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Abstract: The c-C4F8 gas is considered to have great potential as a gaseous medium for gas-insulated
equipment, due to its good insulation properties and its relatively low greenhouse gas potential
(GWP) relative to SF6. However, the decomposition is an important indicator of its use in equipment.
In this paper, the decomposition characteristics of c-C4F8 and the influence by oxygen have been
explored through experiments and theoretical calculations. Firstly, the breakdown test of mixed
gas was carried out and the precipitated elements of the electrodes and breakdown products of gas
mixture were analyzed by X-ray photoelectron spectroscopy (XPS) and gas chromatography mass
spectrometry (GC-MS). At the same time, the differences in decomposition products have also been
studied when a small amount of O2 was present. The path and mechanism of c-C4F8 decomposition
is then discussed, based on density functional theory (DFT). The results show that the black powdery
substance descends on the electrode surface after the breakdown of the mixture of c-C4F8/N2 gas
containing O2, and its main constituent elements are C, O and F. O2 can promote the decomposition
of c-C4F8. The mixture with O2 produced a large number of additional toxic and corrosive COF2

in addition to generating more CF4, C2F4, C2F6, C3F6 and C3F8. The GWP values of the products
are lower than SF6. Comprehensive insulation properties and decomposition characteristics, c-C4F8

should not be mixed with dry air for use, and the oxygen content should be strictly controlled in
c-C4F8 mixed gas.

Keywords: SF6 alternative gas; c-C4F8/N2 gas mixture; breakdown characteristics; decomposed
component; greenhouse effect

1. Introduction

Sulfur hexafluoride (SF6) has been widely used in the power industry due to its excellent insulation
and arc extinguishing properties. A total of 80% of the SF6 is used in high voltage circuit breakers
and other high-pressure gas insulation equipment [1]. However, SF6 was listed as one of the six major
greenhouse gases with a GWP (Global Warming Potential) of 23,500 and an atmospheric lifetime
of 3200 years in the 1972 Kyoto Protocol [2,3]. Although the atmospheric concentration of SF6 is
relatively low, contributing to 0.1% of the total anthropogenic radiative forcing, the concentration is
growing continuously because of the compound’s long lifetime of ~3200 years [4,5]. Over the past five
years, the content of SF6 in the global atmosphere has increased by 20% [6]. California proposed that
the use of SF6 in the electrical field should be reduced annually from 2020 and the European Union
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plans to reduce SF6 emissions to 2/3 between 2014 and 2030 [7]. In order to ensure the sustainable
development of the power industry, reducing the use of SF6 has become an important task in the
current production and use of power equipment. In addition, SF6 could generate a variety of harmful
gases such as SO2, SOF2, SO2F2, S2F10, under partial discharge, spark discharge or arc discharge [8–10].
Therefore, looking for an environmentally friendly and safe gas as an alternative insulation medium in
power equipment, has become a sought-after solution.

In the current research, the ideal substitutes for SF6 include perfluorocarbons (PFCs),
trifluoroiodomethane (CF3I), and other gases. Among them, the C-I bond of CF3I can easily be
broken to produce iodine solid, which produces toxic gases such as CH3I, COF2 after discharge, which
is not conductive to the long-term safe operation of the equipment [11,12]. Of course, the adsorbent
can adsorb by-products, but finding a suitable adsorbent and whether the adsorbent has an effect on
the insulation is also a problem. PFCs mainly include C2F6, C3F8, c-C4F8, among which c-C4F8 is the
most excellent insulating property (about 1.18 times that of SF6). It is non-toxic to humans and the
environment with the GWP of 8700 and the liquefaction temperature of −6 ◦C [13]. Although c-C4F8

also has greenhouse effect, its global warming potential is much lower than SF6 (23,000). Replacement
of SF6 with c-C4F8 in power equipment will significantly reduce the greenhouse effect. So far, there are
still many scholars to study the possibility of replacement SF6.

