Supplementary Materials: Mathematical Modeling of **Tuberculosis Granuloma Activation**

Steve M. Ruggiero, Minu R. Pilvankar, and Ashlee N. Ford Versypt

The equations (1)–(4) for TB granuloma activation in the paper are combined with the immune response model developed in [1], which included the following equations (S1)-(S16) to track the populations of

- macrophages
 - resting macrophages, M_R
 - infected macrophages, M_I
 - activated macrophages, M_A
- CD4+ T cells
 - Th0 cells, T₀

 - Th1 cells, T₁
 Th2 cells, T₂
- CD8+ T cells
 - T80 cells, T₈₀

 - T8 cells, T₈
 TC cells, T_c
- bacteria
 - intracellular bacteria contained inside of infected macrophages, B_I
 - extracellular bacteria located inside the granuloma but outside of any cells, B_E (note that in [1] the only source of B_E is the $B_{E,IR}$ contribution from the immune response, whereas the model developed in the present work also includes a contribution $B_{E,L}$ from the bacterial
 - total bacteria, $B_T = B_E + B_I$

and concentrations of

- cytokines
 - TNF- α , F_a IFN- γ , I_{γ} IL-4, I_4 IL-10, I_{10}

 - IL-12, I₁₂
- with the parameters defined in Table S1:

$$\frac{dM_R}{dt} = sr_M + \alpha_{4A}(M_A + \omega_2 M_I) + sr_{4B} \frac{F_a}{F_a + f_8 I_{10} + s_{4b}}
- k_2 M_R \frac{B_E}{B_E + c_9} - k_3 M_R \frac{I_\gamma}{I_\gamma + f_1 I_4 + s_1} \frac{B_T + \beta F_\alpha}{B_T + \beta F_\alpha + c_8} - \mu_{MR} M_R$$
(S1)

$$\frac{dM_{I}}{dt} = k_{2}M_{R}\frac{B_{E}}{B_{E} + c_{9}} - k_{17}M_{I}\frac{B_{I}^{2}}{B_{I}^{2} + (NM_{I})^{2}}
- k_{14A}M_{I}\frac{(T_{c} + \omega_{3}T_{1})/M_{I}}{(T_{c} + \omega_{3}T_{1})/M_{I} + c_{4}} - k_{14B}M_{I}\frac{F_{\alpha}}{F_{\alpha} + f_{9}I_{10} + s_{4B}}
- k_{52}M_{I}\frac{(T_{c}(T_{1}/(T_{1} + c_{T1})) + \omega_{1}T_{1})/M_{I}}{(T_{c}(T_{1}/(T_{1} + c_{T1})) + \omega_{1}T_{1})/M_{I} + c_{52}} - \mu_{MI}M_{I}$$
(S2)

$$\frac{dM_A}{dt} = k_3 M_R \frac{I_{\gamma}}{I_{\gamma} + f_1 I_4 + s_1} \frac{B_T + \beta F_{\alpha}}{B_T + \beta F_{\alpha} + c_8} - k_4 M_A \frac{I_{10}}{I_{10} + s_8} - \mu_{MA} M_A \tag{S3}$$

$$\frac{dT_0}{dt} = \alpha_{1A}(M_A + \omega_2 M_I) + sr_{1B} \frac{F_a}{F_a + f_8 I_{10} + s_{4b2}} + \alpha_2 T_0 \frac{M_A}{M_A + c_{15}} - k_6 I_{12} T_0 \frac{I_\gamma}{I_\gamma + (f_1 I_4 + f_7 I_{10}) + s_1} - k_7 T_0 \frac{I_4}{I_4 + f_2 I_\gamma + s_2} - \mu_{T0} T_0$$
(S4)

$$\frac{dT_1}{dt} = \alpha_{3A}(M_A + \omega_2 M_I) + sr_{3B} \frac{F_a}{F_a + f_8 I_{10} + s_{4b1}} + k_6 I_{12} T_0 \frac{I_{\gamma}}{I_{\gamma} + (f_1 I_4 + f_7 I_{10}) + s_1} - \mu_{T\gamma} \frac{I_{\gamma}}{I_{\gamma} + c} T_1 M_A - \mu_{T1} T_1$$
(S5)

