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Abstract: The compressor fuel cost minimization problem (FCMP) for natural gas pipelines is a
relevant problem because of the substantial energy consumption of compressor stations transporting
the large global demand for natural gas. The common method for modeling the FCMP is to
assume key modeling parameters such as the friction factor, compressibility factor, isentropic
exponent, and compressor efficiency to be constants, and their nonlinear relationships to the system
operating conditions are ignored. Previous work has avoided the complexity associated with the
nonlinear relationships inherent in the FCMP to avoid unreasonably long solution times for practical
transportation systems. In this paper, a mixed-integer linear programming (MILP) based method is
introduced to generate piecewise-linear functions that approximate the previously ignored nonlinear
relationships. The MILP determines the optimal break-points and orientation of the linear segments
so that approximation error is minimized. A novel FCMP model that includes the piecewise-linear
approximations is applied in a case study on three simple gas networks. The case study shows that
the novel FCMP model captures the nonlinear relationships with a high degree of accuracy and only
marginally increases solution time compared to the common simplified FCMP model. The common
simplified model is found to produce solutions with high error and infeasibility when applied on a
rigorous simulation.

Keywords: fuel cost minimization problem; FCMP; piecewise-linear function generation; linearization;
natural gas transportation; compressor modeling; compressibility factor; isentropic exponent;
friction factor

1. Introduction

Natural gas accounts for an estimated 21% of the current global energy demand, with this share
expected to grow to 24% by 2040. The projected 1.5% annual growth in absolute natural gas demand
makes it the fastest growing among the fossils fuels [1]. The large and growing natural gas demand
puts a heightened importance on natural gas transportation systems, given the enormous quantities of
gas being distributed globally. The magnitude of the issue means even marginal improvements in the
efficiency of gas transportation can result in substantial energy and cost savings.

This paper addresses a particular area of natural gas transportation research which has been
studied for decades, the fuel cost minimization problem (FCMP). The problem exists because pressure
drives gas flow in pipelines, but friction between the gas and pipeline wall results in a drop in gas
pressure along the length of the pipeline. To maintain gas flow, the gas pressure must be increased
at points throughout the pipeline network, which is achieved by compressor stations. The FCMP is
concerned with determining the natural gas pressure change at each compressor station in the pipeline
network, and the amount of gas to flow through each pipeline segment of the network, to achieve
the minimum compressor fuel costs. The system operation must obey gas supply and demand
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constraints and physical equipment limitations. With an estimated 3–5% of all natural gas transported
by transmission pipelines consumed by the compressor stations responsible for maintaining gas flow,
substantial energy and cost savings can be realized through optimizing the FCMP. It has been estimated
that at least a 20% reduction in compressor station fuel consumption can be obtained through global
optimization of pipeline operation [2].

The FCMP is a difficult optimization problem because real pipeline systems have complex
network topographies, integer variables are required to represent the pipeline binary operating states
(bi-directional flow, ON/OFF compressor units), and gas and compressor physics are governed by
highly nonlinear equations. The FCMP is most appropriately modeled as a nonlinear program (NLP)
or mixed-integer nonlinear program (MINLP), depending on whether bi-directional flow or ON/OFF
compressor units are considered [3]. Given the complexity of the FCMP model, current algorithms can
only solve simplified versions for networks large enough to have practical importance. With this, there
are numerous simplifications of model parameters that are broadly accepted across FCMP literature
because of the computational savings they provide. However, upon inspection of the error such
simplifications introduce to the model, the ability for the model to provide a useful representation of
the real system is brought into question.

There has been virtually no previous work done on methods of approximating the nonlinear
relationships inherent in the FCMP model that balances model accuracy and solution time. This paper
introduces a systematic approach to approximating the nonlinear relationships of the parameters that
are commonly simplified as constants. The approach is shown to introduce insignificant model error
compared to a rigorous FCMP model formulation, and only marginally increases model solution time
compared to a common simplified FCMP model. The approach can be summarized as identifying
practically convex/concave relationships between model variables that can be approximated by
simpler functions, such as piecewise-linear or quadratic functions. This allows the complex nonlinear
equations required for rigorous calculation to be eliminated from the model. Here, a practically
convex/concave function means a function that does not need be convex/concave according to the
mathematical definition per se, but can be approximated well by a function that is mathematically
convex/concave. The piecewise-linear approximations are not constructed manually by the modeler,
but instead are generated by inputting the nonlinear relationship data into an mixed-integer linear
programming (MILP) that optimally determines the piecewise-linear break-points and linear segment
orientation so that approximation error is minimized. This MILP relies on the convexity/concavity
of the relationship being approximated for its simple formulation. As stated above, the value of this
systematic modeling approach is that a model is produced with insignificant error when compared
with the most rigorous model. Further, the model is only marginally more difficult to solve by current
global MINLP solvers when compared to the highly simplified model. The reason is that the produced
model only differs from the simplified model in the additional piecewise-linear functions, which are
easily handled by modern global MINLP solvers such as BARON [4,5] and SCIP [6].

Although we have applied this modeling approach to the FCMP, the techniques are transferable to
many engineering problems that are difficult to optimize because of complex nonlinear relationships.

This introduction is followed by six main sections. Section 2 introduces the FCMP model that
is most commonly used throughout gas transportation literature, and areas of the model that are
simplified are discussed. Next, Section 3 presents the method of optimal piecewise-linear function
generation for approximating practically convex/concave curves. Section 4 applies this technique to
approximate the previously ignored nonlinear relationships. The novel FCMP model that incorporates
the piecewise-linear approximations is then developed in Section 5. In Section 6, a case study is
presented that compares the optimization results of the simplified, newly developed, and most
rigorous FCMP optimization models to the results from a rigorous simulation. Section 7 reiterates the
importance of these results and provides a discussion of future work.
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2. Common Natural Gas Transportation Model

The model developed in this section is for application specifically to the FCMP, although many of
the model components are used across all types of natural gas transportation models. A summary of
the model parameters and variables introduced in the following sections can be seen in Table 1.

Table 1. Parameters and variables describing gas transportation.

Symbol Description Unit

q Mass flow rate kg s−1

P Pressure MPa
T Temperature K
L Length m
D Diameter m
A Cross-sectional area m2

λ Friction coefficient -
Z Compressibility factor -
R Gas constant J mol−1 K−1

Mw Molecular weight kg mol−1

B Second virial coefficient m3 kmol−1

ρm Molar density kmol m−3

K Size parameter m kmol−1/3

C∗n Compressibility factor coefficient -
bn, cn, kn Compressibility factor constant -

Tc Critical temperature K
Pc Critical pressure MPa
ε Absolute roughness m

Re Reynolds Number -
µ Gas dynamic viscosity Pa s

Had Specific change in adiabatic enthalpy J kg−1

κ Isentropic exponent -
Q Volumetric flow rate m3s−1

S Compressor speed rpm
Smin, Smax Compressor speed limit rpm

surge, stonewall Compressor throughput/speed limit m3s−1rpm−1

ηad Adiabatic efficiency -

2.1. Network Topography

The gas transmission network is most commonly modeled as a directed graph G = (N, A)

with nodes N and arcs A [7–10]. The set of nodes is made up of entry nodes N+, exit nodes N−,
and junctions N0, representing pipeline supply points, delivery points, and junctions,

N = N+ ∪ N− ∪ N0. (1)

Each node in the network is arbitrarily assigned a unique number from 1 to n, with n being the
total number of nodes in the network. Nodes are denoted by i, j ∈ N.