Concerning the new environmentally friendly insulation gas produced by 3M, apart from the C5F10O
(Novec 5110) mentioned by reviewers, there is also C4F7N (Novec 4710) [14,15]. Both of these gases
are hot in the current stage of research. We do not deny the superior performance of these two gases.
However, gas liquefaction temperatures such as C5F10O are too high to be suitable for all types of
gas-insulated equipment. In recent years, many researchers have studied the insulation performance
of c-C4F8 with N2, CO2 and other mixed gases under DC, AC and lightning impulse voltage. It is
concluded that the electrical strength of c-C4F8-N2 mixtures can only reach approximately 0.57 times that
of pure SF6 at 0.5 MPa with c-C4F8 concentrations of 20% [16], but 15–20% c-C4F8 gas mixture meets
the requirements of electrical equipment, and mixtures can greatly reduce the impact of insulating gas
on the environment [17–19]. Li et al. calculated the mixtures between c-C4F8 and variety of gases in
order to determine the mixed gas insulation. For example, the critical breakdown strength of c-C4F8-N2

and c-C4F8-air are similar and significantly higher than other mixed gases. When the content of c-C4F8

exceeds 80%, the insulation property of mixture can reach the level of pure SF6 but there is a lack of
experimental data for validation [20]. Some studies on the decomposition characteristics of c-C4F8 have
achieved some results. Li et al. [21] explored the decomposition products of c-C4F8 under various typical
faults based on the gas chromatograph-mass spectrometer test. It was found that the decomposition of
c-C4F8 mainly produced CF4, C2F6 and C2F4, C3F8, C3F6. Hayashi et al. [22] discussed the main pathways
for the dissociation of c-C4F8 to generate free radicals CF2 based on the density functional theory (DFT),
providing guidance for further investigation of the decomposition mechanism of c-C4F8. As the core
insulating gas, c-C4F8 may need to be mixed with other gases due to the liquefaction temperature, and dry
air is the common buffer gas. The theoretical calculations and experimental studies have shown that
c-C4F8-N2 has good insulation properties. Potential alternative environmentally-friendly alternative gas
and dry air often are mixed as an insulating medium. Additionally, in order to promote the recovery
after the arc, O2 often appears in the arc medium. However, the related research is lacking, and the
toxicity and environmental safety of the decomposition products after mixing with oxygen are urgent to
be investigated. Oxygen introduction is divided into passive introduction and active introduction. Passive
introduction mainly refers to the introduction of trace amounts of oxygen introduced by the equipment
during operations such as transportation, assembly, maintenance, and ventilation. Generally, it will not
exceed 1%, which is similar to the problems faced by SF6 gas insulation equipment [23]. The other is
active introduction, because the environment-friendly insulation gas may be mixed with dry air to fill
the equipment. In addition to nitrogen and CO2, dry air mainly contains O2. The safety of the other two
gases has been verified in many studies [24]. Therefore, the influence of O2 on the insulation performance
and decomposition properties of c-C4F8 also needs to be studied, and it is very urgent.
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The influence of oxygen on the decomposition of mixed gas can provide the basis for exploring
c-C4F8-air and the performance analysis of the decomposition products is also an important indicator
of evaluation gas application. In order to obtain a new insulation formula for environmental safety
and to study the possible causes of hazardous products, it is necessary to test and analyze the physical
and chemical processes of oxygen gas mixture discharge.

In this paper, the decomposition products of pure c-C4F8 and the c-C4F8/N2 mixed gas are
explored experimentally and the influence of oxygen are also considered. N2 is just the buffer gas
added in order to reduce the liquefaction temperature, because its physical and chemical properties are
stable and not easy to decompose. After several frequency breakdown experiments, the decomposition
products and electrode precipitation elements were obtained by GC-MS (gas chromatography mass
spectrometry) and XPS (X-ray photoelectron spectroscopy). Based on the density functional theory,
the structural characteristics of c-C4F8 were calculated firstly, the stability of the molecular structure
and the reactive sites were analyzed. The possible dissociation pathways of c-C4F8 and the formation
mechanism of the decomposition products were discussed. The purpose of this paper is to study
the changes of decomposition products with the participation of oxygen and explore the safety and
environmental protection of products. The comprehensive evaluation of the influence of oxygen on
the decomposition characteristics of c-C4F8 provides a reference for the research of SF6 alternative gas.