$$\frac{dT_2}{dt} = \alpha_{3A2}(M_A + \omega_2 M_I) + sr_{3B2} \frac{F_a}{F_a + f_8 I_{10} + s_{4b1}} + k_7 T_0 \frac{I_4}{I_4 + f_2 I_\gamma + s_2} - \mu_{T2} T_2$$
(S6)

$$\frac{dT_{80}}{dt} = \alpha_{1A}(M_A + \omega_2 M_I) + sr_{1B} \frac{F_a}{F_a + f_8 I_{10} + s_{4b2}} + \alpha_2 T_{80} \frac{M_A}{M_A + c_{15}} - k_6 I_{12} T_{80} \frac{I_{\gamma}}{I_{\gamma} + (f_1 I_4 + f_7 I_{10}) + s_1} - \mu_{T80} T_{80}$$
(S7)

$$\begin{split} \frac{dT_8}{dt} &= m\alpha_{3Ac}(M_A + \omega_2 M_I) + msr_{3Bc} \frac{F_a}{F_a + f_8 I_{10} + s_{4b1}} \\ &+ mk_6 I_{12} T_{80} \frac{I_{\gamma}}{I_{\gamma} + (f_1 I_4 + f_7 I_{10}) + s_1} - \mu_{Tc\gamma} \frac{I_{\gamma}}{I_{\gamma} + c_c} T_8 M_A - \mu_{T8} T_8 \end{split} \tag{S8}$$

$$\frac{dT_c}{dt} = m\alpha_{3Ac}(M_A + \omega_2 M_I) + msr_{3Bc} \frac{F_a}{F_a + f_8 I_{10} + s_{4b1}} + mk_6 I_{12} T_{80} \frac{I_{\gamma}}{I_{\gamma} + (f_1 I_4 + f_7 I_{10}) + s_1} - \mu_{Tc\gamma} \frac{I_{\gamma}}{I_{\gamma} + c_c} T_c M_A - \mu_{Tc} T_c$$
(S9)

$$\frac{dF_{\alpha}}{dt} = \alpha_{30}M_I + \alpha_{30}M_A \frac{I_{\gamma} + \beta_2 B_T}{I_{\gamma} + \beta_2 B_T + (f_1 I_4 + f_7 I_{10}) + s_{10}} + \alpha_{32}T_1 + \alpha_{33}(T_c + T_8) - \mu_{F\alpha}F_{\alpha}$$
(S10)

$$\frac{dI_{\gamma}}{dt} = s_g \frac{B_T}{B_T + c_{10}} \frac{I_{12}}{I_{12} + s_7} + \alpha_{5A} T_1 \frac{M_A}{M_A + c_{5A}} + \alpha_{5B} T_8 \frac{M_A}{M_A + c_{5B}} + \alpha_{5c} M_I + \alpha_7 T_0 \frac{I_{12}}{I_{12} + f_4 I_{10} + s_4} + \alpha_7 T_{80} \frac{I_{12}}{I_{12} + f_4 I_{10} + s_4} - \mu_{I\gamma} I_{\gamma}$$
(S11)

$$\frac{dI_4}{dt} = \alpha_{11}T_0 + \alpha_{12}T_2 - \mu_{I4}I_4 \tag{S12}$$

$$\frac{dI_{10}}{dt} = \delta_7 M_A \frac{s_6}{I_{10} + f_6 I_\gamma + s_6} + \alpha_{16} T_1 + \alpha_{17} T_2 + \alpha_{18} (T_8 + T_c) - \mu_{I10} I_{10}$$
 (S13)

$$\frac{dI_{12}}{dt} = s_{12} \frac{B_T}{B_T + c_{230}} + \alpha_{23} M_R \frac{B_T}{B_T + c_{23}} + \alpha_8 M_A \frac{s}{s + I_{10}} - \mu_{I12} I_{12}$$
 (S14)

$$\frac{dB_{I}}{dt} = \alpha_{19}B_{I} \left(1 - \frac{B_{I}^{2}}{B_{I}^{2} + (NM_{I})^{2}} \right) + k_{2}\frac{N}{2}M_{R}\frac{B_{E}}{B_{E} + c_{9}}$$