The set of arcs is made up of passive arcs Ap, and active arcs Ac, representing pipeline sections
that do not contain compressor stations, and sections that contain compressor stations,

A = Ap ∪ Ac. (2)

Differing from nodes, arcs are not arbitrarily assigned numbers but are instead classified according
to the nodes they connect. Arcs are denoted by (i, j) ∈ A, corresponding to a pipeline section running
from node i to node j.
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2.2. Gas Flow Model

The three non-isothermal Euler equations for compressible fluids govern gas dynamics in a
pipeline [7], but in their complete form are too complex to be used in an optimization model that is
solvable by modern NLP solvers. By making the common approximations of isothermality in pipeline
segments and negligible slope in pipeline segments, the equations can be reduced to two manageable
equations. These equations are the gas conservation equation (Equation (3)) and pipeline resistance
equation (Equation (4)):

∑
j:(j,i)∈A

qji − ∑
j:(i,j)∈A

qij = −qext,i ∀i ∈ 1, . . . , n, (3)

(P2
i − P2

j ) =
LijR

A2
ijDij Mw

ZijTλijq2
ij ∀(i, j) ∈ Ap, (4)

where qext,i is a model input that represents the mass flow rate of natural gas being supplied to node i
(positive for a supply node, negative for a demand node), and Zij and λij are the gas compressibility
factor and friction factor for arc (i, j) [7]. It is most common in natural gas transportation literature
to assume both parameters to be constants [9,11–15]. In reality, these parameters have complex
relationships with the pipeline operating conditions that cannot be ignored without introducing
significant model error.

2.2.1. Compressibility Factor

The compressibility factor has a complex dependence on temperature, pressure, and gas composition,
which is most accurately calculated implicitly through:

Z = 1 + Bρm − K3 P
ZRT ∑18

n=13 C∗n + ∑58
n=13 C∗n

(
bn − cnkn(K3 P

ZRT )
kn
)
(K3 P

ZRT )
bn exp

(
− cn(K3 P

ZRT )
kn
)

, (5)

where bn, cn, kn are constants, and B, K, C∗n are functions of temperature and gas composition [16].
The complexity of Equation (5) is clear, and its avoidance by FCMP researchers is justifiable. Although
it is most common to remove this source of complexity by assuming the compressibility factor is
constant with both temperature and pressure, on occasion the empirical formulas of the American Gas
Association (Equation (6)) or Papay (Equation (7)) are used [7].

Z(P, T) = 1 + 0.257
P
Pc
− 0.533

PTc

PcT
, (6)

Z(P, T) = 1− 3.52
P
Pc

e−2.26 T
Tc + 0.274

( P
Pc

)2
e−1.878 T

Tc (7)

Despite these formulas partially capturing the relationship between the compressibility factor
and temperature–pressure, Figure 1 shows that over typical pipeline operating conditions they
deviate significantly from the rigorous compressibility factor as calculated through Equation (5).
The 0.1–10 MPa pressure range used for comparison encompasses the typical operating range of both
natural gas distribution and transmission pipelines [3,17].
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Figure 1. Comparison of the rigorously calculated gas compressibility factor with the American Gas
Association and Papay empirical models for natural gas with a composition of: 85% methane, 14%
ethane, and 1% nitrogen.

2.2.2. Friction Factor

It is most common in FCMP literature to assume the friction factor to be a constant that depends
only on the length, diameter, and roughness of the pipe. The Nikuradse equation is most commonly
used to calculate a constant friction factor that has no dependance on the operating condition of
the pipeline [18]:

1√
λN

= −2log10

(
ε/D
3.71

)
(8)

However, it is widely accepted that in natural gas transmission pipelines the Colebrook–White
friction factor (Equation (9)) is more accurate as it captures the dependance of the friction factor on the
natural gas mass flow rate [7,18]. Despite this, it is often omitted in favor of the Nikuradse equation
because of the complexity required to capture the dependence on mass flow rate through the Reynolds
number in Equation (10) [7].

1√
λCW(q)

= −2log10

(
ε/D
3.71

+
2.51

Re(q)
√

λCW(q)

)
(9)

Re(q) =
D

Aµ
|q| (10)

Figure 2 shows how the Nikurasde and Colebrook–White friction factors compare over the typical
range of transmission pipeline mass flow rates. The range of typical transmission flow rates was
determined from data publicly available on all U.S. interstate natural gas pipeline capacities through
the U.S. Energy Information Administration [19].

It can be seen in Figure 2 that for mass flow rates on the low range of those typically seen in
transmission networks there is a substantial difference between the Nikurasde and Colebrook–White
friction factors. The Colebrook–White friction factor approaches the Nikurasde friction factor from
above, corresponding to the pressure drop calculated using the Colebrook–White friction factor always
being greater than that of the Nikurasde friction factor. As a result, solutions to the FCMP that
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are deemed feasible when using the Nikurasde friction factor could be infeasible in practice from
underestimating the pressure drop throughout the transmission network.

Figure 2. Comparison of the Colebrook–White and Nikuradse friction factor on a pipeline with a diameter
of 0.9 m, and roughness of 0.05 mm.

2.3. Compressor Equations

The compressor adiabatic head equation is standard across virtually all FCMP literature, as it
is derived from thermodynamic first principles with reasonable assumptions and is not overly
complex [20]:

Had,ij =
ZiTR
Mw

κij

κij − 1

((Pj

Pi

) κij−1
κij − 1

)
∀(i, j) ∈ Ac. (11)

2.3.1. Isentropic Exponent

The isentropic exponent (κ) is the ratio of specific heat at constant pressure to specific heat
at constant volume, and is needed to calculate the energy required for compressing a gas [20].
The rigorous calculation of the isentropic exponent is extremely computationally difficult, so in
virtually all natural gas transportation literature it is assumed to be constant. At best, the following
simplified relationship with temperature is used:

κ(T) = 1.29− 5.8824× 10−4
(

T − 273.15
)

, (12)

where T is defined to be the average of the compressor inlet and outlet temperatures [7].
Similar to the compressibility factor, the isentropic exponent has a complex dependence on

temperature, pressure, and gas composition. The rigorous calculation of the isentropic exponent
requires over 50 equations, most of which are nonlinear and several are implicitly defined [21].
Figure 3 shows that over typical natural gas pipeline operating conditions significant model error is
introduced using the simplifiied Equation (12).
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Figure 3. Comparison of the rigorously calculated isentropic exponent with a common simplification
for natural gas with a composition of: 85%methane, 14% ethane, and 1% nitrogen.

2.3.2. Compressor Operating Envelop

A restriction on the feasible operating region of the compressor station is necessary to reflect
physical equipment limitations. FCMP models typically consider compressor stations made up of
centrifugal compressors given their prevalence in natural gas transmission systems. The operating
region of a centrifugal compressor is limited by the maximum allowable speed, minimum allowable
speed, maximum allowable gas flow rate (surge limit), and minimum allowable gas flow rate (stonewall
limit) [22]. The combination of the four limits gives a non-convex operating envelop such as that in
Figure 4. The operating envelop in Figure 4 was simulated using the compressor parameters found in
Wu et al. [23].

There is some variation in how the compressor operating envelop is modeled across FCMP
literature. The method that is widely accepted as the most rigorous can be seen in Equations (13)–(15),
which capture the highly nonlinear relationship among compressor head, compressor speed, and
volumetric gas flow rate [7,9,15,23]. The coefficients AH , BH , CH , and DH are constants that are
typically estimated by fitting Equation (13) to compressor data of the quantities Q, S, H, and ηad [23].
The complexity that is introduced to the FCMP model by using the rigorous compressor model
has given rise to numerous simplified operating envelops. These simplifications involve replacing
Equations (13)–(15) with simpler bounds that ignore compressor speed altogether. Some simplifications
include reducing the operating window to just an upper limit on the compressor exit gas pressure [12],
putting an upper and lower limit on compressor head or power [24,25], or approximating the operating
window by a linearly bounded convex region [23].

