solutions are divided into four groups, which corresponds to the four objective functions, through 

the FCM clustering, and the distribution of four groups of solutions is shown via different colors in 

Figure 5. 



Processes 2018, 6, 250 12 of 19 

 

f3 (p.u.) f4 (104 lb/h)f2 (p.u.)f1 (104 $/h)

2.190

2.195

2.220

2.215

2.205

2.200

2.200

0.030

0.045

0.042

0.039

0.036

0.033

0.017

0.018

0.023

0.022

0.021

0.020

0.019

0.016 2.200

2.210

2.260

2.250

2.240

2.230

2.220

 

Figure 5. Distribution of Pareto-optimal solutions of KnEA after Fuzzy c-Means (FCM) clustering. 

In Figure 5, each line denotes one solution in the set, and the lines with red, green, blue and 

yellow colors represent that decision makers prefer for f1, f2, f3, f4, respectively. When many lines cross 

between two adjacent objectives, it indicates that the two objectives are in a conflicting relationship. 

It should be noted that each Pareto-optimal solution acquired from KnEA is not the best for every 

objective since, for a MaOPF problem, they are only non-inferior solutions. 

GRP method is used to evaluate the solutions after adopting FCM clustering, and each group 

belongs to one scheme. After the membership of each solution is computed, the BCSs, which have 

the highest membership values in each group, are listed in Table 4. 

Table 4. Best compromise solutions (BCSs) of IEEE 118-bus system. 

BCSs f1 (104 $/h) f2 (p.u.) f3 (p.u.) f4 (104 lb/h) PM 

Prefer for f1 2.2828 0.0174 0.0309 2.2417 0.7553 

Prefer for f2 2.2831 0.0167 0.0364 2.2413 0.7423 

Prefer for f3 2.2919 0.0173 0.0303 2.2206 0.6885 

Prefer for f4 2.2926 0.0185 0.0355 2.2190 0.6848 

According to the BCSs shown in Table 4, the two-step mean is capable of addressing the MaOPF 

problem. Not only a complete and evenly distributed set is achieved, but also the BCSs can be 

identified. 

The BCS prefer for f1 is an example, and comparison results of generator variables are displayed 

in Table 5, before and after adopting KnEA. Furtherly, the comparison of objective functions before 

optimization and BCS prefer for f1 are shown in Table 6. 
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Table 5. Comparison results of generator variables. 

Generators 
Before Optimization After Optimization 

PG (p.u.) QG (p.u.) UG (p.u.) PG (p.u.) QG (p.u.) UG (p.u.) 

G1 4.500 0 1.050 4.471 −0.856 1.019 

G2 0.850 0 0.990 0.935 0.489 0.987 

G3 2.200 0 1.050 2.420 1.811 1.015 

G4 3.140 0 1.015 3.454 −1.897 1.004 

G5 2.040 0 1.025 2.244 0.331 1.009 

G6 0.480 0 0.955 0.528 0.301 0.983 

G7 1.550 0 0.985 1.705 0.793 1.005 

G8 1.600 0 0.995 1.760 −0.310 1.002 

G9 3.910 0 1.005 4.300 3.749 1.000 

G10 3.920 0 1.050 4.312 −3.919 1.019 

G11 5.164 0 1.035 3.690 −0.772 1.031 

G12 4.770 0 1.040 4.501 0.026 1.019 

G13 6.070 0 1.005 5.463 −0.154 1.015 

G14 2.520 0 1.017 2.772 0.304 1.008 

Table 6. Comparison results before and after optimization. 

Optimization Condition f1 (104 $/h) f2 (p.u.) f3 (p.u.) f4 (104 lb/h) 

Before optimization 13.1221 0.0416 1.8729 2.9153 

After optimization 2.2828 0.0174 0.0309 2.2417 

From the above table, it can be seen that the variables are all in the predefined range, and the 

distribution of power flow becomes more reasonable through optimization, which embodies the four 

objective functions after optimization are superior to their corresponding values before optimization. 

