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Abstract: To divide, control, and predict the effects of the coagulation process in water treatment,
a characteristic analysis of the change in particle size distribution (particle number and fractal
dimension) during aided coagulation with hydrated MnO2 was performed. The results showed that
the process of coagulation could be divided into three characteristic stages based on the first derivative
of the particle size fractal dimension. In the primary stage, most of the microflocs aggregated to
form small flocs; in the growth stage, most of the small flocs aggregated to form large flocs; and in
the stable stage, some large flocs broke apart and reformed. The first derivative of the particle size
fractal dimension had a good linear relationship with the coagulation time in the primary stage and
growth stage, and its slope had a power function relationship with the particle number in settled
water; the first derivative could thus be used to evaluate the coagulation effect. In the stable stage,
the rate of change in particle size fractal dimension fluctuated along the fitted line, and the mean
residual sum of squares had a linear relation with the particle number in settled water; therefore,
this parameter could be used as an indicator of the coagulation effect.
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1. Introduction

The main removal targets of water treatment and wastewater treatment are suspended matter
and dissolved contaminants. Although significant research efforts have recently been made to develop
novel advanced water treatment processes for dissolved contaminant removal [1,2], suspended matter
remains as the primary target for normal water treatment facilities. The core units of normal water
treatment process are coagulation, sedimentation, and filtration. Coagulation is considered as the
major treatment unit used to improve overall treatment efficiency for water treatment. The particle size,
effective density, and structure of flocs formed in coagulation have important effects on the following
sedimentation and filtration process. The method, including optimizing the hydraulic condition,
adjusting the dosage of flocculant, and adding coagulant-aid, is used in order to improve the efficiency
of coagulation.

Most microflocs (diameter <5 µm) are difficult to remove via coagulation and sedimentation in
water treatment processes, and most of the flocs in filtered water are microflocs; consequently, better
removal of microflocs in the coagulation process is necessary to improve the quality of settled and
filtered water [3,4]. Liang et al. [5] and Liu et al. [6] found that the addition of a small amount of
potassium permanganate (KMnO4) to the coagulation process significantly improved the outcome;
the floc growth was accelerated and larger flocs formed, thus more microflocs were removed. In the
mechanism of aided coagulation, hydrated manganese dioxide (MnO2), formed from the reduction of

Processes 2018, 6, 237; doi:10.3390/pr6120237 www.mdpi.com/journal/processes

http://www.mdpi.com/journal/processes
http://www.mdpi.com
https://orcid.org/0000-0003-2759-0656
https://orcid.org/0000-0001-7355-7756
http://www.mdpi.com/2227-9717/6/12/237?type=check_update&version=1
http://dx.doi.org/10.3390/pr6120237
http://www.mdpi.com/journal/processes


Processes 2018, 6, 237 2 of 13

KMnO4, can promote the growth of flocs. Li and Nan [7] found that a low dosage of hydrated MnO2

(such as 0.55 mg·L−1) could improve the coagulation efficacy, removing more microflocs after the
coagulation and sedimentation process, and decreasing the number of microflocs released later in the
coagulation process.

Coagulation is a complex process that has been studied on the relevant parameters and coagulation
kinetics. The research on relevant parameters and their interactions has been conducted using a
statistical analysis based on design of experiments (DoE), which is a systematic approach for evaluating
cause and effect relationships and optimising a process [8,9]. Coagulation kinetics is the basic theory
for the design and management of coagulation reactors and separation devices [10]. The coagulation
kinetics have been studied based on division of the coagulation process into stages. To achieve fine
regulation of the coagulation process, scholars have attempted to divide the coagulation process.
Sweeping current detector (SCD) analysis [11], small-angle laser light scattering [12], and average floc
size measurements have been used to identify the stage in which flocs start to grow, but the relevant
parameters in these methods could not accurately reflect the changes in the flocs at later stages in
the coagulation process. He et al. [13] found that the fractal dimension of flocs provided a new way
of studying the coagulation process, as the process of floc growth could be described with a fractal
dimension model and divided into two distinct phases.