Had,ij

S2
ij

= AH + BH
Qij

Sij
+ CH

(Qij

Sij

)2
+ DH

(Qij

Sij

)3
∀(i, j) ∈ Ac (13)

Smin ≤ Sij ≤ Smax ∀(i, j) ∈ Ac (14)

surge ≤
Qij

Sij
≤ stonewall ∀(i, j) ∈ Ac (15)
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Figure 4. Typical operating envelop of a centrifugal compressor unit, with compressor speed and efficiency
contours shown.

2.3.3. Compressor Efficiency

A compressor efficiency parameter (ηad) is required to relate the ideal adiabatic quantity of
energy required to achieve a given pressure change, and the actual quantity required by real
compressors that are subject to deviations from ideal conditions [20]. The rigorous method of
calculating compressor efficiency is through Equation (16), which requires the use of Equation (13) to
calculate the compressor speed at a given compressor head and volumetric flow rate [7,23]. As with the
coefficients in Equation (13), AE, BE, CE, and DE are constants that are estimated by fitting Equation (16)
to compressor data.

ηad,ij = AE + BE
Qij

Sij
+ CE

(Qij

Sij

)2
+ DE

(Qij

Sij

)3
∀(i, j) ∈ Ac (16)

Given that many FCMP models use a simplification of the compressor operating envelop that
ignores compressor speed, the method of calculating compressor efficiency often must be simplified
as well. Such simplifications include capturing the compressor efficiency dynamics using a simpler
polynomial function of compressor mass flow rate, inlet pressure, and outlet pressure [23], or assuming
the compressor efficiency to be constant [8,25–27]. The compressor efficiency contour lines in Figure 4
show that there is a large variation in efficiency across the operating envelop which is lost by assuming
a constant efficiency. Any error introduced through these simplifications contributes directly to
error in the model’s objective function (see Problem (17)) because of the dependance of fuel cost on
compressor efficiency.

2.4. Common FCMP Model

Combining the above formulas and simplification gives the complete FCMP model that is most
common across FCMP literature:
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min
qij ,Pi

∑
(i,j)∈Ac

qij Had,ij

ηad

s.t. ∑
j:(j,i)∈A

qji − ∑
j:(i,j)∈A

qij = −qext,i ∀i ∈ 1, . . . , n,

(P2
i − P2

j ) =
LijR

A2
ijDij Mw

ZTλq2
ij ∀(i, j) ∈ Ap,

Had,ij =
ZTR

M
κ

κ − 1

((Pj

Pi

) κ−1
κ − 1

)
∀(i, j) ∈ Ac,

(qij, Pi, Pj) ∈ Dij ∀(i, j) ∈ Ac,

(17)

where Dij represents the compressor operating envelop as defined through one of the previously
discussed methods. The compressibility factor (Z), friction factor (λ), isentropic exponent (κ), and
compressor efficiency (η) are all assumed to be constant in this model.

3. Optimal Piecewise-Linear Function Generation

Linearization of nonlinear relationships is often an effective method for reducing the complexity
of an optimization model to increase solution efficiency [28–30]. Many of the common linearization
techniques manually determine the break-points of the linear segments and the orientation of the
linear segments follow, or they manually determine the orientation of the linear segments and the
position of the break-points follow. The drawback of these methods is that they offer no guarantee of
producing an optimal approximation. When the nonlinear relationships are complex, and especially
when they are more than two-dimensional, the manual linearization approach is likely to produce
significantly suboptimal approximations.

The linearization technique suggested here is Piecewise-Linear Function Generation (PLFG) that
offers the guarantee that for a given number of line segments the approximation is optimal, and can
be applied to data for which no analytical function exists. The technique simultaneously determines
the break-points and positioning of the linear segments such that they fit the curve with the minimal
error. The approximation produced from this method is a convex/concave piecewise-linear function,
so must be applied to data that can be approximated closely by a convex/concave curve. This does not
restrict the technique to relationships that are mathematically convex/concave.

The technique is a mixed-integer linear program (MILP) that requires data points of the
relationship being approximated, and the number of linear segments to approximate the relationship
with, as model inputs. The problem is to determine F, which defines a set of continuous piecewise-linear
functions, for a finite set of n-dimensional data points (xi, yi) [31], that solves:

min t

s.t. t|yi| ≥ | fi − yi|, ∀i = 1, . . . , m,

fi = f (xi), ∀i = 1, . . . , m,

f ∈ F.

(18)

A solution to this problem produces the piecewise-linear function that has the minimum maximum
relative difference between the generated function and the data points being approximated.

In MILP PLFG, it is customary to introduce a binary variable zk
i for each linear segment k ∈ 1, . . . , p,

and each data point i = 1, . . . , m. The binary variable is used to represent if the linear segment is
“active” at the data point (xi, yi), where active means the line segment is used for approximation at
that part of the domain. The following MILP model is used for PLFG of convex curves:
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min
ck ,dk ,zk

i

t

s.t. |yi|t ≥ fi − yi, ∀i = 1, . . . , m,

|yi|t ≥ yi − fi, ∀i = 1, . . . , m,

fi ≥ ckxi + dk, ∀k = 1, . . . , p, ∀i = 1, . . . , m,

fi ≤ ckxi + dk + MBig(1− zk
i ), ∀k = 1, . . . , p, ∀i = 1, . . . , m,

p

∑
k=1

zk
i = 1, ∀i = 1, . . . , m,

(19)

where ck and dk are the coefficients being determined for the k n-dimensional linear segments, and
MBig is some large constant. This model is a variation of the well-known model seen in Toriello and
Vielma [31].

Figure 5 helps to demonstrate the importance of each constraint in Problem (19). The fi ≥ ckxi + dk
constraint ensures that the approximation of point i is somewhere in the shaded gray region of Figure 5a,
that is, above or equal to all of the line segments. Without any additional constraints, any number of
line segments could yield an objective function equal to zero by having the line segments below all of
the data points, allowing every approximation point to equal every data point exactly. The constraint
fi ≤ ckxi + dk + MBig(1− zk

i ) has no effect unless the binary variable zk
i is equal to one, in which

case the approximation point must be below or equal to the line k at point xi. Combining these
two constants with ∑

p
k=1 zk

i = 1 yields the approximation shown in Figure 5b, as it ensures the
approximation point fi is equal to the greatest line segment at point xi. An optimal solution that is
subject to all of these constraints is one that minimizes the maximum relative error between the points
along the line segments and the data points.

Figure 5. (a) Example of potential approximation produced when only the fi ≥ ckxi + dk constraint is
used in the PLFG MILP; (b) Example of potential approximation produced when all of the constraints
are used in the PLFG MILP (PLFG: Piecewise-Linear Function Generation; MILP: mixed-integer
linear program).

The MILP in Equation (19) can be easily adapted for fitting concave curves:
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min
ck ,dk ,zk

i

t

s.t. |yi|t ≥ fi − yi, ∀i = 1, . . . , m,

|yi|t ≥ yi − fi, ∀i = 1, . . . , m,

fi ≥ ckxi + dk −MBig(1− zk
i ), ∀k = 1, . . . , p, ∀i = 1, . . . , m,

fi ≤ ckxi + dk, ∀k = 1, . . . , p, ∀i = 1, . . . , m,
p

∑
k=1

zk
i = 1, ∀i = 1, . . . , m.