Accordingly, it can be concluded that the presented algorithm is an efficient tool to determine the 

BCSs for the MaOPF problem, which helps to provide more realistic options representing decision 

makers’ different references. 

4.2. Application to the Hebei Provincial System 

The two-step mean is employed to an actual physical power system to evaluate the applicability, 

and the Hebei provincial power system located in China is further tested in this paper. This system 

contains 45 active generators, 169 substations with voltage grades 220 kV and above, and some 

compensation equipment [29]. In addition, the system has 17 channels which can extended to other 

power systems. 

Given the maximum generation number  
m ax

=g , the optimization results via the approach 

are shown in Figure 6. 
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Figure 6. Distribute condition of solutions of the Hebei provincial system. 

And then, FCM is applied for clustering the solutions, which is acquired by KnEA, into four 

groups, and the distributions using different colors is illustrated in Figure 7. 
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Figure 7. Distribute condition of Solutions of Hebei provincial system after FCM clustering. 

Similar to Figure 5, the lines with different colors in Figure 7 denote different preferences of 

decision makers. Table 7 shows the BCSs with the maximum memberships in four groups after using 

GRP method. 
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Table 7. BCSs of the Hebei provincial power system. 

BCSs f1 (105 $/h) f2 (p.u.) f3 (p.u.) f4 (105 lb/h) PM 

Prefer for f1 6.8019 4.9166 7.1676 1.3378 0.8082 

Prefer for f2 11.0076 1.4871 4.2874 1.4632 0.8471 

Prefer for f3 7.8233 3.3164 2.5808 1.4277 0.7163 

Prefer for f4 7.8030 3.0755 5.2818 1.3366 0.8213 

For purpose of assessing the optimization effects of our approach, the result before optimization 

and the obtained BCS preferring to f1 are listed in Table 8. 

Table 8. Comparison results before and after optimization. 

Optimization condition f1 (105 $/h) f2 (p.u.) f3 (p.u.) f4 (105 lb/h) 

Before optimization 16.9414 166.2188 70.7107 6.5995 

After optimization 6.8019 4.9166 7.1676 1.3378 

From the above table, it is clear that all the four objective functions have been improved through 

the proposed KnEA-based two-step MaOPF approach. Therefore, the conclusion can be drawn safely 

that the two-step approach is also suitable for addressing the MaOPF problems in a real-world power 

system. 

4.3. Discussions 

From the results, the MaOPF issues with more than three objective functions can be effectively 

solved both in the IEEE standard power systems and in the actual power systems. Meanwhile, KnEA 

is selected as the most effective algorithm in three MOEAs by comparing evaluation indicators of 

optimization performance. However, there are still some limitations of the performed work. As an 

important basic theory research, this work meant to solve the MaOPF issues in practical power 

systems. A simple OPF model is employed in this paper, and traditional constraints are used. A more 

practical OPF model will be explored in the future to consider real-world demands, such as dynamic 

security [41,59], and the reactive power and voltage magnitude [60]. Aimed at security problems in 

the power system, two safety-related functions are contained in the OPF model. N − 1 security 

constraints of power systems need also to be considered for preventive and corrective actions. What’s 

more, more static and dynamic security functions and constraints can be added to the MaOPF model 

for ensuring the safe and stable operation of the power system. Moreover, the configuration of static 

var compensation devices is also a practical problem in planning, designing, and operation, and this 

issue is of great significance. 

5. Conclusions 

A two-step MaOPF approach using KnEA algorithm is presented in this paper. According to the 

analysis of the IEEE 118-bus system and a real-world power system (i.e., Hebei provincial system, 

China), the following conclusions are safely drawn: 

(1) Considering the generation cost, voltage deviation, static voltage stability margin and emissions 

of polluting gases, a MaOPF model is proposed to better adapt the increasingly diversified 

operating requirements of power systems. 