Fractal dimension can be used to describe the changes in morphology and particle distribution
in flocs during coagulation. Du et al. [14,15] found that fractal dimension is an important free
parameter to describe the coagulation process. Gregory [16], Vahedi et al. [17], and Kilander et al. [18]
used fractal dimensions to describe the degree of irregularity in particle size distributions of flocs
and to demonstrate the coagulation effect. To optimize coagulants and coagulation conditions,
Margaritis et al. [19] and Amjad et al. [20] compared the fractal dimension of flocs and the distribution
of fractal dimension, and on this basis, they studied the coagulation mechanism in water treatment.
Kuśnierz and Wiercik [11] further used particle size and fractal dimensions to measure the effects of
coagulation in wastewater treatment.

In this study, a new method was put forward to divide, control, and predict the effects of the
coagulation process based on particle size fractal dimension. The particle size fractal dimension was
used to describe the change in particle size distribution during aided coagulation with hydrated MnO2,
and the first derivative of the fractal dimension was analyzed as a function of coagulation time and
used to divide the coagulation process into three characteristic stages. The characteristic parameters in
the different stages were found; these parameters could describe the coagulation process and indicated
the efficacy of coagulation.

2. Materials and Methods

2.1. Apparatus and Materials

The apparatus used in this study, shown in Figure 1, consisted of a cubic tank, a BT300-2J
peristaltic pump (Longer, Baoding, China), a PCX2200 particle counter (HACH, Loveland, CO, USA), a
RW20 N-type multiple-velocity agitator (IKA, Staufen, Germany), and an industrial computer monitor.
The cubic tank was made of glass and had a side length of 280 mm and a liquid height of 230 mm
when filled with water for testing, and the top of the tank was open. The volume of liquid in the tank
was 18 L. The test water was pumped out of the tank at a constant rate of 100 mL·min−1, then flowed
through the particle counter to the peristaltic pump, and finally flowed back into the tank. The length
of the connection tube between the water outlet of the tank and the particle counter was 589 mm and
the inner diameter was 6 mm.
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Figure 1. Experimental apparatus (Unit: mm).

All reagents were of analytical (AR) grade. Kaolin clay, polyaluminum chloride (PAC), manganese
sulfate (MnSO4), and potassium permanganate (KMnO4) were obtained from Kemiou, Tianjin, China.

Normally, the turbidity of raw water from surface water is in the range from 70 to 120
nephelometric turbidity unit (NTU) in the north China plain where Tianjin lies, such as in the works
of [21,22]. The turbidity of test water in this study was designed accordingly to be around 100 NTU.
Kaolin clay was used in the test water. A total of 1.80 g of the kaolin clay was dispersed in 1 L of tap
water, which was equilibrated for 24 h before used, and mixed by a magnetic stirrer at 1000 rpm for
60 min. After the period of high-speed stirring, the suspension was allowed to stand overnight in
an l L jar to obtain the stock suspension. For the coagulation tests, the stock suspension was diluted
with tap water in the cubic tank to obtain a test water sample with a kaolin clay concentration of
100 mg·L−1, corresponding to a turbidity of approximately 100 NTU.

PAC was selected as the coagulant, and a solution of PAC was prepared at a mass concentration
of 1%. The solution was kept at 5 ◦C in a refrigerator and replaced every two weeks.

KMnO4 and MnSO4 were used as raw materials to prepare hydrated MnO2 as the coagulant aid.
The reaction equation is as follows:

2KMnO4 + 3MnSO4 + 2H2O = 5MnO2↓ + K2SO4 + 2H2SO4

In the experiment, the KMnO4 and MnSO4 solutions were poured into the reactor under an
amount of substance ratio of 2:3. The hydrated MnO2 dosages, which were calculated and described
with respect to the elemental content of manganese, were in the range from 1.1 to 4.4 mg·L−1. At the
beginning of the coagulation process, pH values of the test water treated with different MnO2 dosages
were in the range from 6.3 to 6.5, detected by a PHS-3CW pH meter (Lei-ci, Shanghai, China).