(20)

These versions of the MILP produce a piecewise-linear approximation that has the freedom to
cross-over the curve being approximated, as shown in Figure 6a. However, in certain applications,
it may be desirable to produce an approximation that is entirely above the curve being approximated
(Figure 6b), and in other applications for the approximation to be entirely below the curve being
approximated (Figure 6c). The MILP can be modified to generate such approximations by adding
the constraint in Equation (21) for the approximation always above, and Equation (22) for the
approximation always below.

fi ≥ yi, ∀i = 1, . . . , m (21)

fi ≤ yi, ∀i = 1, . . . , m (22)

The number of data points and linear segments are user inputs to the PLFG MILP, so it is necessary
to be deliberate about how these inputs are decided by the modeler. A higher number of data points
and linear segments will always yield a more accurate approximation. However, the tractability of the
PLFG MILP is worsened as these inputs increase because of the additional constraints and variables in
the model. Additionally, the more linear segments used for approximating the relationship the worse
the tractability of the optimization model where the approximation is being implemented. A procedure
is required for determining the number of data points and linear segments that gives a desirable
balance between model tractability and approximation accuracy.

Figure 6. (a) Example of approximation produced when curve cross-over is allowed; (b) Example
of approximation when restricted to entirely above the curve; (c) Example of approximation when
restricted to entirely below the curve.

The suggested procedure is as follows:

1. Decide what is an acceptable amount of maximum relative error between the piecewise-linear
function being generated and the relationship being approximated, this is the stopping criteria
Etol . Typically, 1% is appropriate.
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2. Start with m = M and p = 1, where M is some relatively small number of data points equally
dispersed over the approximation domain. Solve the MILP for the piecewise-linear function, Fp

m.
3. Calculate the maximum error between Fp

m and the entire dataset of the relationship being
approximated, Emax,p

m .
4. Increase m to m + dM, and solve the MILP for Fp

m.
5. Calculate Emax,p

m .
6. Iterate Steps 4 and 5 until the change in Emax,p

m is less than 1% for two consecutive iterations, then
move to Step 7. If the MILP becomes intractable before this, move to Step 7.

7. If the smallest Emax,p
m is less than Etol , or has changed less than 1% for two consecutive increases in

p, terminate, the corresponding Fp
m is either an acceptable approximation or as good as the PLFG

method is likely to yield. Else, increase p to p + 1, reinitialize m = M, and return to Step 4. If the
MILP becomes intractable before meeting the stopping criteria, terminate and consider breaking
up the domain of approximation.

This procedure can be summarized as an inner loop that increases the number of data points
used for PLFG until the maximum approximating error plateaus, and an outer loop that increases the
number of line-segments in the piecewise function until the approximation error is smaller than an
acceptable tolerance or plateaus.

4. Relationship Approximation

Section 2 shows how key parameters in the FCMP model are commonly simplified to reduce model
complexity. In this section, we develop accurate approximations for these commonly ignored nonlinear
relationships. The approximations are developed based on the PLFG method introduced in Section 3.
The relationships approximated are the compressibility factor, friction factor, isentropic exponent,
compressor operating envelop, and compressor efficiency. Two approaches are used to apply the PLFG
method to approximate nonlinear parameter relationships. The first method is to approximate the
relationship between the parameter and the pipeline operating condition directly. This method is
valid whenever the relationship between the parameter and pipeline operating condition is practically
convex/concave, as the PLFG MILP can only produce accurate approximation for such relationships.
When the rigorous relationship between the parameter and pipeline operating condition does not
fit this criteria, there is still the possibility that the PLFG method can be used to approximate the
relationship, but a different approach is needed. The alternative approach is to identify a relationship
that is practically convex/concave between a particular lumped term of variables and the pipeline
operating condition, of which the parameter is one of the variables in the lumped term, and it is the only
instance where the parameter is required in the formulation. The lumped term is then approximated
by the piecewise-linear approximation, and the term along with the parameter is removed from
the formulation entirely. This approach can help reduce the complexity of the formulation by both
eliminating the complexity of the lumped term and capturing the rigorous parameter relationship
by the piecewise-linear function. The additional complexity that this approach has the potential
to remove makes it desirable to be applied even in cases where it is not strictly needed. However,
such a lumped term is not always possible to identify so this method is not always valid. The first
method is only applied to the compressibility factor, all other parameters are approximated using the
alternative method.

4.1. Compressibility Factor

Figure 7a shows the three-dimensional relationship between the compressibility factor and
temperature–pressure calculated using Equation (5). It can be seen that the relationship exhibits regions
of convexity and concavity, and therefore the PLFG method would not be able to produce a good
approximation. However, Figure 7b shows that two-dimensional compressibility factor isotherms are
all practically convex and so are well suited to be approximated by the PLFG method. Further, because
the isothermal assumption is accepted as necessary across virtually all natural gas transportation
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literature, the two-dimensional isothermal contours can be used as the basis of approximation without
introducing additional model error. The suggested method is then to discritize the compressibility
factor along the temperature domain and to approximate the compressibility factor relationship as a
function of only pressure. Practitioners implementing the model can then simply choose the isothermal
approximation that is closest to their pipeline operating temperature. The 12 isotherms in Figure 7b
were chosen so that there is no more than a ±1% error range between each contour. By choosing the
isotherm closest to a given operating temperature at most 1% error plus any approximation error is
introduced to the model, compared to the rigorous calculation.

Figure 7. (a) Three-dimensional compressibility factor relationship with temperature–pressure; and
(b) two-dimensional compressibility factor isothermal relationship with pressure for natural gas with a
composition of: 85% methane, 14% ethane, and 1% nitrogen.

Figure 8 shows the approximation output from the PLFG method for the 289.5 K compressibility
factor isotherm, where approximation cross-over is allowed. The procedure discussed in Section 3
produced an optimal piecewise-linear function comprised of two line segments. The maximum
approximation error from the generated approximation is 0.06%.

Figure 8. Piecewise-linear function generated for approximating 289.5 K compressibility factor isotherm,
consisting of two line segments.

4.2. Friction Factor

The friction factor appears only once in the FCMP model through the pipeline resistance equation
(Equation (4)). Although the relationship between the Colebrook–White friction factor and mass
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flow rate in Figure 2 could be approximated directly, an approximation that removes further model
complexity can be made. The friction factor is multiplied by the squared mass flow rate in the
pipeline resistance equation. By lumping these terms together, a single function of mass flow rate can
be produced:

ζ(q) = λ(q)q2. (23)

The plot of ζ(q) in Figure 9a, where the friction factor is calculated using the Colebrook–White
equation (Equation (9)), shows that it has a quadratic relationship with mass flow rate. This relationship
is approximated well by performing a nonlinear regression that fits a quadratic function to the curve.
No y-intercept coefficient is used in the regression function because at zero mass flow rate anything
other than zero for ζ(q) is not physically realistic. The resulting quadratic regression function can be
seen to approximate ζ(q) closely in Figure 9a. Figure 9b compares the error of the quadratic regression
function with a ζ(q) that uses the constant Nikurasde friction factor. The quadratic regression function
contains less error over the entire range of typical natural gas transmission mass flow rates. It is
important to note that the regression is specific to pipeline diameter and absolute roughness.

Figure 9. (a) Relationship between ζ(q) and mass flow rate, and quadratic regression approximation;
(b) Comparison of error for ζ(q) from the quadratic regression and constant friction factor. All for a
pipeline with a diameter of 0.9144 m and absolute roughness of 0.05 mm.

4.3. Isentropic Exponent

The isentropic exponent only appears in the compressor head equation (Equation (11)) in the
FCMP model. Additionally, by making the substitution m(κ(T, P)) = κ(T,P)−1

κ(T,P) the isentropic exponent
is removed from the formulation entirely:

Had,ij =
ZiTR

Mwmij

((Pj

Pi

)mij
− 1

)
∀(i, j) ∈ Ac. (24)

By approximating the relationship of m with temperature and pressure, the complexity of the
compressor head equation is reduced. More importantly, if the relationship between the isentropic
exponent and temperature–pressure were to be used then any approximation error would be magnified
in the formulation through the ratio κ(T,P)−1

κ(T,P) . By approximating the ratio directly, the magnification of
error is avoided.