2. Experimental Setup

The test was carried out at a 50 Hz AC voltage gas insulation performance test platform. In the
experiment, N2, which is stable chemically gas, was used as the buffer gas.

Before the experiment, the airtightness of the gas chamber was checked, and the sealed gas
chamber was evacuated using a vacuum pump (BECKER/VT4.16, BECKER, Wuppertal, Germany)
and was allowed to stand still for 60 min (less than 10 Pa). N2 gas is used to clean the gas chamber.
The above steps are repeated 2 to 3 times in order to avoid the influence of impurity gases. After
cleaning, the mixed gas is introduced into the gas chamber. The ball-ball electrode was used in the
experiment. The diameter of the copper ball was 50 mm with the electrode spacing of 5 mm. The range
of applications for mixed gases may be medium-voltage gas-insulated devices such as switch cabinets.
Because the key part of the conductivity in these devices is made of copper, it is used as the electrode
material. The purity level of the c-C4F8 and N2 is 99.999%.

According to the literature [24], it has been shown that the breakdown behavior of c-C4F8/N2

mixture (the mixing ratio of c-C4F8 is 5%~20%) under uniform electric field is similar to that of SF6/N2

with the same mixing ratio. The Corona discharge performance of c-C4F8/N2 is better than the same
mixing ratio SF6/N2. If the c-C4F8/N2 gas mixture is not liquefied at −30 ◦C, the content of c-C4F8 in
the gas mixture is at most about 15% [25]. Therefore, the pure c-C4F8, 15% c-C4F8/N2 and with 3% O2

were selected as samples in this paper. The test was carried out by a step-and-step method, and the gas
mixture was broken down 50 times to detect decomposition products. The details are shown in Figure 1.
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GC-MS is used for detection of gas mixture components after the breakdown discharge. CP Sil
5CB was selected as the column. GC analysis, the high purity He (the purity of gas is above 99.999%)
gas is used as a carrier gas, and carrier gas filters (including He filter and RP oil filter) are used to filter
out the impurities, which may affect the column and interfere with the experimental results. Inlet
temperature is 220 ◦C and inlet pressure is 56.1 kPa. The injection mode uses a split flow method with a
split ratio of 10:1 and an injection volume of 1 mL. The column flow rate is 1.2 mL/min, and the purge
flow rate is 3.0 mL/min. The heating rate of gas into the oven is shown in Figure 2. The oven had an
initial temperature of 35 ◦C, a final temperature of 150 ◦C, and a temperature increase rate of 40 ◦C/min.
The column temperature was maintained at 35 ◦C for 0~8 min, and after 8 min, the temperature rose
steadily to 150 ◦C, and the temperature rising rate was kept at 40 ◦C/min. MS analysis, the ion
source temperature is 200 ◦C, the chromatographic mass spectrometry interface temperature is 220 ◦C,
ionization mode is Electronic ionization (EI). The solvent delay time was 0.1 min; the detector voltage
threshold was 100 and the voltage was 0.1 kV. The specific steps can be found in [26–30].
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3. Experimental Results

3.1. Electrode Precipitate Component Analysis

Figure 3 shows the surface of the ball electrode before and after breakdown of pure c-C4F8,
c-C4F8/N2 gas without O2 and with 3% O2. It can be seen that the surface of the copper ball electrode
is covered with a layer of black powdery solid. Compared to pure gas, the mixed gas deposits
are significantly less. However, the addition of oxygen increases the production of solid products
while there only was a clear trace of ablation on the electrode surface at absence of O2 in mixture.
The ESCALAB 250Xi photoelectron spectrometer (Thermo Scientific Corp., Waltham, MA, USA) was
used to scan the black surface of the electrode by XPS. It was found that it consisted of C, F, O and N
elements. Table 1 shows the content of each component in the black material, in which the C content is
58.44%, which is the main constituent element, the content of O is 17.32%, the N element content is
0.75% and the F element content is 23.49%. Figure 4 shows the C photoelectron scanning.

