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Abstract: Medical waste incinerator fly ash (MWIFA) is quite different from municipal solid waste
incinerator fly ash (MSWIFA) due to its special characteristics of high levels of chlorines, dioxins,
carbon constituents, and heavy metals, which may cause irreversible harm to environment and
human beings if managed improperly. However, treatment of MWIFA has rarely been specifically
mentioned. In this review, various treatment techniques for MSWIFA, and their merits, demerits,
applicability, and limitations for MWIFA are reviewed. Natural properties of MWIFA including
the high contents of chlorine and carbonaceous matter that might affect the treatment effects of
MWIFA are also depicted. Finally, several commendatory and feasible technologies such as roasting,
residual carbon melting, the mechanochemical technique, flotation, and microwave treatment are
recommended after an overall consideration of the special characteristics of MWIFA, balancing
environmental, technological, economical information.

Keywords: medical waste incinerator fly ash; characteristics; treatment methods; heavy
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1. Introduction

Medical waste incinerator fly ash (MWIFA) refers to a kind of incineration residue accounting
for approximately 3–5 wt.% total mass of the original waste, which is collected by the bag filter of the
waste incineration system [1]. MWIFA contains high levels of dioxins, leachable alkali chlorides,
carbon constituents, and heavy metals. The dioxins in fly ash typically account for more than
80% of that in the incinerator [2,3]. Consequently, it has been designated as hazardous waste by
many countries. MWIFA contains quite large amounts of chlorines and carbons, which makes the
constituents of MWIFA more complex than MSWIFA and, thus, treatment of MWIFA is also more
difficult. Suitable techniques for MWIFA treatment need to be explored [4].

Currently, several conventional methods are used to treat MSW incinerator fly ash (MSWIFA),
these methods can be grouped into three classes: (1) separation; (2) solidification/stabilization (S/S);
and (3) thermal (melting, roasting, sintering, and low temperature treatment) [5,6]. These methods
either remove heavy metals from fly ash or stabilize heavy metals in an insoluble form. Recently,
investigations on the degradation/decomposition of dioxins in MSWIFA using thermal degradation,
mechanochemical treatment, hydrothermal treatment, catalytic hydro-dechlorination, and supercritical
water oxidation techniques has been investigated, and detoxification of MSWIFA has gradually been
realized. However, methods that are applicative to MSWIFA may not be appropriate for MWIFA
treatment because of the high concentrations of chlorines and carbon constituents present in MWIFA.
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Therefore, developing effective technologies for MWIFA treatment is urgent. The objectives of this
paper are to compare the various treatment methods of MSWIFA and to evaluate their feasibility for
MWIFA treatment referring to the special characteristics of high concentrations of chlorines, dioxins,
carbon constituents, and heavy metals.

2. Special Characteristics of MWIFA

2.1. High Content of Chlorides

MW contains a high amount of chlorinated plastics. The typical chlorine level in MW is 1.1–2.1%,
whereas it is 0.2–0.8% in MSW [7]. After incineration, chlorines in plastics easily migrate to MWIFA
leading to the high chlorine content in MWIFA. In MW incineration, HCl is generated after a reaction
between organic chlorides and H ions [8]. Then, HCl vaporizes into the flue and reacts with an alkali,
such as NaOH or Ca(OH)2. Finally, NaCl and CaCl2 are formed, contributing to the high chlorine
content in MWIFA [9,10]. In addition, disposable disinfectants (such as NaCl and KCl) may also
contribute to this result [11]. Especially in China, the medical service consumption of NaCl is higher
than that in other countries. Table 1 lists the chemical composition of MWIFA and MSWIFA [12–17].
The main chemical compounds in both are SiO2 and CaO. Because a large amount of CaO/Ca(OH)2

must be sprayed into the exhaust gas to reduce acid gas emission [18], a relatively high content of
CaO is found in the constituents of both MWIFA and MSWIFA. However, the chlorine content is
approximately 20% in MWIFA, lower than 10% in MSWIFA [19].

Table 1. Chemical composition of medical waste incinerator fly ash (MWIFA) and municipal solid
waste incinerator fly ash (MSWIFA)/%.

SiO2 CaO Al2O3 Fe2O3 MgO K2O Na2O SO3 Cl TiO2 F LOI References

MWIFA 17.13 24.42 2.85 1.78 1.80 2.80 15.20 6.37 20.43 1.34 2.59 11.10 [12]
MWIFA 9.06 5.37 10.11 1.49 3.48 1.64 22.05 1.03 17.07 - 0.75 - [13]
MWIFA 8.00 38.50 6.90 1.10 2.30 3.30 1.60 1.60 30.70 3.20 - - [14]
MSWIFA 73.10 1.06 16.70 1.96 - 3.94 2.42 - - 0.35 - - [15]
MSWIFA 55.37 19.39 9.20 4.93 0.41 0.43 0.24 1.53 0.44 - - - [16]
MSWIFA 62.30 0.50 28.10 2.10 1.00 1.00 0.50 0.40 - - - 2.50 [17]

2.2. High Content of Dioxins

Dioxins exhibit resistance and have a hydrophobic nature towards metabolism. The bioaccumulation
in the fatty tissues of humans and animals, and chemical persistence of dioxins in the environment
has attracted considerable attention. Consequently, a better understanding of the emission theories of
dioxins is necessary [20].

Three theories for dioxin emission from incinerators have been established in combustion research.
(1) In de novo synthesis, dioxins are produced in the postcombustion zone through the reaction of a
residue carbon or metal catalyst in the fly ash reaction [21]. During this process, solid-phase chlorides
(such as metal chlorides) and gas-phase chlorines (such as HCl and Cl2) play overriding roles in
the precursor formation of dioxins [22–24]. Under a temperature range of 180–600 ◦C, heavy metals
in the incinerator are vaporized and react with chlorines to form heavy metal chlorides in the flue
(Formula (1)). These heavy metal chlorides are effective catalysts in the formation of dioxins [25,26].
With the help of formed catalysts, HCl can react with O2 or oxidizing radicals to form chlorine radicals,
indirectly promoting dioxin formation [27] (Formula (2)).

4HCl + O2 = 2Cl2 + 2H2O (1)

HCl + OH− → Cl− + H2O (2)

(2) In precursor synthesis, dioxin levels are closely linked to other generated persistent organic
pollutants (POPs). Dioxins are formed from precursors, such as chlorobenzenes, polychlorinated
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diphenyl ethers, chlorophenols, as well as part of polycyclic aromatic hydrocarbons (PAHs),
Polybrominated diphenyl ethers (PBDEs), and Polychlorinated biphenyls (PCBs) [28–30].

(3) In incomplete combustion formation, dioxins are generated during the incomplete combustion
of chlorinated plastics and intermittent operations of MWIs [22]. In addition to the content of chlorines
and metals, the formation of dioxins is also relevant to the content of SO2, CO, O2, and carbons in fly
ash [23]. Moreover, other factors promote the formation of dioxins, such as types of incinerators or
kilns, operation conditions, and types of APCDs.

In addition, there are small quantities of dioxins in the raw MW itself, which can be incompletely
destroyed during incineration and transferred to MWIFA [4].

Dioxins are highly hydrophobic and strongly lipophilic possessing extremely nonpolar
properties [25]. Consequently, dioxins can easily adhere to fly ash particles with similar characteristics
with the help of PAC. Approximately 91 to 98% of dioxins in flue gas can be effectively captured by
PAC, removed through APCDs, and transferred into MWIFA [22,31,32]. Pan reported that MWIFA
has a higher concentration of dioxins by approximately 2 to 3 orders of magnitude than that of
MSWIFA [32,33]. Table 2 presents the concentrations and (toxic equivalent qualities) TEQs of dioxins
in MWIFA and MSWIFA from different incinerators and APCDs.