$$- k_{17}NM_{I}\frac{B_{I}^{2}}{B_{I}^{2} + (NM_{I})^{2}} - k_{14A}NM_{I}\frac{(T_{c} + \omega_{3}T_{1})/M_{I}}{(T_{c} + \omega_{3}T_{1})/M_{I} + c_{4}}$$

$$- k_{14B}NM_{I}\frac{F_{\alpha}}{F_{\alpha} + f_{9}I_{10} + s_{4b}}$$

$$- k_{52}NM_{I}\frac{(T_{c}(T_{1}/(T_{1} + c_{T1})) + \omega_{1}T_{1})/M_{I}}{(T_{c}(T_{1}/(T_{1} + c_{T1})) + \omega_{1}T_{1})/M_{I} + c_{52}} - \mu_{I}B_{I}$$
(S15)

$$\frac{dB_E}{dt} = \frac{dB_{E,IR}}{dt} = \alpha_{20}B_E + \mu_I B_I - k_{15}M_A B_E - k_{18}M_R B_E + k_{17}NM_I \frac{B_I^2}{B_I^2 + (NM_I)^2}
- k_2 \frac{N}{2} M_R \frac{B_E}{B_E + c_9} + k_{14A}NN_{fracc} M_I \frac{(T_c + \omega_3 T_1)/M_I}{(T_c + \omega_3 T_1)/M_I + c_4}
+ k_{14B}NN_{fraca} M_I \frac{F_\alpha}{F_\alpha + f_9 I_{10} + s_{4h}}$$
(S16)

For detailed descriptions of the derivation of (S1)–(S16), see [1] and [2]. Diagrams of the kinetic processes in the immune response model for macrophages, T cells, and bacteria are illustrated in [2].

Table S1. Parameters used in immune response model from [1]

Parameter	Description	Value	Units
α_{5a}	Production of I_{γ} by T_1	50	$\frac{1}{\operatorname{pg} \cdot T_1^{-1} \cdot \operatorname{day}^{-1}}$
α_{30}	Production of F_{α} by M_I	3×10^{-3}	$pg \cdot ml^{-1} \cdot M_I^{-1} \cdot day^{-1}$
α_{5c}	Production of I_{γ} by M_I	0.03	$pg \cdot ml^{-1} \cdot M_I^{-1}$
α_{4a}	Recruitment of M_R	5×10^{-3}	day^{-1}
α_{23}	Production of I_{12} by M_R	2×10^{-4}	$\operatorname{pg}\cdot\operatorname{ml}^{-1}\cdot M_R^{-1}$
α_{5b}	Production of I_{γ} by T_8	50	$pg \cdot T_8^{-1} \cdot day^{-1}$
α_{18}	Production of I_{10} by T_c and T_8	0.02	$pg \cdot CD8^{-1} \cdot day^{-1}$
α_{3a2}	Recruitment of T_2 by chemokines	1×10^{-3}	day^{-1}
α_{3ac}	Recruitment of T_c and T_8	3×10^{-3}	day^{-1}
α_{31}	Production of F_{α} by M_A	4×10^{-3}	$pg \cdot ml^{-1} \cdot M_A^{-1} \cdot day^{-1}$
α_{1a}	Recruitment of T_0	4×10^{-3}	day^{-1}
α_{32}	Production of F_{α} by T_1	$8.16 imes 10^{-4}$	$pg \cdot ml^{-1} \cdot T_1^{-1} \cdot day^{-1}$
α_{33}	Production of F_{α} by T_8	6×10^{-5}	$pg \cdot ml^{-1} \cdot T_8^{-1} \cdot day^{-1}$
α_{3a}	Recruitment of T_1	5×10^{-3}	day^{-1}
sr_{3b2}	F_{α} dependent recruitment of T_2	1×10^3	day^{-1}
sr_{4b}	F_{α} dependent recruitment of M_R	$2 imes 10^4$	$M_R \cdot \mathrm{day}^{-1}$
sr_{1b}	F_{α} dependent recruitment of T_0	2×10^5	$T_0 \cdot \text{day}^{-1}$

Table S1. Parameters used in immune response model from [1]