2.2. Procedure and Method

The test water in the cubic tank was mixed at a speed of 800 r·min−1 until the data shown on the
particle counter were stable. Then, PAC and hydrated MnO2 were added at the same time; the water
was mixed immediately at a speed of 400 r·min−1 for 30 s, and then mixed at a speed of 80 r·min−1 for
an additional 27 min (as a coagulation process), after which the mixture was precipitated for 30 min
(as a sedimentation process). Finally, the settled water was obtained from the supernatant in the cubic
tank. The particle counts were detected in the whole coagulation process by an online particle counter
and were recorded every 10 s. The particle counts of settled water were also detected and used to
evaluate the coagulation effect [23].
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To obtain the particle size distribution during the coagulation process, the output data of the
particle counter were divided into seven channels. The division of the output data is shown in Table 1.

Table 1. Output data channels of the particle counter.

Channel 1 2 3 4 5 6 7

Particle Size (µm) 2~3 3~4 4~5 5~6 6~7 7~8 8~600

Fractal dimension was used to describe the particle size distribution during the coagulation process
in this paper. Logan’s results showed that particle size distribution has a fractal structure [24]. According
to the fractal theory, there is a positive correlation with ρ(r) and rDf, as shown in Equation (1):

ρ(r) ∝ rDf (1)

ρ(r): total measured number of particles of size < r in t min, mL−1;
r: radius of flocs, µm;
Df : particle size fractal dimension of flocs at t min in the coagulation process.
In this study, the particle size fractal dimension of flocs was calculated using a log–log plot of ρ(r)

and r. The slope of the fitted line was the particle size fractal dimension.

3. Results and Discussion

3.1. Coagulation Effect Measured by the Quality of the Settled Water

The coagulation effect was measured by the quality of the settled water. The better the coagulation
effect, the lower the particle number in settled water. Three repeated experiments were carried out
with each MnO2 dosage, and the particle number in the settled water was obtained by calculating
an average value. The particle number of all measurable flocs (diameter 2~600 µm) and microflocs
(diameter 2~5 µm) in settled water treated with hydrated MnO2 is shown in Figure 2. The number
of all measurable flocs and microflocs initially decreased with increasing MnO2 dosage, reached a
minimum level when the MnO2 dosage was 2.75 mg·L−1, and then increased with increasing MnO2

dosage. The results showed that an appropriate MnO2 dosage in the range from 1.65 to 2.75 mg·L−1

could clearly enhance the coagulation effect, especially for the removal of microflocs.
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Figure 2. Number of all measurable flocs and microflocs in settled water treated with MnO2.
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3.2. Change in Particle Size Distribution during Coagulation

3.2.1. Particle Number

The change in the number of flocs with different diameters as a function of coagulation time is
shown in Figure 3. As shown in Figure 3a, the number of flocs with a diameter of 2~3 µm decreased
with increasing coagulation time, but the trend slowed down gradually. At the beginning of the
coagulation process, the number of 2~3 µm diameter flocs was the highest. Under the action of
Brownian motion and orthokinetic coagulation [25], these flocs agglomerated to form larger flocs or
were captured by larger flocs, which caused the particle number to decrease rapidly. The probability
of collision between flocs then decreased with a decreasing number of particles in the container, and
the probability of aggregation and capture of the flocs decreased gradually, which caused the rate of
decrease to slow down.