(2) The proposed solution approach not only can yield multiple well-distributed set of Pareto-

optimal solutions, but also can further determine BCSs from each group, which represent 

decision-makers’ different, even conflicting, preferences.  

(3) The simulation results on two test cases with varied complexity levels verify the effectiveness of 

the proposal. More importantly, the KnEA has significant advantages in the optimization 

performance, compared with the other popular algorithms, such as RVEA and NSGA-III. 
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In our future research, distributed and parallel computing techniques will be employed to 

further improve the problem-solving efficiency of the proposed approach. Furthermore, the 

definition and validation of performance metrics for multi-objective evolutionary algorithms is an 

unsolved very important issue nowadays. The OPF with energy storage is another beneficial topic 

for future study [61,62]. 
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Abbreviations 

OPF Optimal power flow 

MOPF Multi-objective optimal power flow 

MaOPF Many-objective optimal power flow 

MOEA Multi-objective evolutionary algorithm 

MaOP Many-objective optimization problem 

NSGA-III Non-dominated sorting genetic algorithm III 

KnEA Knee point-driven evolutionary algorithm 

RVEA Reference vector guided evolutionary algorithm  

BCS Best compromise solution 

FCM Fuzzy c-means 

GRP Grey relational projection 

G
P  Active power output of a generator 

G
Q  Reactive power output of a generator 

G
N  The number of generators 

U
 

Voltage amplitude of a bus 

r e f
U  Reference voltage amplitude of a bus 

N  The number of buses 

 Phase-angle difference between two buses 

 Voltage phase angle of a bus 

b
N  The number of load buses 

g
P  Injected active power of a load bus 

g
Q  Injected reactive power of a load bus 

d
P  Active loads of a load bus 

d
Q  Reactive load sof a load bus 

T The tap of a transformer 

T
N  The number of adjustable transformer taps 

C
Q  The switching capacity of a reactive power compensation capacitor 

C
N  The number of reactive power compensation capacitors 

L
S  The power flow in the branch 

L
N  The number of branches 

WD  The weighted distance of solutions 

PM  The priority membership of solutions 

GD  The generational distance 

SP The spacing 



Processes 2018, 6, 250 17 of 19 

 

References 

1. Dommel, H.W.; Tinney, W.F. Optimal power flow solutions. IEEE Trans. Power Appl. Syst. 1968, 10, 1866–

1876, doi:10.1109/tpas.1968.292150. 

2. Vaccaro, A.; Canizares, C.A. An affine arithmetic-based framework for uncertain power flow and optimal 

power flow studies. IEEE Trans. Power Syst. 2017, 32, 274–288, doi:10.1109/tpwrs.2016.2565563. 

3. Yang, Z.; Zhong, H.; Bose, A.; Xia, Q.; Kang, C. Optimal power flow in AC–DC grids with discrete control 

devices. IEEE Trans. Power Syst. 2018, 33, 1461–1472, doi:10.1109/tpwrs.2017.2721971. 

4. Yang, Z.; Zhong, H.; Xia, Q.; Kang, C. A novel network model for optimal power flow with reactive power 

and network losses. Electr. Power Syst. Res. 2017, 144, 63–71, doi:10.1016/j.epsr.2016.11.009. 

5. Li, Y.; Yang, Z.; Li, G.; Zhao, D.; Tian, W. Optimal scheduling of an isolated microgrid with battery storage 

considering load and renewable generation uncertainties. IEEE Trans. Ind. Electron. 2019, 66, 1565–1575, 

doi:10.1109/tie.2018.2840498. 

6. Li, Y.; Yang, Z.; Li, G.; Mu, Y.; Zhao, D.; Chen, C.; Shen, B. Optimal scheduling of isolated microgrid with 

an electric vehicle battery swapping station in multi-stakeholder scenarios: A bi-level programming 

approach via real-time pricing. Appl. Energy 2018, 232, 54–68, doi:10.1016/j.apenergy.2018.09.211. 