Parameter	Description	Value	Units
sr_{3b}	F_{α} dependent recruitment of T_1	2×10^4	$T_0 \cdot \text{day}^{-1}$
sr_{3bc}	F_{α} dependent recruitment of T_c and T_8	$8 imes 10^4$	$T \cdot day^{-1}$
f_9	Ratio adjustment of F_{α} and I_{10}	50	-
f_7	Effect of I_{10} on I_{γ} induced T_0 differentiation to T_1	1	-
f_8	Ratio adjustment of F_{α} and I_{10} on M_R recruitment	1	-
s_{4b1}	Half-sat constant of F_{α} on T_1 recruitment	165	$pg \cdot ml^{-1}$
s_{4b2}	Half-sat constant of F_{α} on T_0 recruitment	450	$pg \cdot ml^{-1}$
s_{4b}	Half-sat constant of F_{α} on M_R recruitment	200	$pg \cdot ml^{-1} \cdot day^{-1}$
eta_2	Scaling factor of B_T for F_α production by M_A	10^{-3}	-
β	Scaling factor of F_{α} for M_R activation to M_A	100	$B_T \cdot pg^{-1}$
С	Half-sat constant of I_{γ} on T_1 death	1.1×10^{3}	$pg \cdot ml^{-1}$
c_c	Half-sat constant of I_{γ} on T_c and T_8 death	550	$pg \cdot ml^{-1}$
c ₅₂	Half-sat constant of T_1 on T_c cytotoxicity	50	T_C
c_{T1}	Half-sat constant of T_c on T-cell induced M_I killing	10	T_1
c_{5a}	Half-sat constant of M_A on I_{γ} production by T_1	7×10^3	$M_A \cdot \mathrm{ml}^{-1}$
c_T	Half-sat constant of B_T on F_α production by T_1 and	1×10^4	B_T
- 1	T_8	-	1
c_{5b}	Half-sat constant of M_A on I_γ production T_8	7×10^3	$M_A \cdot \mathrm{ml}^{-1}$
c_{230}	Half-sat constant of B_T on I_{12} production by	1×10^3	$B_T \cdot ml$
230	dendritic cells	177.10	21 111
c ₂₃	Half-sat constant of B_T on I_{12} production by M_R	5×10^3	$B_T \cdot ml$
c_4	Half-sat constant of $\frac{T_c + T_1}{M_I}$ on M_I apoptosis	40	$T \cdot M_I^{-1}$
	Max percent contribution of T_1 to Fas-FasL	0.4	1 141
ω_3	•	0.4	-
. 1	apoptosis of M_I	0.15	
ω_2	Max percent contribution of M_I produced	0.13	-
	cytokines to M_R recruitment	0.5	
ω_1	Max percent contribution of T_1 to cytotoxicity	0.5	-
m	Percent overlap of T_c and T_8	0.6	- 3.4-1 1 -1
$\mu_{T\gamma}$	Rate of I_{γ} induced apoptosis of T_1	1×10^{-4}	$M_A^{-1} \cdot \text{day}^{-1}$
$\mu_{Tc\gamma}$	Rate of I_{γ} induced apoptosis of T_c and T_8	1×10^{-4}	$M_A^{-1} \cdot \text{day}^{-1}$
μ_{T8}	Death rate of T_8	0.33	day^{-1}
μ_{Tc}	Death rate of T_c	0.33	day^{-1}
μ_{T80}	Death rate of T_{80}	0.33	day^{-1}
μ_I	B_I turnover to B_E , primarily due to M_I death	4×10^{-3}	day^{-1}
μ_{TNF}	Decay rate of F_{α}	1.11	day^{-1}
k_{14a}	Apoptosis of M_I induced by Fas-FasL	0.1	day^{-1}
k_{14b}	Apoptosis of M_I induced by F_{α}	0.1	day^{-1}
k_{52}	Cytotoxic killing of M_I	0.5	day^{-1}
s_{10}	Half-sat constant of I_{γ} on F_{α} production by M_A	80	$pg \cdot ml^{-1}$
s_{12}	Production of I_{12} by dendritic cells	1×10^3	$pg \cdot ml^{-1} \cdot day^{-1}$
S	Downregulation by I_{10} on I_{12} production by M_A	10	$pg \cdot ml^{-1}$
δ_7	Production of I_{10} by M_A	0.01	$pg \cdot ml^{-1} \cdot M_A^{-1}$
N_{fraca}	Average number of bacteria released from M_I apoptosis by F_α	0.5	-
N_{fracc}	Average number of bacteria released from M_I apoptosis by Fas-FasL	0.1	-