Figure 10a shows that the rigorously calculated three-dimensional relationship between m
and temperature–pressure is practically convex, and so the PLFG method can produce a good
approximation. A valid approach would be to discritize m in the temperature domain like the
compressibility factor, but because the three-dimensional relationship is practically convex it is
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unnecessary. Figure 10b shows the approximation produced using the procedure described in Section 3,
where approximation cross-over is allowed. The optimal piecewise-linear function generated consists
of four planes, and has a maximum error from the rigorous relationship of 0.92%.

Figure 10. (a) Rigorous three-dimensional relationship between m and temperature–pressure; and
(b) piecewise- linear approximation of m using four planes for natural gas with a composition of:
85% methane, 14% ethane, and 1% nitrogen.

4.4. Compressor Model

4.4.1. Compressor Operating Envelop

Equations (13)–(15) combine to form the compressor operating envelop, which introduce considerable
complexity to the FCMP model. It is possible to remove these equations from the formulation by using
four piecewise-linear approximations that are functions of volumetric flow rate. This corresponds
to one approximation for each of the four curves that bound the operating envelop. By removing
these equation from the formulation, the relationship of compressor speed with compressor head and
volumetric flow rate is removed, which is important for calculating the compressor efficiency through
Equation (16). This issue will be dealt with in the next section.

Figure 4 shows that the surge and stonewall bounds are convex curves, whereas the Smin and
Smax bounds are concave curves. Given that the operating envelop bounds the feasible operation of a
compressor unit, it is desirable to produce an inner approximation of the envelop so that approximation
error does not allow regions of operation to be feasible in the FCMP model that are not feasible in
reality. To achieve this, Equation (21) or (22) is used in the PLFG MILP so that approximation cross-over
is not allowed. The surge and Smax bounds are approximated by piecewise-linear functions that must
be below the actual bounds, and the stonewall and Smin bounds are approximated by piecewise-linear
functions that must be above the actual bounds.

Figure 11 shows the inner approximation of the compressor envelop after applying the procedure
discussed in Section 3 to each of the four operating bounds, where a stopping criteria of 1% maximum
error was used for each bound. The resulting piecewise-linear approximations has three line segments
for the surge and stonewall bounds, and four line segments for the Smin and Smax bounds.
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Figure 11. Approximation of the compressor operating envelop shown in Figure 4.

4.4.2. Compressor Efficiency

By removing Equations (13)–(15) from the FCMP model, the compressor speed is meaningless
in the compressor efficiency equation (Equation (16)). This is fine because it is desirable to remove
Equation (16) from the formulation because of its complexity. Equations (11) and (16) determine that
the compressor efficiency is specified for any combination of compressor head and volumetric flow
rate, which can be seen in Figure 12. Although the compressor speed is necessary for defining this
relationship through an analytical expression, the relationship in Figure 12 can be approximated using
a piecewise-linear function of compressor head and volumetric flow rate. This allows compressor
speed to be removed from the formulation entirely, as the analytical expression is no longer necessary.

Figure 12. Rigorous relationship of compressor efficiency with compressor head and volumetric flow rate.
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While the relationship in Figure 12 is well suited to be approximated using the PLFG method
given its concavity, an approximation that removes further model complexity can be made. Aside from
in the equation used to calculate compressor efficiency, the compressor efficiency only appears in the
FCMP model through the objective function (see Problem (17)). Therefore the compressor efficiency
can be removed from the formulation with no effect if its influence on the objective function is still
captured. The term Had

ηad
appears in the FCMP model objective function, and the relationship of this

term with compressor head and volumetric flow rate can be seen in Figure 13a. The relationship is a
simple convex curve that can be approximated well by the PLFG method, and by doing so removes
compressor efficiency from the formulation entirely. Using the procedure discussed in Section 3,
the approximation shown in Figure 13 is generated, which consists of four planes and has a maximum
approximation error of 1.12%.

Figure 13. (a) Rigorous relationship of Had
ηad

with compressor head and volumetric flow rate.

(b) Approximation of rigorous relationship of Had
ηad

(Had, Q) with a maximum relative error of 1.12%.

5. FCMP Model with Novel Relationship Approximations

There are two distinct methods for implementing the piecewise-linear function approximations
developed in Section 4 into the FCMP model. The first method is to simply allow the parameter or term
being approximated to be the convex region bounded by the piecewise-linear function. Equation (25)
is the expression used by this method for convex piecewise-linear approximations, and Equation (26)
is the expression used for concave piecewise-linear approximations.

f (x) ≥ ckx + dk, ∀k = 1, . . . , p (25)

f (x) ≤ ckx + dk, ∀k = 1, . . . , p (26)

Equation (25) restricts the parameter or term to be above the maximum of the set of convex
line segments, and it corresponds to the epigraph of f (x), as illustrated in Figure 14a. Equation (26)
restricts the parameter or term to be below the minimum of the set of concave line segments, and is the
hypograph of f (x), as illustrated in Figure 14b. The benefit of this method is that the piecewise-linear
function can be implemented without using integer variables. This method is valid only when replacing
the function curve with its epigraph or hypograph does not change the optimal solution. For example,
if the function f (x) in Figure 14a is the objective function to be minimized, then minimizing its upper
bound is same to minimizing itself, and therefore Equation (25) is sufficient for implementing the
piecewise-linear approximation.
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Figure 14. (a) Convex feasible region produced by bounding a parameter to be greater than a set of
convex line segments. (b) Concave feasible region produced by bounding a parameter to be less than a
set of concave line segments.

When it is not valid to represent the function curve by its epigraph or hypograph, the use of integer
variables is necessary to select which linear segment is active for a given section of the approximation
domain. The method for implementing this form of piecewise-linear function follows directly from the
PLFG MILP:

f (x) ≥ ckx + dk, ∀k = 1, . . . , p,

f (x) ≤ ckx + dk + MBig(1− bk), ∀k = 1, . . . , p,
p

∑
k=1

bk = 1.

Table 2 describes the parameters and variables used to implement the approximations into the
novel FCMP model.

Table 2. Parameters and variables for implementing the approximations into the Fuel Cost Minimization
Problem (FCMP) model.

Symbol Description Unit

bZ
k Compressibility factor binary variable -

cZ
k , dZ

k Compressibility factor line coefficients MPa−1, -
MZ

Big Compressibility factor sufficiently large number -
α, β Friction factor regression coefficients -, kg s−1

bm
k m binary variable -

cm
1,k, cκ

2,k, dm
k m plane coefficients K−1, MPa−1, -

cstw
k , dstw

k Stonewall limit line coefficients kJ-s kg−1-m−3, kJ kg−1

cSmax
k , dSmax

k Smax limit line coefficients kJ-s kg−1-m−3, kJ kg−1

bSmin
k Smin limit binary variable -

cSmin
k , dSmin

k Smin limit line coefficients kJ-s kg−1-m−3, kJ kg−1

MSmin
Big Smin limit sufficiently large number kJ kg−1

LSmin
ij Smin limit bound variable kJ kg−1

bsrg
k Surge limit binary variable -

csrg
k , dsrg

k Surge limit line coefficients kJ-s kg−1-m−3, kJ kg−1

Msrg
Big Surge limit sufficiently large number kJ kg−1

Lsrg
ij Surge limit bound variable kJ kg−1

cg
1,k, cg

2,k, dg
k gc plane coefficients kJ-s kg−1-m−3, -, kJ kg−1
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5.1. Compressibility Factor

The two-dimensional piecewise-linear approximation for the compressibility factor must be
implemented in the FCMP model using integer variables. This is because the compressibility factor
must be equal to a specific value for each temperature–pressure combination. The following constraints
are used in the FCMP model to implement the compressibility factor approximation:

Zm,ij ≥ cZ
k Pm,ij + dZ

k , ∀(i, j) ∈ Ap, ∀k = 1, . . . , 2,

Zm,ij ≤ cZ
k Pm,ij + dZ

k + MZ
Big(1− bZ

ij,k), ∀(i, j) ∈ Ap, ∀k = 1, . . . , 2,

2

∑
k=1

bZ
ij,k = 1, ∀(i, j) ∈ Ap,

where Pm,ij is the average pressure between nodes i and j.