Table 2. Concentrations and toxic equivalent qualities (TEQs) of dioxins in MWIFA and MSWIFA.

Treatment
Object

Total Numbers
of Incinerators

Treatment
Capacity Types of Incinerators Air Pollution

Control Device
Concentrations

of Dioxins (ng/g) References

MSW 15 300~1500 t/d Grate-type or fluidized
bed incinerator SS + AC + BF 2.8–190 [33]

MSW 16 300~1800 t/d mass-burning SD + AC + BF; SD 9.07–46.68,
average 23.53 [34]

MSW 5 200~350 t/d
400~700 t/d

Grate-type or fluidized
bed incinerator SS + BF 19.2–236

[35]

HSW 1 10 t/d rotary kiln + circulated
fluidized bed; SS + BF 2918

HSW 15 t/d rotary kiln SS + AC + bag filter 78.79 [36]

HSW 1 10 t/d rotary kiln fluidized bed
multi-stage pyrolysis SS + AC + bag filter 67.83, 125.3 [3]

HSW 1 20 t/d Rotary kiln + second
combustion chamber SS + AC + BF [37,38]

SD: semidry scrubber; AC: activated carbon injector; BF: bag filter; SS: Semidry scrubber.

2.3. High Content of Carbon Constituents

High carbon content is another crucial characteristic of MWIFA not present for MSWIFA.
Carbon constituents in MWIFA mainly include PAC and UC. UC usually accounts for 3 to 10 wt.%
in incinerator fly ash [39]. Because of the high absorbent efficiency and simple implementation,
PAC injection followed by BF application is a standard configuration to reduce POPs, such as dioxins
emitted from incinerators [40,41]. With a higher level of dioxin emission and stricter emission standard
for dioxins, a larger amount of PAC must be injected upstream of the BF [42]. Usually, 105–115 ng of
dioxins can be absorbed per gram of PAC [43]. Finally, approximately 92 to 99% of dioxins in the flue
can be removed [44,45]. After injection of 100 mg/m3 of PAC into an MSWI, the dioxin level in flue
gas decreases to approximately 0.04 ng I-TEQ/Nm3 from an original value of 0.3 to 0.4 ng I-TEQ/Nm3.
For an MSWI, 50–200 mg/Nm3 of PAC is generally required for a single BF [34,46]. For an MWI,
the amount of PAC injected into the rotary kiln can be up to 800 mg/Nm3 [3]. The greater amount of
PAC injected, the higher the POP removal efficiency becomes. However, waste PAC containing dioxins
must be carefully treated because of dioxin toxicity.

Flue gas meets emission standards after dioxins, PAHs, PCBs, and other toxic organic pollutants
are captured by the injection of PAC. A high amount of injected PAC accumulates on the surface of the
filter, becoming a part of fly ash. Injected PAC and UC in solid waste are the main carbon sources of fly
ash [34]. The carbon content in some MWIFA reaches 11.4–91.0% [3].
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2.4. High Content of Heavy Metals

Another characteristic of MWIFA is that it is enriched with heavy metals [47]. Generally, the large
amount of Zn and Cr in MW may come from syringes, waste plastics, rubber, and medical adhesive
plaster [48,49]. The usage of PVC plastics in MW usually contributes to Pb- and Cd-loads in MW [46].
The plasticizers and adhesives included in the packaging of MW always contain Cu, Zn, and other
heavy metals because of the frequent usage of aluminum foil, PET, PVC, and PP [22]. In addition,
Cd and Hg are also found in dental clinics, broken medical facilities, and discarded batteries [50].
Heavy metals in MW usually present as metal oxides, metal elements, volatile metallic chlorides,
and sulfates. In incineration, they are not destroyed; instead, a small fraction form volatile metallic
vapors and enter into the flue gas, which may be emitted into the environment if not effectively
removed by APCDs. Most heavy metals migrate or concentrate in the fly ash and bottom ash;
depending on the formed compounds of heavy metals and their physicochemical properties during
incineration [51]. The migration of heavy metals during incineration is depicted in Figure 1. A relatively
high concentration of low-volatility heavy metals, such as Cu and Cr, are enriched in the bottom ash.
For Pb, Zn, and Cd, the relatively high temperature and existing chlorines in MW promote chlorination
and volatilization [52]. Then, the formed heavy metal chlorides are absorbed by UC and the injected
PAC, leading to the enrichment of PbCl2, ZnCl2, and CdCl2 in the final MWIFA [53]. Compared with
MSWIFA, the content of heavy metals, such as Zn and Cu, in MWIFA is higher, reaching >5.24 g/kg
and 1.02 g/kg, respectively (Table 3) [54]. Moreover, a high level of Cu may facilitate the formation
of POPs by working as a catalyst. Toxic heavy metals in MWIFA can be easily precipitated into the
soil and eventually leached into underground water if not immobilized or removed in time; this may
indirectly cause harm to human beings and the environment [45].
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Figure 1. Partitioning of Cu, Zn, Cd, and Pb during medical waste (MW) incineration.
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Table 3. Comparison of heavy metal concentrations in MWIFA and MSWIFA/mg/g.

Heavy Metals (mg/g)
MWIFA MSWIFA

Range Average Range Average

Cr 0.02–0.26 0.06 0.07–0.86 0.21
Ni 0.12–0.18 0.04 0.02–0.12 0.06
Zn 8.29–121.41 78.69 0.40–25.80 7.66
Cd 0.12–0.64 0.23 0.03–0.47 0.13
Ba 1.21–2.90 NF 0.54–4.30 NF
Pb 1.90–5.40 3.54 0.20–10.60 2.83
Cu 0.80–2.91 1.70 0.19–1.30 0.68
As 0.07–0.24 0.17 0.09–0.24 0.05

References: [1,48,55–58]; NF: No found.

3. Available Techniques for MWIFA Treatment

3.1. Water Washing Pretreatment (WWP)

WWP, an economical and effective dechlorination technique, is widely used for removing soluble
chloride salts from incinerator fly ash with water. WWP is usually applied together with other
post-treatment methods [59]. By using this technique, more than 70% of chlorine can be effectively
removed [60], it also helps to mitigate potential environmental impacts and reduce treatment costs
and cement consumption [61,62]. However, the generated wastewater containing released heavy
metals should be subject to secondary treatment by adjusting its pH [59]. Moreover, WWP is unable
to remove the insoluble chlorides and thus unable to reduce the content of chlorine lower than 0.5%.
Therefore, other methods, such as thermal treatment, mechanochemical technique, and phosphoric
acid stabilization need to be used after WWP.

3.2. Acid Leaching Pretreatment (ALP)

ALP can facilitate the separation and recovery of heavy metals from fly ash together with other
post-treatment, such as thermal treatment, melting, solvent extraction, sulfidation precipitation,
flotation, and immobilization treatment [1,61,63]. Many kinds of lixiviants have been applied in
the ALP process: organic acids, such as tartaric acid, acetic acid, oxalic acid, and citric acid; inorganic
acids, such as HNO3, HCl, and H2SO4; chelating reagents, such as diethylenetriaminepentaacetate,
ethylendiaminetetraacetate, and nitrilotriacetic acid; and alkaline lixiviants, such as sodium hydroxides
and ammonium salts. Among those agents, chelating reagents present better leaching ability, however,
they are more harmful to the environment. A proportion of heavy metals in fly ash are difficult to
recover after ALP because they can strongly chelate with the reagents [64]. Alkaline lixiviants have
little effect on the removal of this subset of heavy metals, such as Cu, Zn, and Cd, so an integrated
leaching process should include acid to extract the other alkaline-insoluble metals [64]. This inevitably
adds both inconvenience and extra cost [52]. In addition, fungal bioleaching, hydrothermal treatment,
and subcritical water extraction are also used. However, they are rarely used because they are either
expensive or need more processing time [64].