As shown in Figure 3b–e, the number of 3~4 µm, 4~5 µm, 5~6 µm, and 6~7 µm diameter flocs
increased at the beginning of the coagulation process and then fell after reaching a maximum value.
The bigger the particle size, the later the particle number reached the maximum value, which indicated
that floc growth was a continuous process from small to large sizes [26]. In addition, the MnO2 dosage
had a clear influence on the change in particle number. The number of particles reached a maximum
level most rapidly at a MnO2 dosage of 2.75 mg·L−1, followed by that at a dosage of 1.65 mg·L−1, and
finally by that in the absence of additives.

The change in the number of 7~8 µm and 8~600 µm diameter flocs with coagulation time is
shown in Figure 3f,g. The curves of these two flocs both showed an initial increase and then decrease.
The increases in the curves showed that more large flocs were formed, and the decreases in the curves
showed that the large flocs settled when their effective density reached the limit of precipitation at
the end of the coagulation process. In addition, fluctuations in the curve were obvious during the
decreasing stage for 8~600 µm diameter flocs. This phenomenon was an embodiment of the breakage
and reformation of the large flocs at the end of the coagulation process [27–29].
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Figure 3. Change in the number of flocs with coagulation time. (a–g) The number of flocs with a
diameter of 2~3 µm, 3~4 µm, 4~5 µm, 5~6 µm, 6~7 µm, 7~8 µm, and 8~600 µm; (h) the number of all
measurable flocs.

3.2.2. Particle Size Fractal Dimension

The particle size fractal dimension was used to describe the change in the particle size distribution
during the coagulation process. The particle size fractal dimension as a function of coagulation time is
shown in Figure 4.
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Figure 4. Change in the particle size fractal dimension with coagulation time.

The particle size fractal dimension first increased and then decreased with increasing coagulation
time. The increases in the curves indicated that the particle size distribution became broader, and
the decreases in the curves indicated that the particle size distribution became narrower [30]. At the
beginning of the coagulation process, as the number of microflocs decreased quickly and the number of
flocs with different diameters increased, the particle size fractal dimension continued to increase until
reaching a maximum. Then, the number of flocs with different diameters declined, and sedimentable
large flocs tended to form, which caused the particle size fractal dimension to gradually decrease until
the end of coagulation.

3.3. Coagulation Process Division Based on the Rate of Change in the Particle Size Fractal Dimension

3.3.1. Division of Coagulation Process

To more accurately analyze the change in the particle size distribution with coagulation time,
the rate of change in the particle size fractal dimension, described by its first derivative, was analyzed
as a function of coagulation time, as shown in Figure 5. Comparing the four sets of data, the aided
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coagulation with hydrated MnO2 at dosages of 0.55~3.85 mg·L−1 could be divided into three stages
based on the first derivative of the particle size fractal dimension, and all three stages have their own
characteristics. Taking the coagulation process at the MnO2 dosage of 1.65 mg·L−1 as an example,
as shown in Figure 5b, in the first 6.60 min, the first derivative of the particle size fractal dimension
linearly increased from 0 to the maximum value. In the next stage (6.60~15.77 min), the first derivative
decreased from the maximum value to a minimum value, and its value also changed from positive to
negative. In the last stage (15.77~27.50 min), the first derivative was still negative, but it increased and
varied slightly.

Processes 2018, 6, x FOR PEER REVIEW  7 of 13 

 

coagulation with hydrated MnO2 at dosages of 0.55~3.85 mg·L−1 could be divided into three stages 

based on the first derivative of the particle size fractal dimension, and all three stages have their own 

characteristics. Taking the coagulation process at the MnO2 dosage of 1.65 mg·L−1 as an example, as 

shown in Figure 5b, in the first 6.60 min, the first derivative of the particle size fractal dimension 

linearly increased from 0 to the maximum value. In the next stage (6.60~15.77 min), the first derivative 

decreased from the maximum value to a minimum value, and its value also changed from positive 

to negative. In the last stage (15.77~27.50 min), the first derivative was still negative, but it increased 

and varied slightly. 

  
a. MnO2 dosage of 0.55 mg·L−1 b. MnO2 dosage of 1.65 mg·L−1 

  

c. MnO2 dosage of 2.75 mg·L−1 d. MnO2 dosage of 3.85 mg·L−1 

Figure 5. Change in particle size fractal dimension and its first derivative as a function of coagulation 

time. (a)–(d) MnO2 dosage of 0.55, 1.65, 2.75, and 3.85 mg·L−1. 