5.2. Friction Factor

The friction factor is approximated through the fitting of a quadratic equation to the lumped
friction factor-squared mass flow term in the pipeline resistance equation. Thus, a straightforward
substitution of this term for the regressed quadratic function with no y-intercept term is made in the
pipeline resistance equation:

(P2
i − P2

j ) =
LijR

Mw A2
ijDij

Zm,ijT(αq2
ij + βqij), ∀(i, j) ∈ Ap. (27)

5.3. Isentropic Exponent

The three-dimensional piecewise-linear approximation for the function of the isentropic exponent
m(κ(T, P)) must be implemented using the integer based method. Similar to the compressibility factor,
m must be equal to a specific value for each temperature–pressure combination and so cannot be
defined by a convex region. The following constraints are used in the FCMP model to implement the
isentropic exponent approximation:

mij ≥ cm
1,kTi + cm

2,kPi + dm
k , ∀(i, j) ∈ Ac, ∀k = 1, . . . , 4,

mij ≤ cm
1,kTi + cm

2,kPi + dm
k + Mm

Big(1− bm
ij,k), ∀(i, j) ∈ Ac, ∀k = 1, . . . , 4,

4

∑
k=1

bm
ij,k = 1, ∀(i, j) ∈ Ac.

5.4. Compressor Operating Envelop

The two-dimensional piecewise-linear approximations of the compressor operating envelop
bounds are implemented using both the convex region method and integer-based method.
The stonewall and Smax bounds are able to be approximated using the convex region method,
as the stonewall limit is a convex curve that bounds the envelop from below, and the Smax limit
is a concave curve that bounds the envelop from above. The surge and Smin limits do not bound
a convex region, and thereby need to be implemented using integer variables. Accordingly, only
seven binary variables are added to the FCMP model for the 14 lines that approximate the operating
envelop. The complete operating envelop approximation is implemented in the FCMP model through
the following constraints:
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Had,ij ≥ cstw
k Qij + dstw

k ∀(i, j) ∈ Ac, k ∈ 1, . . . , 3,

Had,ij ≤ cSmax
k Qij + dSmax

k ∀(i, j) ∈ Ac, k ∈ 1, . . . , 4,

LSmin
ij ≥ cSmin

k Qij + dSmin
k −MSmin

Big (1− bSmin
k,ij ) ∀(i, j) ∈ Ac, k ∈ 1, . . . , 4,

LSmin
ij ≤ cSmin

k Qij + dSmin
k ∀(i, j) ∈ Ac, k ∈ 1, . . . , 4,

4

∑
k=1

bSmin
k,ij = 1 ∀(i, j) ∈ Ac,

Had,ij ≥ LSmin
ij ∀(i, j) ∈ Ac,

Lsrg
ij ≥ csrg

k Q,ij + dsrg
k ∀(i, j) ∈ Ac, k ∈ 1, . . . , 3,

Lsrg
ij ≤ csrg

k Q,ij + dsrg
k + Msrg

Big(1− bsrg
k,ij) ∀(i, j) ∈ Ac, k ∈ 1, . . . , 3,

3

∑
k=1

bsrg
k,ij = 1 ∀(i, j) ∈ Ac,

Had,ij ≤ Lsrg
ij ∀(i, j) ∈ Ac.

5.5. Compressor Efficiency

The compressor efficiency parameter is eliminated from the FCMP formulation by approximating
the term Had/ηad = gc(Had, Q), which appears in the objective function. For any combination of
compressor head and volumetric flow rate, a specific gc must be calculated for the approximation to be
accurate. Implementing the piecewise-linear approximation of gc would require an integer method if
it were not for the approximation being a convex set of planes, and appearing in the objective function
that is being minimized. That is to say, the convex region method for implementing the approximation
can be used because the minimum of a convex region is equivalent to the boundary of the convex
region. The approximation of gc is implemented into the FCMP as follows:

min ∑
(i,j)∈Ac

gc,ijqij

s.t. gc,ij ≥ cg
1,kQij + cg

2,k Had,ij + dg
k ∀(i, j) ∈ Ac, k ∈ 1, . . . , 4.

(28)

The full FCMP model that includes all of the novel approximations can be found in Appendix A.

6. Case Study

Three simple gas networks are used in the case study to investigate the performance of the novel
FCMP model. The first two networks investigated are identical to the networks studied in Wu et al. [23].
The Example 3 network is an extension of Example 2 intended to increase complexity. In each network,
the compressor stations are comprised of five centrifugal compressor units operated in parallel that
can each be switched ON or OFF, and the fitted coefficients of Equations (13) and (16) are the same as
in Wu et al. The integer variable ns

ij represents the number of compressor units ON in station (i, j).
For each network, the operating temperature is 288.7 K, however the 289.5 K compressibility factor
contour (Figure 8) was used for the piecewise-linear approximation to investigate the error introduced
by discritizing the temperature domain into sufficiently small intervals.

The three case study gas networks are made up of at most 17 arcs and so are much simpler versions
of typical gas networks encountered in practice. In practice, it is common to encounter networks that
contain hundreds of arcs, such as those provided in the publicly available gas network test instances
library GasLib, which are comparable to real-world networks of Open Grid Europe GmbH [32]. It is
important to be able to solve the FCMP on these networks within minutes as the FCMP is an operational
problem that needs to be solved in real-time to respond to changing network conditions. When the
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FCMP is being solved for long-term planning purposes it is often solved numerous times for a large
batch of scenarios so solution times within minutes are still needed to be useful for practitioners.

The optimization software used for the case study was GAMS version 25.1.1 [33], and the MINLP
solver used was SCIP version 5.0 [6]. GAMS was ran on the Ubuntu 16.04 operating system, with
a CPU frequency of 3592 MHz and 4 GB of RAM. The simulation software used to investigate the
optimization results was Matlab version 2018a [34].

6.1. FCMP Models

Three different FCMP models were applied to each of the simple case study gas networks to
investigate how the novel FCMP model balances accuracy and solution time. Figure 15 describes
the components of the FCMP model with common simplifications (FCMPS), the novel FCMP model
which includes the approximations developed here (FCMPN), and a partially rigorous FCMP model
(FCMPPR). The FCMPS model found in Appendix B includes all of the common simplifications and
so is included to benchmark the lowest reasonable solution time for an FCMP model. Given that
the FCMPS model’s components are commonly found throughout FCMP literature, it is also useful
for making comparisons to what is currently accepted as a standard FCMP model. The FCMPPR
model found in Appendix C is included to benchmark model accuracy, as it is made up of the most
rigorous calculations for its components, except for the compressibility factor and isentropic exponent.
The FCMPPR model uses the novel approximations for the compressibility factor and isentropic
exponent as their rigorous calculations cannot be feasibly implemented in an optimization model, and
the novel approximations are the most accurate alternative.