Massive experiments proved that acidic lixiviants are more feasible and effective, especially
for mineral acids [52]. HCl and H2SO4 are the most commonly used mineral acids because they
are biodegradable, relatively low-cost, and environmental friendly. Meanwhile, they present better
leaching yields (>85%) and the formed water-insoluble substances (such as PbSO4 or PbCl2) can
undergo complexation reactions with lead ions [65,66]. Tang found that approximately 92% of Cd,
90% of Pb, 68% of Cu, and 81% of Zn were solubilized and leached out with HCl [58].

Apart from lixiviant types, the acid leaching process is also influenced by ash compounds,
ash morphology, pH, liquid to solid ratios, and leaching times. However, a large amount of acid is
often consumed as fly ash presents high alkaline property and the final residues need further disposal,
which should be overcome in future research work.
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3.3. Cement Solidification Technology (CST)

CST aims to prevent heavy metals in MSWIFA from leaching out. In the solidification process,
a certain amount of water, cement, and additives (such as phosphates, chelating agents, ferrite solutions,
colloidal aluminate oxides, silica, sodium sulfide, and thiourea) are added into incinerator fly ash
(Table 4) [66–73]. Before being disposed in landfill the unconfined uniaxial compressive strength
of the solidified body and its leaching toxicity are tested. CST has been widely developed in the
past two decades. It is the most widely accepted solidification and/or stabilization method prior to
landfill disposal in most countries because it is relatively easy to implement and is low-cost. However,
it consumes a large amount of cement. After cement solidification, both the volume and mass of
cement-solidified bodies were found to increase by 40% and 30%, respectively [67]. Sometimes
the proportions were as high as 50% [5]. These solidified products are nonrenewable resources
and would reduce the useful lifetime of a landfill site; the long-term stability of heavy metals in
solidified products cannot be guaranteed and they cannot be assured to be completely harmless [74].
Thus, long-term environmental risks are questionable. Moreover, resource recycling of heavy metals
cannot be realized by CST. In addition, the cost is relatively high if the chelating agent is used in the
cementation process [62].

Table 4. A literature overview about cement solidification of incinerator fly ash.

Objectives Optimal Parameters Findings Reference

90% Washed ash + 10%
Portland cement
solidification.

liquid/solid = 0.88,
washing time = 15 min,
setting time = 3.30 h or 5.30 h.

50–80% of chlorides were washed out. Washing shortens the
setting time of solidified body. The expense reduced by
approximately 50 to 63%. After solidified body was stored for
seven days at 20 ◦C, leachabilities of Cd, Cr, Cu, and Pb were
lower than the limited values of Italy.

[66]

Cementitious
stabilization

Cement proportion = 13–40 wt.%.
water content = 20–30 wt.%

Cementitious body is used for transportation or landfilling.
And heavy metals can be stabilized. Besides, the solid waste
mass is increased by up to 40 wt.%. The cost was about
240 CNY/t.

[67]

Activators + cement
stabilization

Ash/cement/Ca(OH)2/Na2SO4
(K2SO4 or CaCl2) = 100/25/20/5.80.
Water/(fly ash + cement) = 0.35.

The addition of Ca(OH)2 together with either Na2SO4, CaCl2,
or K2SO4 improves the hydration reaction of carbon enriched
fly ash. After curving for 90 days, compressive strength
reaches to 35 MPa under optimal conditions.

[68]

Four-stage waste
washing pretreatment +
stabilization

No found.
Four-step washing pretreatment can optimize the stability and
compressive strength of fly ash and produce usable
concrete aggregates.

[63]

Sand additives +
blended cement
Solidification.

sand/mixture = 3;
water/mixture = 0.47 or 0.50.
cement/fly ash = 3

Cement and furnace slag can produce modified ash, which
can substitute cement in dispose of the pretreated fly ash
harmlessly; but it presented a poor immobilization for Cr.

[69]

Portland cement
Solidification

Fly ash/cement < 50 wt.%.
L/s (w/s) = 0.40.

Fly ash contained with 16 wt.% of chlorides cannot be
effectively immobilized when cement content is lower than
50 wt.%. Compressive strengths were low after 28 days.

[70]

Sulfoaluminate cement
Solidification.

fly ash amount = 50%;
water/binder = 0.30.
curving time = 28 days.

Under the optimal conditions, compressive strength was
32.60 MPa. Leaching concentration of Zn, Pb, and Cu meet the
threshold values of China. Sulfoaluminate cement was proved
to be better than Portland cement in solidification.

[71]

Water washing
pretreatment + Portland
cement stabilization

Washing conditions: L/s = 5:1, 0.50
h;
binder: sand: water = 2:6:1.
Fly ash: cement = 1:1.

Washing process can remove >80% of Cl− and SO3
− in the

MSWIFA. Compressive strength was 11.52 MPa when mixing
with 50% fly ash and curving for 28 days. Final products were
used as base construction/decorative material, backfill,
or patios.

[72]

Portland cement
solidification to produce
fly ash based
geopolymer concrete.

aggregate:sand = 1:1,
ash = 400 kg, cement = 15 wt.%,
resting time = 30 min,
temperature = 70 ◦C.

Compressive strength was higher than 25 MPa when curving
for 7 to 28 days under optimal conditions. A 30 min of resting
time was found to be more effective than 24 h.

[17]

Fly ash cenosphere
modified cement pastes
with nano silica (NS).

Water/binder = 0.30.
Cement/ash = 9:1.
nano silica = 1 wt.%.

Application of fly ash cenosphere can decrease the density of
the final products without greater loss for strength (about
75 MPa). An excellent compact microstructure was obtained
after the addition of nano silica.

[15]

Cement solidification of
MSWIFA from India.

Cement content < 6%.
Curving time = 7 days.

Cement addition improves compressive strength of solidified
product due to the pozzolanic reactions. More than 6% of
cement addition is not beneficial both for volume and
economic. Final products can be used as lightweight
filling materials.

[73]
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Especially, when cement solidification is used for treatment of MWIFA, characteristics of higher
concentrations of PAC, chlorides, and POPs would bring about a series of problems: high content
of PAC in fly ash reduces the compressive strength of the solidified body and increases porosity,
providing convenience for the entrance of leachates, and more heavy metals can easily leach out
through the holes in the cement-solidified body. In order to meet landfill requirements, up to 70% of
cement should be added to MWIFA, exceeding the upper limit of 40% for MSWIFA [68]; in addition,
the high amount of chlorides and sulfates prolong cement solidification time and impede the cement
hydration reaction [75,76]. Moreover, POPs, especially for dioxins, enriched in MWIFA cannot undergo
decomposition. Thus, the potential emission risk for dioxins in solidified products is another fatal
weakness for CST. High concentrations of dioxins are detected in soils around landfills, which are
hundreds of times higher than those in common soils [33]. Furthermore, with the increase in population,
less pollution-free land is available for landfilling of fly ash solidification bodies [77]. In conclusion,
the present CST for MWIFA is just one of the expedients and should be reconsidered.

3.4. Melting Technique (MT)

Melting technique (MT) has been widely applied in MSWIFA treatment in the past two decades.
It can immobilize most heavy metals and decompose POPs in MSWIFA under temperatures higher
than the melting points of MSWIFA [32]. Currently, the electric melting furnace and fuel melting
furnace methods have been studied [78,79]. The electric melting furnace mainly includes the arc
melting furnace, plasma melting furnace, and resistance melting furnace. The fuel melting furnace
mainly includes the reflector melting furnace, rotary kiln melting furnace, and residual carbon melting
furnace [80]. Among these furnaces, the plasma molten furnace has been better developed since it
can decompose toxic substances and reduce the volume of fly ash more efficiently [81]. After melting
treatment, heavy metals are distributed into the molten fly ash, ingots, and slags; the mobility of
toxic metals in slags is effectively controlled during this process [82]. Melting operation at above
1300 ◦C is superior with regard to dioxin decomposition. The decomposition efficiency of dioxins
was higher than 99% when exposed to incinerator fly ash under 1400 ◦C [83] (Table 5). Furthermore,
molten glasses or slag byproducts can be used as construction materials or road construction [33].