Table 1. Element content of precipitates on spherical electrode surface.

Element Concentration (%) (Precision: 0.01%)

C1s 58.44
O1s 17.32
N1s 0.75
F1s 23.49
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As shown in Figure 4, the maximum intensity of the corresponding C element binding energy
is about 285 eV, corresponding to the chemical structure of the C–C single bond structure, which
constitutes the C elemental elements. With C element loss of electrons, the binding energy can increase
to 290 eV, corresponding to the chemical structure of O–C=O, which may constitute a variety of carbon
oxides. Through XPS analysis, the black surface of the electrode may show a single element of C and
various oxyfluorides of carbon. The test results are consistent with the literature [21].

3.2. Experimental Analysis of the Decomposition Products of c-C4F8 under Micro-Oxygen Condition

In order to further verify the accuracy of the experimental results, the gas-insulated test platform
was used to conduct continuous, 50 rounds of pure c-C4F8, c-C4F8/N2 mixed gas with 0% and 3%
O2 content breakdown tests and analysis of discharge breakdown components. The breakdown test
was conducted on the mixed gas and the decomposition components of the mixed gas were detected.
Figure 5a,b shows the GC-MS chromatograms(Varian Medical Systems, Inc., Palo Alto, CA, USA) of
the two mixed gases after breakdown. Qualitative analysis is carried out using the combined methods
of the United States National Institute of Standards and Technology (Nist14.0) database, and standard
gas chromatography scanning.
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The mass-to-charge ratio M/Z = 1 was selected as the base peak. As shown in Figure 5a,
the chromatograms of the two mixed gases showed the characteristic peaks of CF4, C2F6, C2F4

and C3F6. The characteristic peak of COF2 also appears with O2 of 3%. COF2 is a highly toxic gas with
a strong irritating effect on the skin and respiratory mucosa. It is also corrosive and can irreversibly
damage equipment insulation. In order to display all products containing CF3· groups, the results
of the scan were analyzed using M/Z = 69 as the base peak, as shown in Figure 5b. Chromatogram
in addition to CF4, C2F6, C2F4, C3F6, C3F8 also appeared characteristic peaks. From the test results,
the main decomposition products are from the c-C4F8 molecules, and N2 in the mixed gas did not
participate in the chemical reaction.

Test results show that pure gas is more likely to decompose and the intensity of each
decomposition product monitored was higher than that of c-C4F8/N2. In order to investigate the
effect of O2 on the decomposition of c-C4F8/N2 gas mixture in more detail, Table 2 shows the peak
intensities of the decomposition components of c-C4F8/N2 gas mixture at 0% and 3% O2. It can be seen
that with the addition of O2, the peak intensities of CF4, C2F6, C3F8 and C2F4 all have large changes,
and the peak intensity of CF4 produced by c-C4F8/N2 with 3% O2 increased by 275.34%, C2F6 relative
increase of about 200%, C2F4 and C3F8 relative growth of about 140%. The growth rate of CF4 and
C2F6 is higher than that of C3F8. The above analysis shows that the decomposition of c-C4F8 is more
likely to produce small molecule products and the mixed gas containing O2 generates extra COF2.
The presence of O2 promotes the decomposition of c-C4F8/N2.
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Table 2. Peak strength of c-C4F8/N2 mixed gas decomposition products under different O2 contents.