7. Yang, Z.; Zhong, H.; Xia, Q.; Bose, A.; Kang, C. Optimal power flow based on successive linear 

approximation of power flow equations. IET Gener. Transm. Dis. 2016, 10, 3654–3662, doi:10.1049/iet-

gtd.2016.0547. 

8. Bagde, B.Y.; Umre, B.S.; Dhenuvakonda, K.R. An efficient transient stability-constrained optimal power 

flow using biogeography-based algorithm. Int. Trans. Electr. Energy Syst. 2018, 28, e2467, 

doi:10.1002/etep.2467. 

9. Sun, J.; Li, Y. Social cognitive optimization with tent map for combined heat and power economic dispatch. 

Int. Trans. Electr. Energy Syst. 2018, e2660, doi:10.1002/etep.2660. 

10. Zhang, Y.; Shen, S.; Mathieu, J.L. Distributionally robust chance-constrained optimal power flow with 

uncertain renewables and uncertain reserves provided by loads. IEEE Trans. Power Syst. 2017, 32, 1378–

1388, doi:10.1109/tpwrs.2016.2572104. 

11. Dall’Anese, E.; Baker, K.; Summers, T. Chance-constrained AC optimal power flow for distribution systems 

with renewables. IEEE Trans. Power Syst. 2017, 32, 3427–3438, doi:10.1109/tpwrs.2017.2656080. 

12. Sharifzadeh, H.; Amjady, N. Stochastic security-constrained optimal power flow incorporating preventive 

and corrective actions. Int. Trans. Electr. Energy Syst. 2016, 26, 2337–2352, doi:10.1002/etep.2207. 

13. Wen, Y.; Guo, C. Adjustable risk-based direct current optimal power flow. Int. Trans. Electr. Energy Syst. 

2015, 25, 3212–3226, doi:10.1002/etep.2031. 

14. Wang, Y.; Zhang, N.; Chen, Q.; Yang, J.; Kang, C.; Huang, J. Dependent discrete convolution based 

probabilistic load flow for the active distribution system. IEEE Trans. Sustain. Energy 2017, 8, 1000–1009, 

doi:10.1109/tste.2016.2640340. 

15. Lu, Z.; Li, H.; Qiao, Y. Probabilistic flexibility evaluation for power system planning considering its 

association with renewable power curtailment. IEEE Trans. Power Syst. 2018, 33, 3285–3295, 

doi:10.1109/tpwrs.2018.2810091. 

16. Jin, P.; Li, Y.; Li, G.; Chen, Z.; Zhai, X. Optimized hierarchical power oscillations control for distributed 

generation under unbalanced conditions. Appl. Energy 2017, 194, 343–352, 

doi:10.1016/j.apenergy.2016.06.075. 

17. Peng, Q.; Low, S.H. Distributed optimal power flow algorithm for radial networks, I: Balanced single phase 

case. IEEE Trans. Smart Grid 2018, 9, 111–121, doi:10.1109/tsg.2016.2546305. 

18. Xia, M.; Lai, Q.; Zhong, Y.; Li, C.; Chiang, H.D. Aggregator-based interactive charging management system 

for electric vehicle charging. Energies 2016, 9, 159, doi:org/10.3390/en9030159. 

19. He, H.; Guo, J.; Peng, J.; Tan, H.; Sun, C. Real-time global driving cycle construction and the application to 

economy driving pro system in plug-in hybrid electric vehicles. Energy 2018, 152, 95–107, 

doi:10.1016/j.energy.2018.03.061. 

20. Xu, Q.; Zhang, C.; Wen, C.; Wang, P. A novel composite nonlinear controller for stabilization of constant 

power load in DC microgrid. IEEE Trans. Smart Grid 2017, doi:10.1109/tsg.2017.2751755. 

21. Herrera, L.; Zhang, W.; Wang, J. Stability analysis and controller design of DC microgrids with constant 

power loads. IEEE Trans. Smart Grid 2017, 8, 881–888, doi:10.1109/tsg.2015.2457909. 