In spite of a series of merits, MT is limited in treating MSWIFA. First, MSWIFA contains a
relatively high content of Na2O and SO3. Thus, the refractory of the furnace can easily suffer corrosion.
Secondly, it operates under a high temperature and needs to consume a considerable amount of energy.
Energy consumption and expense for this technique could reach approximately 1.5 kWh/kg and
3000 CNY/t, respectively [79]. In addition, melting processes which involve extensive equipment can
increase cost up to 15 times compared to cement solidification. Thus, it is not suitable for most actual
technologies in developing countries.

Table 5. A retrospect concerning the melting treatment of incinerator fly ash.

Feedstock and
Objectives Devices Treatment Conditions DDRs/Leaching or Stabilization of Heavy Metals Re-utilization

of Slags Reference

MSWIFA
Melting
treatment

Residual
carbon furnace T = 1200 ◦C or 1400 ◦C DDRs are over than 99%. Metals can be separated by

evaporation or physical gravity after cooling.
Construction
materials. [67]

MSWIFA
Melting
treatment

Electronic arc
furnace

T = 1250–1300 ◦C
time > 5 h.

DDRs are 99.90%. Stabilization of heavy metals is
not mentioned. Roadbed materials [81]

Water
extraction +
MSWIFA
melting process

Electric heated
furnace

L/s = 10,
MT = 1000–1350 ◦C.

Zn (70.60%), Cu (73.90%), and Pb (58.10%) were
immobilized in the water-extracted fly ash,
higher than those for raw fly ash.

Byproduct can be
reutilization. [84]

Production of
glassy slag
with MSWIFA
by vitrification.

DC double
plasma torch T = 1500–1600 ◦C.

DDRs are 99.32% (99.95% in TEQ). Leaching
concentrations of heavy metals in slags meet the
regulatory standard but visibly volatilized.

Glassy slags were
safe enough
to reuse.

[79]

Cullet additive
+ melting +
sintering.

Electronic Arc
Furnace

Ash/Cullet = 3
TiO2 = 3 wt.%, 850 ◦C,
30 min

Leachate concentrations of Cu, Pb, Zn, Cr, and Cd
for glass-ceramics toxicity identification standard
of China.

Substitute nature
marble, porcelain
tiles and granite.

[80]
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Table 5. Cont.

Feedstock and
Objectives Devices Treatment Conditions DDRs/Leaching or Stabilization of Heavy Metals Re-utilization

of Slags Reference

Water washing
+ melting +
sintering of
MSWIFA.

Electronic Arc
Furnace

L/s = 20,
TiO2 = 3 wt.%, 900 ◦C
ash/cullet = 3,
Melting/sintering time =
30 min/2 h.

Leachate concentrations of Cu, Pb, Zn, Cr, and Cd
for glass-ceramics toxicity identification standard
of China.

Glass-ceramics can
substitute of
nature materials.

[75]

Conversion
MWIFA into
harmless slag
by Melting

DC thermal
plasma torch

Melted for 15 min.
working gas: argon.
Flow rate = 12–14 L/min

DDRs > 99% in TEQ. Leaching concentration of
heavy metals in the slag meet the Chinese regulatory
standard. The volume reduction is 78%
after melting.

Produced slag
presents good
performance in
microstructure.

[33]

Production of
porous
materials with
MSWIFA by
melting
process.

Thermal
Plasma furnace

Bottom ash/fly ash = 1.
L/s = 0.50, 1600 ◦C.
frother = 3 wt.%. cement:
slag = 1

Concentrations of heavy metals in water-quenched
slag meet the TCLP criteria of Taiwan.

Products are used
as architectural and
decorative
materials.

[85]

Zero waste
treatment of
MSWIFA

Electric arc
furnace

T = 1630–1730 ◦C.
2 s residence time

DDRs = 99.999%. Heavy metals in furnace dust and
slag meet the regulatory thresholds of Taiwan EPA Zero landfill [86]

DDRs: Dioxin decomposition rate.

When melting is used for treating MWIFA, there are more obstacles. First, factories and facilities
of MWI are small-scale (treatment capacity of 15–30 t/d) and dispersive, which is far less than
treatment capacity of MSW incinerators (above 500 t/d) (Table 2). Secondly, the high contents of carbon
constituents in MWIFA combust easily under high temperature, which is harmful to the graphite
electrode as for the electric melting furnace. Thus, only residual carbon melting furnace might be
suitable for use [75,80]. Thirdly, MWIFA contains a high chlorine inventory. Heavy metal chlorides
formed in the melting process are too volatile to be fixed in the vitreous products and inevitably cause
secondary pollution [87]. Thus, more advanced APCDs are needed, but this would enhance extra
energy consumption and costs. Therefore, from the viewpoint of economy, technology, and profits,
most melting technologies are not the preferred solution for simplex MWIFA treatment, except residual
carbon melting furnace.

3.5. Roasting

The roasting method is a thermal treatment process. It operates under the following conditions:
1–20 h, 670–1200 ◦C, and with or without addition of chlorinating agents (CaCl2, NaCl, etc.) [88,89].
These chlorinating agents react with heavy metals or metal oxides. Then, the formed metal chlorides
with low boiling points evaporate. By using the roasting treatment, heavy metals can be recycled,
and POPs, especially for dioxins, can be effectively decomposed. After detoxification, residual ash can
be safely landfill-disposed [90] (Table 6).

Table 6. Recent literature retrospect in the field of roasting treatment of incinerator fly ash.

Objectives Treatment Conditions Findings and Results Reference

Thermal treatment for
MSWIFA in Switzerland

670–1000 ◦C
750 ◦C, >6 h;
at 840 ◦C 3–4 h;
and at 920 ◦C 1.50 h.

Heavy metal oxides can transfer to metal chlorides and be
completely evaporated. Metal evaporation would proceed as
long as there are chlorides in fly ash. But it may be restricted
by the formed metal silica/alumina constituents.

[88]

Roasting treatment
for MSWIFA

Roasting for 3 h under 1000 ◦C.
Fly ash = 3 g. CaCl2 2H2O = 0.62 g
(that is 0.30 g of Cl).

CaCl2 was found to be an alternative chlorinating agent for
heavy metals volatilizing. Volatilization efficiencies of
recovered metals are proportional to standard free-energy
changes values for the corresponding chlorination reactions.

[91]

Thermal treatment
of MSWIFA.

Fly ash/CaCl2 = 15:1 (w/w). Roasting
temperature = 990 ± 10 ◦C for 1 h

This technology is found to be effective for removal of most
heavy metals. But after ash was treated under 1000 ◦C,
the leaching rate of Cr was increased 11 to 13%.

[92]

Thermal treatment of
MSWIFA in Austria

800–1200 ◦C for 20 h.
Chloride addition: 0–200 g Cl per kg ash.
Added as NaCl, CaCl2, or MgCl2

At 1200 ◦C, above 95% of Zn, Cu, Pb, Cd with addition of
CaCl2 or MgCl2, 75% Ni (CaCl2), and 30% Cr (MgCl2 or NaCl)
could be vaporized.

[89]

Chloride removal by
roasting and washing

Washing conditions: solid/liquid =
100 g/L, 1.50 h. Roasting conditions: 600,
800, 950, 1050 ◦C for 7, 4, 2, 1 h.

1050 ◦C for 3 h was found to be the optimal condition and
removal rate of chloride = 83%. A solid to liquid ratio of 1:10
in washing process can remove 97% of
water-soluble chlorides.