Based on the division of the coagulation process, the characteristics of the change in particle 

number for each test channel were analyzed. For the coagulation process at the MnO2 dosage of 1.65 

mg·L−1, as shown in Figure 6, in the first stage (0~6.60 min), the number of 2~3 μm diameter flocs 

decreased with coagulation time, whereas the number of flocs of other sizes increased. The results 

showed that the number of 3~4 μm diameter flocs reached a maximum value before the end of the 

stage, whereas that of the 4~5 μm diameter flocs reached a maximum value at the end of the stage; 

finally, the number of 8~600 μm diameter flocs exhibited almost no change. These phenomena 

indicated that floc aggregation at the macro level was a continuous process. The larger the floc size, 

the harder it was for flocs to form and the slower the change in particle number. In this stage, only 

the 2~6 μm diameter flocs changed significantly. Therefore, the first stage of the coagulation process 

could be described as the rapidly changing microfloc stage, referred to as the “primary stage”. 

0 5 10 15 20 25 30
0.0

0.3

0.6

0.9

1.2

1.8

2.1

2.4

2.7

3.0

 Fractal Dimension

 Coagulation Time (min)

P
ar

ti
cl

e 
S

iz
e 

F
ra

ct
al

 D
im

en
si

o
n

MnO
2
 Dosage: 0.55 mgL

1

-0.100

-0.095

-0.090

-0.085

-0.06
-0.04
-0.02
0.00
0.02
0.04
0.06
0.08
0.10

22
.9

3 
m

in

1
st

 D
ir

iv
at

iv
e 

o
f 

 F
ra

ct
al

 D
im

en
si

o
n

 (
m

in


1
)

13
.6

2 
m

in

 1st Derivative

0 5 10 15 20 25 30
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

15
.7

7 
m

in

6.
6 

m
in

 Fractal Dimension

P
ar

ti
cl

e 
S

iz
e 

F
ra

ct
al

 D
im

en
si

o
n

Coagulation Time (min)

MnO
2
 Dosage: 1.65 mgL

1

-0.3

-0.2

-0.1

0.0

0.1

0.2

 1st Derivative 

1
st

 D
er

iv
at

iv
e 

o
f 

F
ra

ct
al

 D
im

en
si

o
n

 (
m

in


1
)

0 5 10 15 20 25 30
0.0

0.3

0.6

0.9

1.2

1.8

2.1

2.4

2.7

3.0

 Fractal Dimension

 Coagulation Time (min)

P
ar

ti
cl

e 
S

iz
e 

F
ra

ct
al

 D
im

en
si

o
n MnO

2
 Dosage: 2.75 mgL

1

-0.15

-0.14

-0.13

-0.08

-0.04

0.00

0.04

0.08

0.12

0.16

 1st Dirivative

10
.6

6 
m

in

1
st

 D
ir

iv
at

iv
e 

o
f 

 F
ra

ct
al

 D
im

en
si

o
n

 (
m

in


1
)

3.
77

 m
in

0 5 10 15 20 25 30
0.0

0.3

0.6

0.9

1.2

1.8

2.1

2.4

2.7

3.0

 Fractal Dimension

 Coagulation Time (min)

P
ar

ti
cl

e 
S

iz
e 

F
ra

ct
al

 D
im

en
si

o
n MnO

2
 Dosage: 3.85 mgL

1

-0.15

-0.14

-0.13

-0.10

-0.05

0.00

0.05

0.10

0.15

 1st Dirivative

16
.0

8 
m

in

1
st

 D
ir

iv
at

iv
e 

o
f 

 F
ra

ct
al

 D
im

en
si

o
n

 (
m

in


1
)

6.
87

 m
in

Figure 5. Change in particle size fractal dimension and its first derivative as a function of coagulation
time. (a–d) MnO2 dosage of 0.55, 1.65, 2.75, and 3.85 mg·L−1.