Processes 2018, 6, 250 18 of 19 

 

22. Kang, Q.; Feng, S.; Zhou, M.; Ammari, A.C.; Sedraoui, K. Optimal load scheduling of plug-in hybrid electric 

vehicles via weight-aggregation multi-objective evolutionary algorithms. IEEE Trans. Intell. Transp. Syst. 

2017, 18, 2557–2568, doi:10.1109/tits.2016.2638898. 

23. Li, Y.; Li, Y.; Li, G.; Zhao, D.; Chen, C. Two-stage multi-objective OPF for AC/DC grids with VSC-HVDC: 

Incorporating decisions analysis into optimization process. Energy 2018, 147, 286–296, 

doi:10.1016/j.energy.2018.01.036. 

24. Adaryani, M.R.; Karami, A. Artificial bee colony algorithm for solving multi-objective optimal power flow 

problem. Int. J. Electr. Power Energy Syst. 2013, 53, 219–230, doi:10.1016/j.ijepes.2013.04.021. 

25. Yuan, X.; Zhang, B.; Wang, P.; Liang, J.; Yuan, Y.; Huang, Y.; Lei, X. Multi-objective optimal power flow 

based on improved strength Pareto evolutionary algorithm. Energy 2017, 122, 70–82, 

doi:10.1016/j.energy.2017.01.071. 

26. Abaci, K.; Yamacli, V. Differential search algorithm for solving multi-objective optimal power flow 

problem. Int. J. Electr. Power Energy Syst. 2016, 79, 1–10, doi:10.1016/j.ijepes.2015.12.021. 

27. Li, Y.; Wang, J.; Zhao, D.; Li, G.; Chen, C. A two-stage approach for combined heat and power economic 

emission dispatch: Combining multi-objective optimization with integrated decision making. Energy 2018, 

162, 237–254, doi:10.1016/j.energy.2018.07.200. 

28. Shaheen, A.M.; El-Sehiemy, R.A.; Farrag, S.M. Solving multi-objective optimal power flow problem via 

forced initialised differential evolution algorithm. IET Gen. Transm. Dis. 2016, 10, 1634–1647, doi:10.1049/iet-

gtd.2015.0892. 

29. Li, Y.; Feng, B.; Li, G.; Qi, J.; Zhao, D.; Mu, Y. Optimal distributed generation planning in active distribution 

networks considering integration of energy storage. Appl. Energy 2018, 210, 1073–1081, 

doi:10.1016/j.apenergy.2017.08.008. 

30. Antonio, L.M.; Coello, C.A.C. Coevolutionary multi-objective evolutionary algorithms: A survey of the 

state-of-the-art. IEEE Trans. Evol. Comput. 2017, 22, 851–865, doi:10.1109/tevc.2017.2767023. 

31. Sarro, F.; Ferrucci, F.; Harman, M.; Manna, A.; Ren, J. Adaptive multi-objective evolutionary algorithms for 

overtime planning in software projects. IEEE Trans. Softw. Eng. 2017, 43, 898–917, 

doi:10.1109/tse.2017.2650914. 

32. Li, W.; Özcan, E.; John, R. Multi-objective evolutionary algorithms and hyper-heuristics for wind farm 

layout optimisation. Renew. Energy 2017, 105, 473–482, doi:10.1016/j.renene.2016.12.022. 

33. Zhang, X.; Tian, Y.; Jin, Y. A knee point-driven evolutionary algorithm for many-objective optimization. 

IEEE Trans. Evol. Comput. 2015, 19, 761–776, doi:10.1109/tevc.2014.2378512. 

34. Zhang, X.; Tian, Y.; Cheng, R.; Jin, Y. A decision variable clustering-based evolutionary algorithm for large-

scale many-objective optimization. IEEE Trans. Evol. Comput. 2018, 22, 97–112, 

doi:10.1109/tevc.2016.2600642. 