[90]
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Researches show that temperature, atmosphere, roasting time, and the type and amount of
chlorine medium have an effect on the evaporation rates of heavy metals [91,92]. NaCl is inclined to
react with heavy metal oxides such as Cd, Cu, Pb, Zn, Ni, and Cr. The generated heavy metal chlorides
are easier vaporized. The relevant chlorination mechanism can be expressed as Formulas (3) and (4).
The former refers to reactions between the solid heavy metal oxides and solid phase NaCl under a high
temperature atmosphere; the Na2O obtained is easy to further react with SiO2 and Al2O3 in incinerator
fly ash, forming aluminosilicates.

MO + 2NaCl = MCl2 + Na2O (3)

αMO + 2αNaCl + βSiO2 = αMCl2 + αNa2O βSiO2 (4)

Thus, roasting is especially suitable for the treatment of chloride- and toxic metal-enriched
MWIFA in theory. However industrial applications are rare because of the higher facility requirements,
energy consumption, and costs that are needed for roasting compared with cement solidification.

3.6. Low Temperature Reatment (LTTT)

LTTT is also called thermal catalysis treatment or Hagenmaier treatment. It was originally
applied to treat dioxin-contaminated matter in Germany and was also implemented in several waste
incineration plants in Japan [82]. This process is usually executed between 250 and 600 ◦C [83,93].
After catalyzed or dechlorination/hydrogenation for 0.1–1 h by Cu and other substances in
dioxin-contaminated matter [94], most dioxins and other organic pollutants can be destructed.
The detoxification efficiency of dioxins is over 90%. Under low temperature conditions, reductive
chemicals (such as salts and alkaline metals) are usually collocated to generate reductive gases and
finally accelerate the dechlorination reaction [95].

LTTT has the advantages of simple operation and low energy consumption than high temperature
treatment such as melting [96]. It is appropriate for developing countries to implement the Stockholm
Convention [83]. However, it only decomposes organic pollutants in incinerator fly ash. Most heavy
metals still enrich in fly ash sequentially and cannot be immobilized. Thus, LTTT might be inapplicable
for treatment of MWIFA with a high content of heavy metals. However, this method can be one of the
steps in the treatment of MWIFA and can be used in conjunction with heavy metal removal methods.

3.7. Catalytic Hydro-Dechlorination (CHD)

CHD, a reductive dechlorination method under mild conditions, is mainly used to decompose
dioxins in incinerator fly ash. In this process, a suitable amount of catalysts and carriers are used
to absorb and dissociate hydrogen under ordinary pressure, and then, reactive hydrogen obtained
is used to degrade and remove chlorines in the dioxins. Finally dioxins can be detoxified without
toxic intermediate products [97–99]. Supported noble metals, such as Pd, Pt, and Rh, are the most
common catalysts, which possess strong capability for adsorption and dissociation of H2 [100,101].
In addition, carbonaceous materials are widely used carriers because of the ability of resisting acid,
alkali, and chlorine poisoning [102,103].

CHD presents high recovery efficiency, strong selectivity, stable reactive performance,
low feed ratio, environmental friendly characters, and short reaction time. Additionally, when a
water/isopropanol solution is added to the organic solvents the reaction becomes safer. Moreover,
regeneration and recycling of Pd/C catalysts can reduce costs. Consequently, CHD has become
an effective means of treating chlorinated-organic compounds and hazardous industrial wastes.
However, hydrogen chlorides and ammonium chlorides are easy to generate in CHD process,
which may inevitably lead to jamming and corroding of the facilities and result in a poor dechlorination
performance [104–106]. CHD is an effective intermediate method for the decomposition of dioxins
in MWIFA. However, it is still in the laboratory batch experiment stage and some operations may
cause severe secondary pollution or dioxin regeneration. However, heavy metals in MWIFA cannot
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be removed. From this point of view, this technique can be a sequential disposal step for dioxins
cooperating with other methods which can removal heavy metals in MWIFA [107].

3.8. Supercritical Water Oxidation (SCWO)

SCWO has been developed to treat various wastes, such as PCB-contaminated mineral transformer
oil, wastewater, sludge, and dioxin-contained fly ash (Table 7) [45,74,108,109]. This technique is an
effective, harmless, fast, and violent detoxification method [108,110,111]. Under the condition of
water supercritical point (22.1 MPa and 374 ◦C), supercritical water exhibits a perfect miscibility with
organic contaminants such as dioxins. The reaction between free radicals and the pollutant substances
comes up to realize the detoxification of MWIFA. To enhance the oxidation effect of supercritical
water (SCW), hydrogen peroxide (H2O2) or oxygen (O2) is used. Thereafter, most toxic metals are
locked by silica matrix residues and combined with organic substances, which are hardly leached out.
Residual heavy metals are precipitated in the form of Fe-Mn oxides which are thermodynamically
stable. Finally, harmless products, such as CO2 and H2O together with acid and salts are generated
[108,112–114] (Figure 2).

Table 7. A recent summary about SCWO treatment technology of incinerator fly ash.

Residues Objectives Treatment Conditions Findings Reference

MSWIFA from
Taiwan and China.

SCW and SCWH
treatment of heavy
metals in MSWIFA.

The H2O2 was added.

This technique can stabilize metals in Fe-Mn
oxides and residual fractions. Heavy metal
leaching results meets the requirements of
USEPA and Chinese EPA permits.

[74]

Oil-contained PCBs
and heavy metals
in MWIFA

The simultaneous
detoxification of PCBs
and heavy metals
in MWIFA.

7.00–34.40 MPa, 280–410 ◦C.
Reaction was finally
quenched by water spray
with supercritical water.

The technique meets technical and cost
requirements, because MWIFA is found to
possess the potential catalysis ability.

[45]

Dioxins in
MSWIFA (SCWO)

Dioxin destruction and
dioxins adsorption by
activated carbon

500 ◦C, 20 MPa.
Decomposition efficiencies of dioxins and
activated carbon were more than 99%
and 99.99%.

[108]

Dioxin extraction
in fly ash (SCWO)

Extraction of dioxins in
fly ash

SC-CO2 was used,
solvent/feed = 5, time = 1 h,
40 ◦C, 50 MPa.

Extraction efficiency of dioxins
attained 99.98%. [108]

MSWIFA in China Dioxins degradation
by SCWO technique

400–500 ◦C, 23–29 MPa,
fly ash = 0–6 g, 1–2 min,
O2 = 150–300%,
H2O2 = 0–40 mL.

Mass concentration of dioxins reduces from
28.20 to only 2.79 ng/g, a degradation
efficiency > 90%.

[109]
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As one of the highly efficient oxidation technologies, SCWO is probably a promising method for
the final treatment of MSWIFA. It is free from the generation of toxic intermediate products and presents
a single decomposition route. In addition, there is no heat transfer resistance problem. Especially,
high decomposition efficiencies of dioxins can be obtained. Also, the final products obtained are
environmental friendly. Although it possesses unique superiorities in decomposing organic pollutants
in MSWIFA [109,112], it operates under high temperature and pressure, which poses a high requirement
for equipment and has high energy consumption.

3.9. Hydrothermal Treatment (HTT)

HTT can stabilize heavy metals and degrade/decompose dioxins in incinerator fly ash.
Stabilization of heavy metals in fly ash is mainly attributed to the synthesis of zeolite-like materials
through HTT. Most incinerator fly ash contains large amounts of Si and Al, which are exactly the
key ingredients promoting the synthesis of zeolite-like materials with a porous three-dimensional
cage network structure and tetrahedron ((SiO4) and (AlO4)) [115–117]. This kind of structure could
prevent heavy metals from leaching by ion adsorption, ion exchange, precipitation, and physical
package [118,119]. Under anaerobic conditions, the factors arranged in order can be listed: reaction
temperature > Fe addition > washing pretreatment [120–122]. Under oxide, Fe3+, and H2O2 existing
conditions, the formation of free radicals is accelerated, which further accelerates above 90% dioxin
degradation. Furthermore, the final solid products obtained can be used as acid neutralizing agents
and absorbent materials in actual industry [123,124], which can reduce the problem of the secondary
pollution (Table 8).