Products 0% O2 3% O2 The Growth Rate (%)

CF4 1,052,859 2,898,954 275.34
C2F6 1,944,746 3,808,650 195.84
C3F8 196,263 275,746 140.50
C2F4 8,377,435 11,928,574 142.39
C3F6 1,479,519 1,627,829 110.02

4. Discussion

In order to explore the discharge decomposition path of c-C4F8 and the effect of O2 on its
decomposition, a thermodynamic and kinetic combination method was used to analyze the orientation
and mechanism of the reaction based on density functional theory (DFT). With regard to theoretical
knowledge of calculations, it has been described in detail in our previous work [30,31]. The Dmol3
package was used to process exchange-related interactions using a local density approximation
(LDA-PWC) approach to optimize the structure of c-C4F8 and O2 [25]. To model the possible
reaction path, the stable molecular configuration with the lowest energy is needed for selection.
By calculating the energy of reactants and products, we can get the energy change before and after the
reaction, and judge the difficulty of the reaction from the thermodynamic point of view. In addition,
the constructed non-decomposing reaction path needs to be searched for transition state [32]. Because
during the process of chemical bond breaking and rearrangement, the intermediate activated complexes
will be absorbed by the reactants to produce a certain amount of energy, and the process of generating
activated complexes often determines the reaction rate. Therefore, the transition state structure and
the corresponding activation energy are helpful to evaluate the reaction from the kinetic point of view.
Finally, combined with the test results, the dynamic equilibrium process of particles during the
decomposition of c-C4F8 with O2 was analyzed.

4.1. The Basic Properties of c-C4F8

Figure 6 shows the geometry of optimized c-C4F8 molecule structure, where the bond length is Å
and the bond angle is ◦. The c-C4F8 molecule has a high degree of symmetry. The C-C bond length
is 1.583 Å and the C-F bond length is 1.350 Å. The F-C-F bond angle is 110.150◦ and the F-C-C bond
angle is 113.587◦.
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Figure 6. Molecular structure of c-C4F8.

The bond level is a physical quantity that describes the bond strength between adjacent atoms
in the molecule, indicating the relative strength of the bond. In the collision of electrons and other
particles or under high temperature conditions, the chemical bond may be broken, wherein the strength
of the chemical bond relative to the strength of the smaller chemical bonds more difficult to break.
Figure 7 shows the calculated chemical bond levels for the c-C4F8 and SF6 molecules. According to the
calculation results, the C-C bond in the c-C4F8 molecule has a bond level value of 0.924 and the C-F
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bond with a value of 0.896. The intensity of the C-F bond in the c-C4F8 molecule is weaker than that
of the C-C bond. Therefore, the C-F bond is more likely to dissociate than the C-C bond. In the SF6

molecule, the S-F bond level value of the four co-planar F atoms and the S atom is 0.826, and the other
the S-F bond level value is 0.829. Overall, the bond level of the chemical bonds in the SF6 molecule is
smaller than the bond order of the chemical bonds in the c-C4F8 molecule, indicating that the stability
of the molecular structure of the SF6 is inferior to that of the c-C4F8 molecule, which explains the
c-C4F8 gas dielectric strength is superior to SF6 gas.

Processes 2018, 6, x FOR PEER REVIEW  8 of 15 

 

that of the C-C bond. Therefore, the C-F bond is more likely to dissociate than the C-C bond. In the 
SF6 molecule, the S-F bond level value of the four co-planar F atoms and the S atom is 0.826, and the 
other the S-F bond level value is 0.829. Overall, the bond level of the chemical bonds in the SF6 
molecule is smaller than the bond order of the chemical bonds in the c-C4F8 molecule, indicating that 
the stability of the molecular structure of the SF6 is inferior to that of the c-C4F8 molecule, which 
explains the c-C4F8 gas dielectric strength is superior to SF6 gas. 

 

 
(a) c-C4F8 (b) SF6 

Figure 7. c-C4F8 and SF6 bond-level distribution. 

The distribution of the highest occupied molecular orbital (HOMO) and the lowest unoccupied 
molecular orbital (LUMO) of c-C4F8 is calculated from the orbital distribution of the molecules, as 
shown in Figure 8. The corresponding energies are −0.298645 Ha and −0.086768 Ha, respectively. The 
energy difference between LUMO and HOMO characterizes the stability of the gas involved in the 
chemical reaction. The larger the difference is, the larger the energy required for the electron 
transition in the molecule is and the more stable the molecule is. 