35. Liu, H.L.; Chen, L.; Zhang, Q.; Deb, K. Adaptively allocating search effort in challenging many-objective 

optimization problems. IEEE Trans. Evol. Comput. 2018, 22, 433–448, doi:10.1109/tevc.2017.2725902. 

36. Cheng, R.; Jin, Y.; Olhofer, M. Test problems for large-scale multiobjective and many-objective optimization. 

IEEE Trans. Cybern. 2017, 47, 4108–4121, doi:10.1109/tcyb.2016.2600577. 

37. Cheng, R.; Jin, Y.; Olhofer, M.; Sendhoff, B. A reference vector guided evolutionary algorithm for many-

objective optimization. IEEE Trans. Evol. Comput. 2016, 20, 773–791, doi:10.1109/tevc.2016.2519378. 

38. Deb, K.; Jain, H. An evolutionary many-objective optimization algorithm using reference-point-based 

nondominated sorting approach, part I: Solving problems with box constraints. IEEE Trans. Evol. Comput. 

2014, 18, 577–601, doi:10.1109/tevc.2013.2281535. 

39. Ye, X.; Liu, S.; Yin, Y.; Jin, Y. User-oriented many-objective cloud workflow scheduling based on an 

improved knee point driven evolutionary algorithm. Knowl. Based Syst. 2017, 135, 113–124, 

doi:10.1016/j.knosys.2017.08.006. 

40. Narimani, M.R.; Azizipanah-Abarghooee, R.; Zoghdar-Moghadam-Shahrekohne, B.; Gholami, K. A novel 

approach to multi-objective optimal power flow by a new hybrid optimization algorithm considering 

generator constraints and multi-fuel type. Energy 2013, 49, 119–136, doi:10.1016/j.energy.2012.09.031. 

41. Ye, C.J.; Huang, M.X. Multi-objective optimal power flow considering transient stability based on parallel 

NSGA-II. IEEE Trans. Power Syst. 2015, 30, 857–866, doi:10.1109/tpwrs.2014.2339352. 

42. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T.A.M.T. A fast and elitist multiobjective genetic algorithm: 

NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197, doi:10.1109/4235.996017. 



Processes 2018, 6, 250 19 of 19 

 

43. Panda, S.; Yegireddy, N.K. Automatic generation control of multi-area power system using multi-objective 

non-dominated sorting genetic algorithm-II. Int. J. Electr. Power Energy Syst. 2013, 53, 54–63, 

doi:10.1016/j.ijepes.2013.04.003. 

44. Zhang, J.; Tang, Q.; Li, P.; Deng, D.; Chen, Y. A modified MOEA/D approach to the solution of multi-

objective optimal power flow problem. Appl. Soft Comput. 2016, 47, 494–514, doi:10.1016/j.asoc.2016.06.022. 

45. Yokoyama, R.; Bae, S.H.; Morita, T.; Sasaki, H. Multiobjective optimal generation dispatch based on 

probability security criteria. IEEE Trans. Power Syst. 1988, 3, 317–324, doi:10.1109/59.43217. 

46. Gaing, Z.L. Particle swarm optimization to solving the economic dispatch considering the generator 

constraints. IEEE Trans. Power Syst. 2003, 18, 1187–1195, doi:10.1109/tpwrs.2003.814889. 

47. Ghasemi, M.; Ghavidel, S.; Ghanbarian, M.M.; Gharibzadeh, M.; Vahed, A.A. Multi-objective optimal 

power flow considering the cost, emission, voltage deviation and power losses using multi-objective 

modified imperialist competitive algorithm. Energy 2014, 78, 276–289, doi:10.1016/j.energy.2014.10.007. 

48. Montoya, F.G.; Baños, R.; Gil, C.; Espín, A.; Alcayde, A.; Gómez, J. Minimization of voltage deviation and 

power losses in power networks using Pareto optimization methods. Eng. Appl. Artif. Intell. 2010, 23, 695–

703, doi:10.1016/j.engappai.2010.01.011. 