Table 8. Findings of recent studies concerning hydrothermal treatment of incinerator fly ash.

Objectives Optimal Treatment Conditions Findings Reference

HT decomposition of the
dioxins in fly ash

300 ◦C for 20 min; solvent is 1N
NaOH solution containing
10 vol% methanol

Dioxins were completely decomposed.
Toxicity of dioxins for the treated fly ash decreased to
0.03 ng I-TEQ/g.

[123]

Heavy metal removal from
MSWIFA in Japan by
washing + HT

Washing 30 min. HT: autoclave
pressures = 1.2–2.0 MPa, 150 ◦C, 5 h,
L/s = 10 mL/g.

67% Na, 76% K, and 48% Ca were extracted by washing for
30 min. Final products can produce silicon–sulfur fertilizer
after further Cr disposal.

[125]

HT of MSWIFA to produce
stable minerals.

NaOH = 0.5 M, L/s = 10 mL/g
180 ◦C, 48 h.

Most of heavy metals were less released in acid environment.
But the concentration of Zn and Cd cannot meet the standard. [119]

Production of concrete
with MSWIFA.

NaOH or Na2CO3 10 g
fly ash 50 g, 375 ◦C, 5 h.

Heavy metal leaching concentration decreased by over 58.33%,
especially Zn (81.91%/86.89% were leached out by
NaOH/Na2CO3, respectively).

[126]

Removal of Cu in MWIFA by
additives + HT.

325 ◦C, 2 h, initial Cu2+ = 50 mg/L.
vessel pressure = 22.2 MPa.
L/s = 10 mL/g. ash/Na2CO3 = 10.

Temperature has little effect on Cu(II)removal. Removal
efficiency increased from 94.80% to 99.90% with the increasing
concentration of Cu(II) from 10 to 50 mg L−1.

[127]

Decomposition of dioxins
contained in MSWIFA
by HT.

290 ◦C,1 h. A mixture of ferrous and
ferric sulphates by 5% (wt/wt) with
the Fe (III)/Fe (II) = 2.

90.33% of dioxins were decomposed (in TEQ) with addition of
Fe, but the associated decomposition rates were
relatively lower.

[122]

Acid treatment + HT and
reutilization of MSWIFA

Acid treatment conditions: 30 min.
pH = 6.2, L/s = 2 mL/g.
HT conditions: 290 ◦C, 1 h,
L/s = 2–2.5 mL/g.
50 g PO4

3−/1 kg fly ash

Heavy metal leaching concentrations meet the Chinese limits.
Acid-washing reduced over 79.80% of leaching concentration
of heavy metals. Higher concentrations of Cl in acid-washed
fly ash were decreased than in water-washed ones.

[128]

HT + additives to stabilize
heavy metals in MSWIFA.

CFA and diatomite/MSWIFA = 3:7,
200 ◦C.
Seed or Tobermorite = 3%,

Leaching toxicity of all heavy metals in MSWIFA decreased to
the lower than the standard values even for Pb. [129]

K-zeolite syntheses from
biomass incineration ash
and coal fly ash via HT.

Biomass incineration ash:2–15 g,
KOH: 0.5 and 2 mol/L, CFA:10 g.
HT conditions: 160 ◦C,24 h.

The synthesized K-zeolites can be used to remove
radioactive cesium. [130]

Additives + HT to stabilize
heavy metals in MSWIFA.

Coal fly ash/MSWIFA = 3:7,
L/s = 10 mL/g. NaOH = 0.5 mol/L.
HT conditions:150 ◦C, 48 h.

Heavy metals were detected on the surface of synthesized
tobermorite crystalline. Leaching toxicity of all metals met the
standard values.

[131]

“L/S” refers to liquid/solid; “HT” refers to Hydrothermal.
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HTT has bright development prospects for harmless treatment of MSWIFA. HTT reduces the
requirement of equipment and saves energy compared with high temperature methods [104,122].
However, methanol exhibits some toxicity, and expensive catalysts are liable to be poisoned in the
disposal process. Simultaneously, the surface of the equipment is easily corroded under high pressure
and an alkaline environment.

Moreover, when HTT is used for MWIFA treatment, there are still other difficulties. As seen in
Table 1, there are smaller amounts of the elements Si and Al in MWIFA compared with MSWIFA,
which is an obstacle to the formation of both zeolite and tobermorite crystalline unless Si and Al are
added. Consequently, more reliable data should be given to facilitate the harmless treatment of MWIFA
by HTT.

3.10. Mechanochemical Technique (MCT)

MCT is a nonthermal process and nontail gas disposal method. Operation conditions are usually
100–600 rpm and 2–24 h in a fully closed reactor [51,132] (Table 9). In the MCT process, five types
of reagents are usually used: Lewis bases (such as CaO, Al2O3, La2O3, and Bi2O3) which serve as
electron donors; neutral substances (such as alumina and SiO2), which can provide free radicals to
decontaminate organics [133]; oxidants (such as δ-MnO2 and S2O8

2−) which can promote the oxidation
of organics; reductants including pure metals which can be used as both electron donor and H donor;
in addition, in order to reduce the production of hazardous intermediate substances, organic molecules
(such as amides, amines, alcohols, ethers, and glycols) are applied together with pure metals to serve
as H donor in reaction process [134,135]. With development, Fe-SiO2, Fe/Zn-SiO2, and Fe/Ni-SiO2,
and auxiliary materials, such as CaO and quartz sand, are introduced [132,136,137].

The dioxin treatment mechanism by MCT includes the dual paths: destruction and dechlorination.
Mechanical force prompts the adsorption of reagents to the surface of incinerator fly ash.
Then structures of fly ash are broken, ruptured, and reunited. Specific surface area and pore volume
of fly ash are significantly increased and the average pore sizes also decrease after collision and
friction. For destruction of dioxins, crystal structures of organic halogenierte stoffes adsorbed on the
surface of fly ash are cleavaged and destructed by metals or metallic oxides, and then dissociated
as metal halide compounds and carbon oxides [3,138–140]. In addition, dioxins and POP-containing
materials can be dechlorinated and decomposed. The activated surfaces of reagents react with organic
contaminants in fly ash and electrons ionized by Lewis bases transfer to free radicals or intermediary
byproducts. In this process, the carbon–chlorine bond, which is weaker than the carbon–hydrogen
bond, is fractured. Finally, formless carbons, inorganic hydrocarbons, inorganic metallic chlorides,
and carbon oxides are produced [135,141]. In addition, the mechanism for immobilization/separation
of heavy metals from fly ash is thought to be heavy metal resorption by Ca/PO4-associated immobile
salts and then magnetic separation. In the grinding process, the particle size of fly ash is decreased
and the active nano-Fe/Ca/CaO/PO4 additives promote the production of immobile [Ca]/[PO4] salts
and the reunion of fly ash. Meanwhile, a portion of heavy metals are entrapped and resorbed into the
newly formed aggregates; the other parts of heavy metals are adsorbed onto the surface of the nano-Fe
due to its magnetic properties and then separate [142]. Finally, most heavy metals can be stabilized or
separated. The leaching ability of heavy metals meets the threshold of the hazardous waste landfill
standard value [51,133].

Applications of this method in treatment of MWIFA have been studied (Table 9). Relatively
favorable studies indicated that this method should be paid close attention to as an innoxious
treatment of MWIFA in spite of just being implemented under experimental conditions; the mechanism
of mechanochemical treatment is relatively ripe. Thus, it might be straightforward to realize
industrialization and large-scale applications.
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Table 9. A literature overview in the terms of mechanochemical technique in recent years.

Objectives.