  
HOMO (highest occupied molecular orbital) LUMO (lowest unoccupied molecular orbital) 

Figure 8. c-C4F8 molecular orbital distribution. 

4.2. The Decomposition Path of c-C4F8 and the Main Product Generation Mechanism 

Electrons are the main factors that cause collision ionization and dissociation in the electric field. 
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The distribution of the highest occupied molecular orbital (HOMO) and the lowest unoccupied
molecular orbital (LUMO) of c-C4F8 is calculated from the orbital distribution of the molecules,
as shown in Figure 8. The corresponding energies are −0.298645 Ha and −0.086768 Ha, respectively.
The energy difference between LUMO and HOMO characterizes the stability of the gas involved in the
chemical reaction. The larger the difference is, the larger the energy required for the electron transition
in the molecule is and the more stable the molecule is.
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4.2. The Decomposition Path of c-C4F8 and the Main Product Generation Mechanism

Electrons are the main factors that cause collision ionization and dissociation in the electric field.
Under the high-energy electric field or local overheating, the chemical bonds in the molecular structure
of c-C4F8 will be cleaved, generating various types of free radicals, thereby damaging the insulation
structure. In combination with the molecular structure of c-C4F8, Table 3 shows the major pathways
for the decomposition during the discharge process.
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Table 3. c-C4F8 discharge decomposition path.

Pathway Chemical Equation Reaction Energy (kJ/mol)

(1) c-C4F8→ C2F4
·
· + C2F4

·
· 173.8539

(2) c-C4F8→ C3F6
·
· + CF2

·
· 342.3815

(3) c-C4F8 → C4F7· + F· 434.8436

The decomposition pathway (1) refers to the process of two C-C bonds that located at the relative
positions of the c-C4F8 molecule being disconnected to form free radicals. The pathway (2) refers to
the disconnecting process of C-C bonds which are adjacent in the C-C4F8 molecule. The absorption
energy required for pathway (1) is 173.8539 kJ/mol, which is lower than the 342.3815 kJ/mol required
for pathway (2). The pathway (3) refers to the process of c-C4F8 which cleaves the C-F bond to produce
C4F7· and F· free radicals, and the process need to absorb energy of 434.8436 kJ/mol, higher than
pathway (1) and pathway (2).

Figure 9 shows the change trend of reaction energy of three decomposition paths (in Table 3) with
temperature. As the temperature increases, the energy required for molecular decomposition decreases
gradually, and the increase of temperature is in favor of the reaction. The effect of temperature is
considered mainly because the temperature changes during the discharge. In particular, there will be a
significant increase in the temperature at the moment of breakdown, and the temperature at the center
of the breakdown arc may reach 1000 k.

Processes 2018, 6, x FOR PEER REVIEW  9 of 15 

 

Table 3. c-C4F8 discharge decomposition path. 

Pathway Chemical Equation Reaction Energy (kJ/mol) 
(1) 4 8 2 4 2 4c-C C +C FF F : :→  173.8539 
(2) 4 8 3 6 2c-C C +CFF F : :→  342.3815 

(3) 4 8 4 7c-C C +FF F ⋅→ ⋅  434.8436 

The decomposition pathway (1) refers to the process of two C-C bonds that located at the relative 
positions of the c-C4F8 molecule being disconnected to form free radicals. The pathway (2) refers to 
the disconnecting process of C-C bonds which are adjacent in the C-C4F8 molecule. The absorption 
energy required for pathway (1) is 173.8539 kJ/mol, which is lower than the 342.3815 kJ/mol required 
for pathway (2). The pathway (3) refers to the process of c-C4F8 which cleaves the C-F bond to produce 
C4F7• and F• free radicals, and the process need to absorb energy of 434.8436 kJ/mol, higher than 
pathway (1) and pathway (2). 