Based on the division of the coagulation process, the characteristics of the change in particle
number for each test channel were analyzed. For the coagulation process at the MnO2 dosage of
1.65 mg·L−1, as shown in Figure 6, in the first stage (0~6.60 min), the number of 2~3 µm diameter flocs
decreased with coagulation time, whereas the number of flocs of other sizes increased. The results
showed that the number of 3~4 µm diameter flocs reached a maximum value before the end of the stage,
whereas that of the 4~5 µm diameter flocs reached a maximum value at the end of the stage; finally,
the number of 8~600 µm diameter flocs exhibited almost no change. These phenomena indicated that
floc aggregation at the macro level was a continuous process. The larger the floc size, the harder it was
for flocs to form and the slower the change in particle number. In this stage, only the 2~6 µm diameter
flocs changed significantly. Therefore, the first stage of the coagulation process could be described as
the rapidly changing microfloc stage, referred to as the “primary stage”.
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Figure 6. Change in the number of each size of floc in the three stages. (a) The number of flocs with a
diameter of 2~3 µm, 3~4 µm, 4~5 µm, 5~6 µm, and 6~7 µm; (b) the number of flocs with a diameter of
7~8 µm and 8~600 µm.

In the second stage (6.60~15.77 min), the number of 2~3 µm diameter flocs continued to decrease,
and the number of 3~4 µm and 4~5 µm diameter flocs decreased quickly. The number of 5~6 µm and
6~7 µm diameter flocs first increased and then fell after reaching a maximum value. The number of
7~8 µm diameter flocs continued to increase and reached a maximum value; in contrast, the number of
8~600 µm diameter flocs began to increase slowly. These phenomena indicated that more microflocs
aggregated to form small flocs [31] and the number of microflocs reduced quickly. The small flocs
were an intermediate in the aggregation of microflocs to form large flocs, so the small flocs could also
be called “transitional flocs”. In the second stage, the transitional flocs were continuously generated
and participated in aggregation to form large flocs. The aggregation of large flocs increased gradually
after the concentration of transitional flocs reached a maximum value. Therefore, the second stage of
the coagulation process could be described as the growth stage of transitional flocs and large flocs,
referred to as the “growth stage”.

In the third stage (15.77~27.50 min), the number of 2~3 µm diameter flocs showed a trace increase,
as the large flocs released some microflocs that were not firmly adsorbed on the periphery. The number
of 3~4 µm, 4~5 µm, 5~6 µm, 6~7 µm, and 7~8 µm diameter flocs decreased with increasing coagulation
time. The number of 8~600 µm diameter flocs first increased and then decreased slowly after reaching
the maximum value. The curves of the 7~8 µm and 8~600 µm diameter flocs had relatively clear
variations during the third stage, which corresponded to the breakage and reformation of large flocs.
These phenomena indicated that microflocs and transitional flocs still continuously agglomerated to
form large flocs in this stage. Meanwhile, some large flocs constantly broke apart and reformed to
generate a more compact structure as a result of the water shearing force and mechanical compression.
Therefore, the last stage of the coagulation process could be described as a stable growth stage of large
flocs, referred to as the “stable stage”.

3.3.2. Rate of Change in Particle Size Fractal Dimension

Taking the coagulation process at the MnO2 dosage of 1.65 mg·L−1 as an example, the linear fits
of the first derivative of the particle size fractal dimension with coagulation time in the different stages
are shown in Figure 7.
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Figure 7. Linear fit of the first derivative of particle size fractal dimension with coagulation time. (a) In
the primary stage; (b) in the growth stage; and (c) in the stable stage.