Optimal Conditions and Degradation/Destruction Efficiency of Dioxins

Other Findings ReferencesReagent
(Ratio)

Rotation
Speed

Grinding
Time

Grinding
Type

Optimal
Efficiency

Destruction of
dioxins in MWIFA

CaO/fly ash =
6–60% 400 rpm 2 h Planetary ball PCDD = 76.80%;

PCDF = 56.80%

Dioxin efficiency rose
with increased ratio

of CaO.
[3]

Destruction of
dioxins in MWIFA No addition 400 rpm 2 h Planetary ball

(XQM-0.4 L)
Destruction

efficiency = 76% - [143]

Fly ash smelting
with industrial

secondary copper

CaO/SiO2/fly
ash = 4:1:5 (wt) 275 rpm 12 h Planetary ball Dioxins = 85%

Cu served as the catalyst
during dioxin
reformation

[135,139]

Decomposition of
PCBs in

contaminated soil

CaO/SiO2/soil
= 1:1:2 (wt) 400 rpm 20 h Planetary ball PCBs = 98%

Dioxins formed in the
first 5 h were

decomposed with
sufficient time.

[144]

Destruction of
dioxins and PCBs

in MSWIFA

Ca/CaO/fly ash
= 1/1/200 400 rpm 20 h planetary ball,

PM-100
completely
detoxified

No traces of PCBs and
dioxins were

detected finally
[145]

Dechlorination/
destruction of

dioxins in
MSWIFA

Flyash:Ca:
Al-powder =

30:4:1
600 rpm 10 h planetary ball

(QXQM-2)
Dioxins =

93.20%

Water washing and
Fe/Al/Ca additives
present better effect.

[141]

Heavy metal
immobilization in

MSWIFA with
nano-Fe/Ca/CaO/

PO4 reagent.

CaO:Fe:Ca =
5:2:2. ash:

[PO4]:nano-Fe/
Ca/CaO = 20:1:1

150 rpm 2 h planetary ball
(PM-100)

Immobilization
rate of heavy

metals =
98–100%

Heavy metal leaching
concentrations were

much lower than Japan
standard value.

[132]

Dioxin
degradation by

washing +
Fe/Ni-SiO2 of

MSWIFA

Ni/SiO2/Fe/
fly ash =

1/2/4/200
400 rpm 24 h bimetallic ball Dioxins =

93.20%

Washing conditions: L/s
= 4:1, stirring speed =

400 rpm, time = 60 min.
[51]

3.11. Flotation Treatment

Flotation is a physicochemical separation technique, which is generally used for treatment of
mineral, wastewater, pollutant soil, and incinerator fly ash [146,147]. Flotation effects depend on many
parameters: types and dosages of (flotation agents such as collectors, frothers, and surfactants), air flow
rates, flotation time, particle size, pulp pH, and pulp density [148].

For MSWIFA flotation, 41.9% of the total dioxins and 44.1% of PCBs in MSWIFA were achieved
by Huang with a mixture of nonionic surfactant of Tween 80 and Span 80 as promoters. Meanwhile,
the interaction mechanism between the surfactants and the UC surfaces mainly depends on the
hydrogen bonding between the polar oxygen-containing functional groups of the surfactant and
the oxygenated functional groups on the UC surface [149–151]. High content of PAC is one of
the special characteristics for MWIFA compared with MSWIFA. Dioxins tend to enrich the carbon
constituents (including PAC and UC) contained in MWIFA [152]. Recently, flotation of fresh MWIFA
was systematically investigated. Liu found approximately 90% of carbon constituents and dioxins in
MWIFA could be enriched and then separated as froths by flotation [12,54,153]. A novel process for
the successive removal of dioxins and recovery of heavy metals from MWIFA was also developed by
Wei [42]. Thereafter, by the process of acid leaching-sulfidation and precipitation–flotation, 42.0% of
Pb, 48.7% of Cu, and 49.9% of Zn could be recovered [1]. Furthermore, the destruction efficiencies
of dioxins in the froths could exceed 98% at above 1000 ◦C after reburning treatment of the froths,
so it seems that recirculation of froths in the incinerator can serve the dual purpose of destruction of
dioxins and energy recovery of carbon constituents [42]. After flotation, dioxin content in the tailings
was significantly reduced to approximately 1.55 ng I-TEQ/g, which meets the standard of landfill site
of municipal solid waste (3 ng I-TEQ/g). The volume and toxicity of the tailings decreased greatly,
which might be landfill disposed [153]. Therefore, flotation is one of the promising alternatives for
MWIFA treatment.
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The dioxin removal mechanism of MWIFA can be explained by three points: (1) there is a close
adsorption relationship between porous PAC and gaseous-phase dioxins in flue gas, and these low
chlorinated dioxins are strongly bound on PAC [154]. Thus, these adsorbed dioxins may be removed
together with PAC during flotation; (2) some dioxins may enter to the liquid phase from the ash
solid particulates during the pulp-conditioning process because of the breakup of ash particles or salt
solubilization. Most of these dissolved dioxins may also interact with PAC and be adsorbed by PAC
during flotation. This mechanism is similar to sorptive-flotation phenomenon [54]; (3) the free and
naturally hydrophobic dioxin molecules may directly attach to kerosene collectors or adhere to air
bubbles, and float to the froth product (Figure 3).
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MWIFA flotation has advantages of environmentally benign, flexibility, low-cost, and less usage
of reagents. The flotation process does not require organic solvents, heating, expensive reagents,
or fancy catalysts [145,146]; only electricity, economic reagents, and water are required [155]. Moreover,
no exhaust gases are generated by this method. Especially, a combination of flotation and reburning
treatments may represent a promising method to resolve difficulties from MWIFA treatment.

3.12. Microwave Treatment (MWT)

MWT has the characteristics of rapid heating, interior heating, and volumetric and selective
heating, which are not present in conventional thermal methods [156]. It has been widely
used in organic synthesis, polymer synthesis, food processing, analytical chemistry, and carbon
regeneration [157–159]. MWT also has been used for the treatment of POPs (such as dioxins,
chlorobenzene, and PCBs in soil or fly ash) and heavy metals in MSWIFA [156,160]. Heavy metals
in MSWIFA can be stabilized with the assistance of the dielectric properties of the sample in the
microwave field [161]. However, low content of absorbing medium was found in MSWIFA itself.
Thus, microwave treatment of MSWIFA usually requires the use of a microwave-absorbing crucibles
or the addition of microwave-absorbing additives. Researches have pointed out that PAC in pellets,
graphite plates, and containers, which are made by dielectric materials (such as Al2O3, c-Al2O3, SiO2,
and kaolin), present better microwave absorb performance [156,158,162,163].

PAC demonstrates excellent microwave absorbing characteristics and its temperature can increase
quickly and sharply to approximately 1000 ◦C in 2 min in the microwave field. Different from
MSWIFA, a high content of PAC was found in MWIFA. If flotation is used for treatment of MWIFA,
most of the PAC would be separated and concentrated into the froths together with dioxins [12].
Wei proved the destruction efficiency of dioxins exceeded 99 wt.% after microwave treatment of the
froths. During this process, PAC in the froths would absorb a large amount of microwave energy,
which helps form many “hot spots” and promotes the rapid decomposition of dioxins (Figure 4).
Finally, the dioxins adsorbed on PAC pores or coexisted with the PAC could be rapidly decomposed
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into HCl, CO2, and H2O [36,158]. Meanwhile, microwave treatment of the froths under nitrogen
atmosphere might realize the regeneration of PAC. If regenerated PAC can be used as a dioxin
adsorbent in flue gas, the treated froths might be injected again into APCDs of incinerator, which would
significantly reduce the usage amount of parent PAC in the incinerator and decrease the costs. Thus,
a combination of flotation and microwave treatment might be a promising method to resolve the
MWIFA problem, which would possess many advantages, such as complete decomposition of dioxins,
low-cost, and recovery of waste resources [42] (Figure 5).