Figure 15. Flow chart detailing the components of each FCMP model applied in the case study, and the
rigorous simulation model.
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The optimal solutions from the three optimization models are applied on a rigorous simulation
model that is composed of the most rigorous modeling components known. The rigorous simulation
is ran to assess the accuracy and feasibility of a given optimal solution as follows:

1. The pressure of the first node is set as the first node pressure from the optimal solution.
2. If the next arc is a pipe section, then the pressure of the next node is calculated using the pipeline

resistance equation, where Z and λ are calculated using their rigorous relations. Else, move to
Step 3.

3. The next arc is a compressor station, so the outlet pressure is set as the outlet pressure from
the optimal solution. The simulated compressor fuel cost is then calculated using the rigorous
calculations for Z, κ, Had, and ηad so that a theoretically exact fuel cost is obtained.

4. Return to Step 2 and iterate until all node pressures and compressor station fuel costs are calculated.

The optimal solutions obtained from the three FCMP optimization models are all feasible with
respect to their individual simplifications and constraints, but when applied on a rigorous simulation
that calculates the pressure drop and compressor physics rigorously certain constraints may be
violated. It is important to note that the simulation will complete its calculation of node pressures
and compressor station fuel costs even if constraints are violated. In the case of the simulation finding
physical constraint violations, the optimal solution is noted as infeasible, but the simulated fuel cost is
still computed so that the error in the optimal solution can be quantified.

6.2. Example 1

The Example 1 gas network in Figure 16 is a simple gun-and-barrel network with two compressor
stations. The optimization and simulation results in Table 3 show that the FCMPN and FCMPPR
models are highly accurate, with their optimal fuel cost differing by less than 1% compared to the
fuel cost obtained from the simulation. The FCMPS model had the quickest solution time, but the
optimal solution differed by 11.41% compared to the fuel cost obtained from the simulation. Further,
the optimal solution obtained from the FCMPS model was proven to be infeasible by the rigorous
simulation, whereas both the FCMPN and FCMPPR models produced optimal solutions that were
feasible in the simulation. The reason for the infeasibility obtained in the FCMPS simulation is that
the model underestimated the pressure drop in pipe sections due to error introduced in both Z and
λ. This resulted in the simulation pressure at the end of the pipeline being below the lower pressure
limit, and the simulation compressor stations operating outside the operating envelop due to the larger
pressure increase required. The 0.09% difference between the simulated fuel costs of the FCMPN
and FCMPPR models demonstrates that the compressor model and friction factor approximations
developed introduce an insignificant amount of model error compared to their rigorous calculations.

For this gas network, the FCMPN model produced an optimal fuel cost that deviates from its
solution’s simulated fuel cost less than the optimal fuel cost produced by the FCMPPR model deviates
from its solution’s simulated fuel cost. This gives the false impression that the FCMPN model is more
accurate than the FCMPPR model, and, given that the FCMPPR model contains fewer approximations
than the FCMPN model, this is an unexpected result. The reason for this unexpected result is that in this
particular case the error introduced by approximating some parameters in the FCMPN model cancels
out with the error introduced by approximating some other parameters. Both FCMPN and FCMPPR
models contain approximation error that produces an overestimation of pressure drop compared to
the simulated pressure drop, so this results in an overestimation of the compressor fuel cost compared
to the simulated fuel cost. However, the FCMPN model contains approximation error in the objective
function while the FCMPPR model does not, and, depending on where the optimal solution of the
FCMPN places the operation of the compressor stations, the objective function approximation error can
result in an underestimation of the compressor fuel costs. For the FCMPS model, the overestimation of
compressor fuel cost through overestimating pressure drop, and the underestimation of compressor
fuel costs introduced by approximating the objective function can result in a cancellation of model



Processes 2018, 6, 198 23 of 31

error that results in the optimal fuel cost being closer to the simulated fuel cost compared to that
of the FCMPPR model. It is important to note that the FCMPS model will not always benefit from
the cancellation of model errors. There will be cases where the optimal solution is on a part of
the compressor operating domain where the objective function approximation error results in fuel
cost being overestimated, and therefore the pressure drop error is compounded with the objective
function error.

Figure 16. Example 1 gas network consisting of three pipes and two compressor stations.
PL

i = 4.14 MPa, and PH
i = 5.52 MPa for all i ∈ N. Dij = 0.9144 m and Lij = 80.47 km for all

(i, j) ∈ Ap.

Table 3. Example 1 case study results. Both compressor stations only have one unit active in all three
model solutions. Lines in bold represent outlet pressures from compressor stations.

FCMPS FCMPN FCMPPR

Variable Optimization Simulation Optimization Simulation Optimization Simulation

P1 (MPa) 4.99 4.99 5.01 5.01 5.01 5.01
P2 4.47 4.37 4.39 4.39 4.39 4.39
P3 4.87 4.87 ** 4.92 4.92 4.92 4.92
P4 4.33 4.22 4.28 4.29 4.28 4.29
P5 4.70 4.70 ** 4.80 4.80 4.80 4.80
P6 4.14 4.02 * 4.14 4.14 4.14 4.14

Fuel Cost (kJ s−1) 39.76 44.88 *** 47.31 47.33 47.58 47.28

% Diff 11.41% 0.05% 0.61%

Solution Time (s) 0.32 s 1.26 s 5.97 s

# of Constraints 31 123 86
# of Continuous Variables 23 71 68

# of Discrete Variables 2 34 20

* Pressure is outside of pressure bound by more than 1%. ** Compressor operating point is outside the
operating envelop by more than 1%. *** Fuel cost calculated on the basis of a solution that violates
physical constraints.

6.3. Example 2

The Example 2 gas network shown in Figure 17 is a tree network with three compressor stations.
Table 4 shows that the optimal solutions obtained from the FCMPN and FCMPPR models are both
highly accurate, differing from their simulated fuel costs by 1.02% and 0.78%, respectively. Both optimal
solutions produced by these models were found to be feasible in the rigorous simulation. The FCMPS
model was found to be infeasible in the simulation due to the compressor stations on arcs (3, 4)
and (3, 8) operating outside the feasible operating envelop. Further, the optimal fuel cost of the
FCMPS model was found to be 28.87% different than the fuel cost obtained from the simulation. As in
Example 1, this difference can largely be attributed to underestimating the pressure drop in pipeline
segments. The solution times of the FCMPS and FCMPN models are comparable, both being under 2 s.
The FCMPPR solution time is much higher, at 54.26 s. Given that the FMCPPR simulated fuel cost is
only 0.28% lower than that of the FCMPN model, the drastically higher solution time of the FCMPPR
model shows the value of the FCMPN model.
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Figure 17. Example 2 gas network consisting of six pipes and three compressor stations. PL
1 = PL

2 =

4.14 MPa, PL
3 = PL

5 = PL
6 = PL

7 = PL
9 = 3.10 MPa, PL

4 = 3.45 MPa, PL
8 = 3.79 MPa, PL

10 = 2.76 MPa.
PH

1 = 4.83 MPa, PH
i = 5.52 MPa for all i > 1. Dij = 0.9144 m and Lij = 80.47 km for all (i, j) ∈ Ap.

Table 4. Example 2 case study results. All three compressor stations only have one unit active in all
three model solutions. Lines in bold represent outlet pressures from compressor stations.

FCMPS FCMPN FCMPPR

Variable Optimization Simulation Optimization Simulation Optimization Simulation

P1 (MPa) 4.26 4.26 4.38 4.38 4.38 4.38
P2 4.53 4.53 4.69 4.69 4.69 4.69
P3 3.42 3.15 3.37 3.38 3.38 3.38
P4 3.79 3.79 ** 3.79 3.79 3.79 3.79
P5 3.49 3.42 3.42 3.42 3.42 3.42
P6 3.45 3.36 3.36 3.36 3.36 3.36
P7 3.45 3.36 3.36 3.36 3.36 3.36
P8 3.79 3.79 ** 3.79 3.79 3.79 3.79
P9 3.49 3.42 3.42 3.42 3.42 3.42
P10 3.31 3.18 3.18 3.18 3.18 3.18

Fuel Cost (kJ s−1) 56.55 79.51 *** 58.47 57.88 58.17 57.72

% Diff 28.87% 1.02% 0.78%

Solution Time (s) 1.03 s 1.88 s 54.26 s

# of Constraints 50 197 146
# of Continuous Variables 30 115 115

# of Discrete Variables 3 54 33

* Pressure is outside of pressure bound by more than 1%. ** Compressor operating point is outside the
operating envelop by more than 1%. *** Fuel cost calculated on the basis of a solution that violates
physical constraints.