In the primary stage, the first derivative of the fractal dimension linearly increased with increasing
coagulation time (R2 = 0.9882). The fitted slope, a constant, indicates the ratio of the particle size
fractal dimension to coagulation time. This parameter can be described as the rate of change in the
particle size distribution with coagulation time during the primary stage and is referred to as “D”

fP”.
In the growth stage, the first derivative of the fractal dimension linearly decreased with increasing
coagulation time (R2 = 0.9717). The fitted slope also indicates the ratio of the particle size fractal
dimension to coagulation time. This parameter can be described as the rate of change in the particle
size distribution with coagulation time during the growth stage and is referred to as “−D”

fG”. In the
stable stage, there was a certain linear relationship between the first derivative of the fractal dimension
and the coagulation time (R2 = 0.7716). However, the curve obviously fluctuated along the fitted line,
which means that the flocs were broken and reformed. The residual sum of squares is usually used to
describe the relationship between the curve and the fitted line. To evaluate the volatility of the stable
stage, the mean residual sum of squares (WRSS) was used to describe the amplitude of variations,
as shown in Equation (2):

WRSS =

√
∑TS

0

(
y2

t − y2
t,0

)
TS

=

√
Residual Sum o f Squares(Rss)

TS
(2)

TS: stable stage time, min;
yt: first derivative of the fractal dimension at time t, min−1;
yt,0: linearly fitted value of the first derivative of the fractal dimension at time t, min−1.

3.4. Relationship Between Coagulation and Sedimentation

To control the coagulation process and predict the effects of the coagulation, the relationship
between the characteristic parameters of the coagulation and the particle number in settled water was
studied based on the division of the coagulation process.

3.4.1. Time Parameters

The duration of each stage of the coagulation process was a direct reflection of the coagulation
rate [32]. The relationship between the duration of each stage and the particle number in settled water
was studied, as shown in Figure 8.
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Figure 8. Linear fit between the particle number in settled water and the duration of the coagulation
stage. (a) In the primary stage; (b) in the growth stage; and (c) in the stable stage.

As shown in Figure 8a, the particle number in settled water increased with increasing time
in the primary stage, and the particle number showed a certain linear relation with primary stage
time. The linear fitting equations for all measurable flocs and flocs of diameter 2~5 µm are given as
(3) and (4), respectively, in Table 2. As shown in Figure 8b, the particle number in settled water linearly
increased with increasing growth stage end time. The corresponding linear fitting equations are given
as (5) and (6) in Table 2.

Table 2. Linear fitting equations for the particle number in settled water as a function of stage duration.

No. Y X Equation R2

(3) All Measurable Flocs Primary Stage Time Y = 1819.10 + 505.65X 0.8137
(4) 2~5 µm Diameter Flocs Primary Stage Time Y = 1712.40 + 406.03X 0.7932
(5) All Measurable Flocs Growth Stage End Time Y = 110.18 + 335.04X 0.7874
(6) 2~5 µm Diameter Flocs Growth Stage End Time Y = 357.77 + 267.92X 0.7598
(7) All Measurable Flocs Stable Stage Time Y = 9382.29 − 340.09X 0.8164
(8) 2~5 µm Diameter Flocs Stable Stage Time Y = 7795.11 − 273.92X 0.8017

The results indicated that the shorter the primary stage, the better the coagulation effect and
the lower the particle number in settled water. The earlier the growth stage ended, the better the
coagulation effect. Conversely, the particle number in settled water linearly decreased with increasing
stable stage time, shown in Figure 8c, which indicated that the longer the stable stage, the better the
coagulation effect. The corresponding linear fitting equations are given as (7) and (8), respectively,
in Table 2. Comparing the three pairs of linear fitting equations, the R2 value of the linear fitting
equation for the number of all measurable flocs was larger than that of microflocs, which means there
was a better linear relationship between the number of all measurable flocs and the stage duration.