Comparing with traditional sintering of incinerator fly ash by rotary kiln, a microwave sintering
system has no need for gas injection for combustion, and diminishes the emission of hazardous
products in flue gas, which indirectly reduces the investment and operation cost of the subsequent
flue gas cleaning device. As an innovative technology, the effect of chlorides on dioxin decomposition
remains to be further studied. In addition, for full-scale application, there are many obstacles to
overcome, such as lack of fundamental data on material dielectric properties, uncontrollable factors,
improvement of energy efficiency, and the hurdles in the capacity of the microwave furnace [164].
There is still distance ways to go until the practical application of microwave technology in MWIFA
treatment can be realized.
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Figure 5. Flow scheme of the combination of flotation and microwave treatment MWIFA. 1—Medical
waste; 2—Recombustion chamber; 3—Rotary kiln; 4—Water; 5—Quench tower; 6—Bottom ash;
7—Semidry scrubber; 8—PAC injection; 9—PAC storage tank; 10—Pulverization; 11—The froths;
12—Microwave sintering furnace; 13—Flotation column; 14—Bag filter; 15—Stack; 16—Induced fan;
17—Raw fly ash; 18—Air; 19—Tailings; 20—Landfill disposal.
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4. Concluding Remarks and Future Work

MWIFA contains high amount of chlorides, carbon constituents, POPs, and toxic heavy metals,
which makes it more difficult to handle compared with MSWIFA. The management of incinerator
fly ash will become stricter in the near future, especially for MWIFA. It is necessary to overcome
the shortcomings of the existing treatment of MSWIFA and find alternatives which are effective and
economical countermeasures to treat MWIFA.

1. The pretreatment methods of acid leaching and water washing are applied to remove chlorine
and heavy metals from fly ash, respectively. Both are worth promoting for MWIFA treatment by
collaborating with other post-treatment methods. HCl and H2SO4 are the most efficient lixiviants
at present. However, insoluble chlorides are difficult to remove with the water washing process
and wastewater generated must also be treated. These drawbacks should be overcome.

2. The post-treatment methods, such as roasting, residual carbon melting, the mechanochemical
technique, flotation, and microwave treatment are recommended for the treatment of MWIFA
after overall consideration of the special characteristics of MWIFA, and thorough consideration
and balancing of environmental, technological, economical information.

3. Cement solidification can prevent heavy metals leaching out but detoxification of dioxins is
unable to realize. Furthermore, the characteristics of high chloride and carbon contents for
MWIFA tend to weaken the effect of cement solidification. Thus, a future study is needed to focus
on eliminating the influence of chlorides and carbons or thoroughly removing both substances.

4. Melting can efficiently destroy dioxins and stabilize heavy metals; however, its high energy
consumption and investment cost restrain its widespread application. This technology is
theoretically unsuitable for the treatment of MWIFA at a small scale, except for residual carbon
melting furnaces.

5. Roasting treatment is suitable for the treatment of MWIFA and can decompose dioxins and
recover heavy metals, which fully combines the characteristics of high chlorines and heavy metals
in MWIFA.

6. Intermediate treatment methods such as low-temperature thermal treatment, catalytic
hydro-dechlorination, SCWO, and hydrothermal treatment, are effective in the decomposition
of dioxins in MWIFA. However, there is limitation in the treatment of heavy metals in MWIFA.
In addition, these methods remain in the laboratory testing stage, and some operations may cause
severe secondary pollution or dioxin regeneration.

7. The mechanochemical technique is effective at decomposing dioxins and stabilizing/removing
heavy metals. It is low-cost, environmental friendly, and has no tail gas production. However,
mechanochemical techniques remain in the development stage. Unknown difficulties must be
overcome for future application.

8. Flotation technology is recommended for handling MWIFA containing a high content of carbons,
dioxins, chlorines, and heavy metals. This technology can efficiently remove carbon constituents,
dioxins, and heavy metals from MWIFA. It is helpful to evaluate the harmlessness, reduction,
and resource recovery of MWIFA. A combination of flotation and reburning treatment may be an
especially promising method to resolve difficulties of MWIFA treatment.

9. The microwave method makes full use of the specific characteristics of MWIFA through a strong
microwave-absorbing medium, PAC. After microwave treatment, efficient decomposition of
dioxins and solidification of heavy metals can be achieved. Meanwhile, a combination of flotation
and microwave treatment can achieve both heavy metal removal and dioxin decomposition.
Most successful cases have been demonstrated on the lab scale; however full-scale application is
still in development. Comprehensive comparison of treatment techniques of MWIFA is given
in Table 10.
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Table 10. Comprehensive comparison of treatment techniques of MWIFA.

Technique Applicability to the
Characteristics of MWIFA

Detoxification Effect Cost of
Treatment

Environmental
Feedback

Technique
Status

Merits Demerits Remarks
Heavy Metals Dioxins

WWP Removal of chlorines No
stabilization

No
decomposition Low Environmental

friendly. established Chlorine removal Waste liquid may need
to be treated

pretreatment
method

ALP Leaching out heavy metals No
stabilization

No
decomposition Low Environmental

friendly. established Heavy metal leaching Waste liquid may need
to be treated

pretreatment
method

CST
High PAC reduces the

compressive strength and
increases metal leachability

stabilization No
decomposition Low/moderate Questionable Mature Easy implementing and

low expense

consumes mass of
cement; products

cannot be used; landfill
sites are limited

just one of the
expedients

MT
High carbon content is

harmful to
graphite electrode

Partial
stabilization Decomposition High

Existing a
secondary
pollution

Developing/
Developed

molten glasses or slag
byproducts can be used as

road/construction materials

High expense and
energy consumption.
Metal chlorides were

easy volatile.

residual carbon
melting furnace is

suitable

Roasting It is suitable for chloride-/
metal-enriched ash Recovery Decomposition Moderate Slight

pollution Developed No mentioned
higher facility

requirements, energy
consumption/costs

Theoretically
applicable

LTTT No mention Partly
stabilization Decomposition Moderate Slight

pollution Developed Simple operation and low
energy consumption

Heavy metals were
not considered.

can be a
sequential dioxin

removal step

CHD Facilities are easily
corroded by HCl.

No
stabilization Decomposition Moderate Potentially

pollution
laboratory

stage
High efficiency, strong

selectivity, stable reaction
dioxin regeneration

may happen

can be a
sequential dioxin

removal step

SCWO Applicability for MWIFA
is unknown Stabilization Decomposition High/moderate

Potentially
secondary
pollution

Developing
Effective, harmless, fast, and
violent, and no heat transfer

resistance problem

high requirement for
equipment and high
energy consumption.

Dioxins may
regenerated.

HTT
Less Si and Al were bad for

the formation of zeolite
and tobermorite crystalline

Partial
stabilization Decomposition Low/moderate Less pollution small scale

engineering

Energy saving, low facility
requirement, and products

can be reused.

Catalysts are liable to
be poisoned by toxic
methanol. Facility is

easily corroded

Obstacles need to
overcome

MCT No mentioned
Partial

removal or
stabilization

Decomposition Moderate Environmental
friendly.

small scale
engineering

Nonthermal process and
nontail gas disposal method

Unknown difficulties
may need be overcome

has bright
prospect of

industry
application

Flotation Suitable for high carbon,
chlorines and dioxins Removal Removal Low Environmental

friendly Emerging Flexibility, less reagent usage, No actual engineering
application

pretreatment
method, flotation

+ reburning is
promising

MWT Suitable for high carbon,
and dioxins Stabilization Decomposition Moderate Less pollution small scale

engineering
Rapid/interior/

volumetric/selective heating

Obstacles need to
overcome for industry

application

Flotation + MWT
is a promising

method
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