49. Bouchekara, H.R.E.H.; Chaib, A.E.; Abido, M.A.; El-Sehiemy, R.A. Optimal power flow using an Improved 

Colliding Bodies Optimization algorithm. Appl. Soft Comput. 2016, 42, 119–131, 

doi:10.1016/j.asoc.2016.01.041. 

50. Mohamed, A.A.A.; Mohamed, Y.S.; El-Gaafary, A.A.; Hemeida, A.M. Optimal power flow using moth 

swarm algorithm. Electr. Power Syst. Res. 2017, 142, 190–206, doi:10.1016/j.epsr.2016.09.025. 

51. Davoodi, E.; Babaei, E.; Mohammadi-ivatloo, B. An efficient covexified SDP model for multi-objective 

optimal power flow. Int. J. Electr. Power Energy Syst. 2018, 102, 254–264, doi:10.1016/j.ijepes.2018.04.034. 

52. Biswas, P.P.; Suganthan, P.N.; Amaratunga, G.A. Optimal power flow solutions incorporating stochastic 

wind and solar power. Energy Convers. Manag. 2017, 148, 1194–1207, doi:10.1016/j.enconman.2017.06.071. 

53. Thiele, L.; Miettinen, K.; Korhonen, P.J.; Molina, J. A preference-based evolutionary algorithm for multi-

objective optimization. Evol. Comput. 2009, 17, 411–436, doi:10.1162/evco.2009.17.3.411. 

54. Pal, N.R.; Bezdek, J.C. On cluster validity for the fuzzy c-means model. IEEE Trans. Fuzzy Syst. 1995, 3, 370–

379, doi:10.1109/tfuzz.1997.554463. 

55. Li, Y.; Li, Y.; Li, G. A two-stage multi-objective optimal power flow algorithm for hybrid AC/DC grids with 

VSC-HVDC. In Proceedings of the 2017 IEEE Power & Energy Society General Meeting, Chicago, IL, USA, 

16–20 July 2017; pp. 1–5. 

56. Chang, X.; Wang, Q.; Liu, Y.; Wang, Y. Sparse regularization in fuzzy c-means for high-dimensional data 

clustering. IEEE Trans. Cybern. 2017, 47, 2616–2627, doi:10.1109/tcyb.2016.2627686. 

57. Zang, Y.; Sun, W.; Han, S. Grey relational projection method for multiple attribute decision making with 

interval-valued dual hesitant fuzzy information. J. Intell. Fuzzy Syst. 2017, 33, 1053–1066, doi:10.3233/jifs-

162422. 

58. Li, Y.; Li, Y.; Sun, Y. Online static security assessment of power systems based on lasso algorithm. Appl. Sci. 

2018, 8, 1442, doi:10.3390/app8091442. 

59. Li, Y.; Yang, Z. Application of EOS-ELM with binary Jaya-based feature selection to real-time transient 

stability assessment using PMU data. IEEE Access 2017, 5, 23092–23101, doi:10.1109/ACCESS.2017.2765626. 

60. Yang, Z.; Zhong, H.; Bose, A.; Zheng, T.; Xia, Q.; Kang, C. A linearized OPF model with reactive power and 

voltage magnitude: A pathway to improve the Mw-only DC OPF. IEEE Trans. Power Syst. 2018, 33, 1734–

1745, doi:10.1109/tpwrs.2017.2718551. 

61. Levron, Y.; Guerrero, J.M.; Beck, Y. Optimal power flow in microgrids with energy storage. IEEE Trans. 

Power Syst. 2013, 28, 3226–3234, doi:10.1109/TPWRS.2013.2245925. 

62. Reddy, S.S. Optimal power flow with renewable energy resources including storage. Electr. Eng. 2017, 99, 

685–695, doi:10.1007/s00202-016-0402-5. 

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 