3.4.2. Particle Size Distribution Parameters

The fitting curves of the particle number in settled water as a function of D”
fP, −D”

fG, and WRSS
are shown in Figure 9. As Figure 9a shows, the particle number in settled water decreased with
increasing D”

fP in the primary stage. There was a power function relationship between the particle
number in settled water and D”

fP, and the corresponding fitting equations for all measurable flocs
and flocs of diameter 2~5 µm are given as (9) and (10), respectively, in Table 3. The fitting curve of
the particle number in settled water as a function of −D”

fG in the growth stage is shown in Figure 9b.
The particle number in settled water also decreased with increasing −D”

fG. The corresponding power
function equations are given as (11) and (12), respectively, in Table 3. In the stable stage, there was a
linear relationship between the particle number in settled water and WRSS, and the corresponding
linear fitting equations are given as (13) and (14), respectively, in Table 3.
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Figure 9. Fitting curves for the particle number in settled water as a function of D”
fP, −D”

fG, and WRss.
(a) In the primary stage; (b) in the growth stage; and (c) in the stable stage.

Table 3. Fitting equations for the particle number in settled water as a function of D”
fP,−D”

fG, and WRss.

No. Y X Equation R2

(9) All Measurable Flocs D”
fP Y = 457.18X−0.5842 0.9092

(10) 2~5 µm Diameter Flocs D”
fP Y = 427.16X−0.5620 0.9073

(11) All Measurable Flocs −D”
fG Y = 302.20X−0.7315 0.9189

(12) 2~5 µm Diameter Flocs −D”
fG Y = 294.17X−0.6976 0.9258

(13) All Measurable Flocs WRSS Y = 9227.65 − 3751.26X 0.9258
(14) 2~5 µm Diameter Flocs WRSS Y = 7678.76 − 3029.53X 0.9153

In the three stages of the coagulation process, the results showed that the R2 values of the fitting
equations were all greater than 0.9, which means there was a good relationship between the particle
number in settled water and the particle size distribution parameters. Better still, the fitting equations
were also appropriate for microflocs. Meanwhile, the R2 values of fitting Equations (9)–(14) were
all markedly greater than those of fitting Equations (3)–(8), which indicated that the particle size
distribution parameters, D”

fP, −D”
fG, and WRSS, were more suitable than the time parameters for

evaluating the coagulation effect.

4. Conclusions

A new method for process division based on particle size fractal dimension was put forward.
On the basis of the first derivative of the particle size fractal dimension, aided coagulation with
hydrated MnO2 at dosages of 0.55~3.85 mg·L−1 could be divided into three stages: a primary stage,
growth stage, and stable stage. In the primary stage, most of the microflocs (diameter < 5 µm)
aggregated to form small flocs (diameter 5~8 µm). In the growth stage, most of the small flocs
aggregated to form large flocs (diameter 8~600 µm). In the stable stage, some large flocs broke apart
and reformed to generate a more compact structure.

The characteristic parameters in the three stages were proposed and used to indicate the efficacy
of coagulation. In the primary and growth stages, the suitable parameters were the rates of change in
the particle size distribution (D”

fP and −D”
fG); the particle number in settled water decreased with

increasing D”
fP and −D”

fG with a power function relationship. Therefore, the efficacy of coagulation
can be predicted in advance according to values of D”

fP and −D”
fG. In the stable stage, the suitable

parameter was WRSS, and the particle number in settled water decreased with increasing WRSS.
Therefore, the efficacy of coagulation can be improved through floc breakage and reformation under
appropriate conditions.

The method used to evaluate the effect of each stage of the hydrated MnO2-aided coagulation
process was simple to perform and provided a new approach for the application of particle-counter
devices in water treatment. Further, experiments including more influence factors will be done to
improve the method, and a continuous flow experiment will be carried out for actual application.
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