6.4. Example 3

The Example 3 network shown in Figure 18 is an extension of the Example 2 network, with
two additional compressor stations and six additional pipes. Table 5 shows that the accuracy of
the FCMPN and FCMPPR models was unaffected by the additional complexity of the Example 3
network, with the error between the optimal and simulated fuel costs being less than 1% for both
models. The accuracy of the FCMPS model did suffer from the extension of the network, with the
fuel cost error increasing to 47.50% compared to the simulation. Again, the simulation showed that
the FCMPS model solution is infeasible and the FCMPN and FCMPR model solutions are feasible.
The solution time of the FCMPPR model increased drastically, going from 54.26 s in Example 2 to
994.98 s in Example 3. The FCMPN model solution time also increased, but only to 8.21 s from 1.88 s
in Example 2. The increased solution efficiency of the FCMPN model over the FCMPPR model does
not come at a loss of model accuracy, with the simulated fuel costs differing by only 0.41% between
the models. As in Example 1, the FCMPN optimal solution is observed to have slightly less model
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error than the FCMPPR model. The explanation for this unexpected result is the same as was given for
Example 1.

Figure 18. Example 3 gas network consisting of 12 pipes and five compressor stations. PL
1 = PL

2 =

4.14 MPa, PL
3 = PL

5 = PL
6 = PL

7 = PL
9 = 3.10 MPa, PL

4 = 3.45 MPa, PL
8 = 3.79 MPa, PL

10 = 2.76 MPa,
PL

11 = PL
12 = PL

13 = PL
14 = PL

15 = PL
16 = PL

17 = PL
18 = 0.69 MPa. PH

1 = 4.83 MPa, PH
i = 5.52 MPa for all

i > 1. Dij = 0.9144 m and Lij = 80.47 km for all (i, j) ∈ Ap.

Table 5. Example 3 case study results. Lines in bold represent outlet pressures from compressor stations.

FCMPS FCMPN FCMPPR

Variable Optimization Simulation Optimization Simulation Optimization Simulation

P1 (MPa) 4.26 4.26 4.46 4.46 4.45 4.45
P2 4.53 4.53 ** 4.81 4.81 4.80 4.80
P3 3.42 3.15 3.56 3.56 3.54 3.54
P4 3.79 3.79 ** 4.01 4.01 4.01 4.01
P5 3.49 3.42 3.66 3.66 3.66 3.66
P6 3.45 3.36 3.60 3.60 3.60 3.60
P7 3.45 3.36 3.60 3.60 3.60 3.60
P8 3.79 3.79 ** 4.01 4.01 3.98 3.98
P9 3.49 3.42 3.66 3.66 3.63 3.63
P10 3.31 3.18 3.44 3.44 3.41 3.41
P11 3.66 3.66 ** 3.84 3.84 3.84 3.84
P12 2.76 2.49 2.75 2.76 2.75 2.76
P13 2.32 1.85 2.19 2.19 2.19 2.19
P14 2.59 2.26 2.55 2.55 2.55 2.55
P15 2.76 2.76 ** 2.77 2.77 2.77 2.77
P16 1.49 0.85 0.88 0.88 0.88 0.88
P17 1.49 0.85 0.88 0.88 0.88 0.88
P18 1.42 0.65 * 0.69 0.69 0.69 0.69

ns
1,2 2 1 1

ns
3,4 1 1 1

ns
3,8 1 1 1

ns
7,11 2 1 1

ns
14,15 4 3 3

Fuel Cost (kJ s−1) 98.21 187.08 *** 123.02 122.26 123.74 122.77

% Diff 47.50% 0.62% 0.79%

Solution Time (s) 3.99 s 8.21 s 994.98 s

# of Constraints 88 345 266
# of Continuous Variables 68 205 211

# of Discrete Variables 5 94 59

* Pressure is outside of pressure bound by more than 1%. ** Compressor operating point is outside the
operating envelop by more than 1%. *** Fuel cost calculated on the basis of a solution that violates
physical constraints.
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A final note on the three examples is that the the solution time for the FCMPPR model grows
much more quickly than that for the FCMPN model. It can be seen that, between each of the case
study examples, the problem size is roughly doubled while the solution time for FCMPPR is increased
an order of magnitude. Following the observed exponential time complexity, one could imagine that,
for a real industrial gas network (10–100 times larger than Example 3), the solution time for FCMPPR
would be several hours to days which is too slow for real-time operation or even off-line analysis.
On the other hand, the solution time for the FCMPN model is much less for each example and it does
not increase with problem size dramatically. The computational advantage of the proposed MILP
modeling approach makes it more appealing for real-world problems.

7. Conclusions and Future Work

The common way of modeling the FCMP has been to assume key modeling parameters as
constant to avoid the complexity involved with their rigorous calculation. We have shown that,
even for three simple gas networks, the model error that is introduced by making these simplifications
are significant and often cause the optimal solution obtained from these models to be infeasible in
reality. A method for approximating the complex relationships that have typically been avoided has
been demonstrated. The method is to apply an optimal piecewise-linear function generating MILP
to the rigorously simulated data points of the relationship being approximated. An optimal solution
to the MILP determines the orientation and break-points of a specified number of linear segments so
that the maximum relative error between the approximation and the actual data points is minimized.
For the MILP to be applicable, the relationship being approximated must be practically convex or
concave, meaning that it is a relationship that can be approximated by a convex or concave function
without significant error.

The piecewise-linear approximations developed have been implemented in a novel FCMP model
and applied to three simple gas networks. The novel FCMP model was shown to marginally increase
the solution time compared to the common simplified model, but significantly reduce model error.
When compared to a theoretically exact simulation, the optimal solutions produced by the novel FCMP
model had a maximum error of 1.02%. A comparison was also made to a rigorous FCMP model and the
novel FCMP model was found to have a much great solution efficiency, and a similar model accuracy.

The proposed piecewise linearization approach is believed to be more advantageous than classical
piecewise linearization approaches in that it determines the break-points in an optimal way. Since there
has been no other work that linearizes the nonlinear relationships considered in this paper, it will
be an interesting future work to apply the classical piecewise linearization approaches to FCMP and
compare their performance to that of the proposed piecewise linearization approach. Given that the
proposed method cannot be applied to clearly non-convex functions, future work will also seek to
formulate a piecewise-linear function generating MILP that can be applied to non-convex relationships.
This MILP will also aim to have the property of determining the optimal orientation and break-points
of linear segments so that approximation error is minimized. This will allow the piecewise-linear
method of linearization to be applied to any type of relationship and to benefit a wide variety of NLPs
and MINLPs which are difficult to solve.
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Abbreviations

The following abbreviations are used in this manuscript:

FCMP Fuel Cost Minimization Problem
NLP Nonlinear Program
MINLP Mixed-Integer Nonlinear Program
PLFG Piecewise-Linear Function Generation
MILP Mixed-Integer Linear Program

Appendix A. Novel FCMP Model (FCMPN )
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Appendix B. Simplified FCMP Model (FCMPS)
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Appendix C. Rigorous FCMP Model (FCMPR)
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