Figure 9 shows the change trend of reaction energy of three decomposition paths (in Table 3) 
with temperature. As the temperature increases, the energy required for molecular decomposition 
decreases gradually, and the increase of temperature is in favor of the reaction. The effect of 
temperature is considered mainly because the temperature changes during the discharge. In 
particular, there will be a significant increase in the temperature at the moment of breakdown, and 
the temperature at the center of the breakdown arc may reach 1000 k. 

0 200 400 600 800 1000

150

200

250

300

350

400

450  (1)
 (2)
 (3)

En
th

al
py

(k
J/

m
ol

)

Temperature (K)
 

Figure 9. The reaction energy of decomposition paths with temperature. 

All kinds of free radicals generated by ionization or dissociation of c-C4F8 molecules can produce 
a series of new products by secondary reactions, mainly CF4, C2F6, C3F8, C2F4 and C3F6. Figure 10 
shows the molecular model of the above decomposition product after optimization, and the bond 
length bond angle parameter is basically the same as that given in [30]. 
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All kinds of free radicals generated by ionization or dissociation of c-C4F8 molecules can produce
a series of new products by secondary reactions, mainly CF4, C2F6, C3F8, C2F4 and C3F6. Figure 10
shows the molecular model of the above decomposition product after optimization, and the bond
length bond angle parameter is basically the same as that given in [30].

Table 4 shows the chemical equations of decomposition products, energy changes and activation
energy. Among them, the processes of free radical recombination are exothermic reactions to generate
CF4, C3F8, C2F4, C3F6 and C2F6. From a thermodynamic point of view, CF4, C2F6, C2F4 are relatively
easy to form, and C3F8 generation is more difficult.
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Table 4. Decomposition products and energy change.

No Chemical Equation Energy Changes (kJ·mol−1) Activation Energy (kJ·mol−1)

B1 CF2
·
· + F· → CF3· −307.37 —

B2 C3F6
·
· + 2F· → C3F8 −83.7318 —

B3 CF3·+ F· → CF4 −190.262 —
B4 2CF2

·
· → C2F4 −332.313 —

B5 2CF3· → C2F6 −373.811 —
B6 C3F6

·
· → C3F6 −81.21444 80.97188

According to the kinetic analysis, the path B1 to B5 reaction without energy barrier, are the
processes of free radical complex into molecules, without activation spontaneously. The formation
process of C2F6 release more energy, and the reaction is more prone to occur. The path B2 needs to
release 83.7318 kJ/mol, which is the most difficult to occur with the least energy. Figure 11 shows the
energy changes of reactions with temperature. With the increase of temperature, the absolute value of
the reaction enthalpy showed a different degree of decline. That is, the temperature is conducive to
the reaction.Processes 2018, 6, x FOR PEER REVIEW  11 of 15 
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In order to study the effect of O2 on the decomposition of c-C4F8, the discharge decomposition 
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Path B6 reaction requires the formation of an activated complex transition state (TS). The reactant
absorbs energy of 80.97188 kJ/mol, and then the activated complex TS releases energy to form the final
product. The progress of the reaction is shown in Figure 12. Small molecule product formation process
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releases more energy, so it can be concluded that free radicals such as F·, CF2:, CF3· generated by the
decomposition of c-C4F8 molecules tend to recombine into small molecules, resulting in a large content
of small molecule products, which is in good agreement with the previous experimental results.
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 Figure 12. Reaction process of pathway B6 (TS: transition state).

In order to study the effect of O2 on the decomposition of c-C4F8, the discharge decomposition
path of O2 must be studied first. In [20], the main pathways for generating O· are given by O2→2O·
and O2 + e→O· + O. It is also pointed out that the free radicals CF2: and C2F4 are oxidized to COF2

under O2 conditions. Figure 12 shows the geometrically optimized COF2 molecular structure model.
Table 5 shows the reaction equations and energy changes for the free radical binding to COF2 produced
by c-C4F8 [20]. The reaction is an exothermic reaction. O2 can oxidize CF2: to form COF2 and O·
oxidize C2F4: to generate COF2 and CF2:. The structure of COF2 is shown in Figure 13.

Table 5. Reaction path and energy change.

No Chemical Equation Energy Changes (kJ·mol−1) Activation Energy (kJ·mol−1)

C1 CF2
·
· + O2→COF2 + O· −138.52 180.18

C2 C2F4
·
· + O·→COF2 + CF2

·
· −112.64 184.61Processes 2018, 6, x FOR PEER REVIEW  12 of 15 
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4.3. The Basic Properties of the Main Products

According to the experimental measurement and calculation results, it can be seen that the main
decomposition products are CF4, C2F4, C2F6, C3F6 and C3F8, and COF2 is produced when O2 is
involved. Figure 14 shows the molecular orbital energies of the main product. Based on the molecular
orbital gap value, the main decomposition products have good stability. The C2F4, C3F6 and COF2

containing double bonds are poorly stable in the chemical reaction.
At the same time, the relative insulation properties of the decomposition products were compared.

The environmental values and ecological toxicity are shown in Table 6.
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Figure 14. Molecular orbital gap values of decomposition products.

Table 6. Parameters of decomposition products.

Gas Dielectric Strength
Relative to SF6 [33–36]

Boiling Point
(◦C) [29–37]

GWP
(100-Year) [5,36]

Lifetime (Year)
[36–39] Acute Toxicity

SF6 1 −63 23,900 3200 >500,000 ppm/4 h, LC50
c-C4F8 1.12 −6 8700 2600 78 pph/2 h, LCLo

CF4 0.39 −186.8 6300 50,000 895,000 ppm/15 min, LCLo
C2F6 0.78–0.79 −78 9200 10,000 >20 pph/2 h, LC
C3F8 0.96–0.97 −37 7000 2600 750 ppm/4 h, LC50
C3F6 — −28 — <10 750 ppm/4 h, LC50
C2F4 — −76.3 0 1.9 days 40,000 ppm/4 h, LC50
COF2 — −84 0 — 270 mg/m3, 4 h, LC50

Note: GWP—global warming potential; LCLo—Lowest published lethal concentration; LC50—Lethal concentration,
50 percent kill; LC—Lethal concentration; The measurement of acute toxicity in the table is the test value of
rat inhalation.

The insulation strength of CF4 gas is about 39% of that of SF6 and the insulation performance of
C2F6 is about 76% of that of SF6. The insulation performance of C3F8 is close to that of SF6, and the
C4F10 has better insulation performance than SF6. The resulting decomposition products basically
maintain the original mixed gas insulation properties. The GWP of all the products are lower than that
of SF6, and the concentration of the product is very small, so the product could be considered as not
harmful to the environment. However, when oxygen is involved in the mixed gas discharge process,
COF2 will be generated, which is toxic and corrosive and harmful to the insulation equipment and
operators. Therefore, oxygen content should be strictly controlled in the equipment.

5. Conclusions

(1) During the breakdown process of the c-C4F8/N2 mixed with O2 included, a large amount of black
powdery substance precipitates on the surface of the ball electrode, which are mainly composed
of C, O, F, and O element content accounted for 17.32%.

(2) The main products produced by c-C4F8 discharge decomposition are CF4, C2F4, C2F6, C3F6 and
C3F8 and small molecules such as CF4, C2F4 and C2F6 are generated more easily. The addition of
N2 weakened the decomposition of c-C4F8 gas. The decomposition products mainly come from
c-C4F8 and N2 in the mixed gas does not participate in the chemical reaction. The product has
good insulation properties. The presence of O2 causes the promotion of c-C4F8 decomposition
and produces COF2. The increase of temperature can promote the reaction.

(3) The main products produced by c-C4F8 discharge have good insulation properties, and the
products basically maintain the insulation properties of the original mixed gas. However, when O2

was involved, COF2 gas was detected, which is toxic and corrosive and would be hazardous to
insulation equipment and operators.
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In summary, c-C4F8 should not be mixed with dry air. In order to ensure the safe and reliable
operation of equipment, the oxygen content in the c-C4F8 mixed gas should be strictly controlled.
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