Table S1. Parameters used in immune response model from [1]

Parameter	Description	Value	Units
	Growth rate of B_E	0.05	day^{-1}
α_{19}	Growth rate of B_I	0.4	day^{-1}
α_{12}	Production of I_4 by T_2	1×10^{-3}	$pg \cdot T_2^{-1} \cdot day^{-1}$
α_{11}	Production of I_4 by T_0	5×10^{-4}	$pg \cdot T_0^{-1} \cdot day^{-1}$
α_{17}	Production of I_{10} by T_2	0.06	$pg \cdot T_{a}^{-1} \cdot dav^{-1}$
α_8	Production of I_{12} by M_A	8×10^{-4}	$pg \cdot M_A^{-1} \cdot day^{-1}$
α_7	Production of I_{γ} by T_0	0.03	$pg \cdot ml^{-1} \cdot T_0^{-1}$
α_{16}	Production of I_{10} by T_1	2×10^{-3}	$pg \cdot T_1^{-1} \cdot day^{-1}$
α_2	Max growth rate of T_0	5×10^{-3}	day^{-1}
sr_m	Recruitment rate of M_R	1×10^3	$M_R \cdot day^{-1}$
f_6	Ratio adjustment of I_{10} and I_{γ} on I_{10} production	2.5×10^{-2}	-
f_4	Ratio adjustment of I_{10} and I_{12} on I_{γ} production	2	-
f_2	Ratio adjustment of I_{γ} and I_{4} on T_{0} differentiation to T_{2}	1	-
f_1	Ratio adjustment of I_4 and I_γ	200	-
s_2	Half-sat constant of I_4 on T_0 differentiation to T_2	5	$pg \cdot ml^{-1}$
s ₆	Half-sat constant of I_{10} self-inhibition in production by M_A	60	$pg \cdot ml^{-1}$
s_4	Half-sat constant of I_{12} on production of I_{γ} by T_0 and T_{80}	50	$pg \cdot ml^{-1}$
<i>S</i> 7	Half-sat constant of I_{12} on I_{γ} production by NK cells	40	$pg \cdot ml^{-1}$
s_1	Half-sat constant of I_{γ} on M_R activation to M_A	7×10^3	$pg\cdotml^{-1}$
s_8	Half-sat constant of I_{10} on M_A deactivation	1	$pg \cdot ml^{-1}$
C9	Half-sat constant of B_E on M_R infection to M_I	2×10^6	B_E
<i>c</i> ₈	Half-sat constant of B_T on M_R activation to M_A	2×10^5	$B_T \cdot \text{ml}^{-1}$
c_{15}	Half-sat constant of M_A on I_γ production by T_1	2×10^5	M_A
c_{10}	Half-sat constant of B_T on I_γ production by NK cells	1×10^3	$B_T \cdot \text{ml}^{-1}$
μ_{MR}	Death rate of M_R	3.3×10^{-3}	day^{-1}
μ_{MI}	Death rate of M_I	1.1×10^{-3}	day^{-1}
μ_{MA}	Death rate of M_A	0.07	day^{-1}
$\mu_{I\gamma}$	Decay rate of I_{γ}	2.16	day^{-1}
μ_{I4}	Decay rate of I_4	2.77	day^{-1}
μ_{I10}	Decay rate of I_{10}	5	day^{-1}
μ_{I12}	Decay rate of I_{12}	1.19	day^{-1}
μ_{T2}	Death rate of T_2	0.33	day^{-1}
μ_{T1}	Death rate of T_1	0.33	day^{-1}
μ_{T0}	Death rate of T_0	0.33	day^{-1}
k_2	Rate of M_R infection to M_I	0.4	day^{-1}
k_3	Rate of M_R activation to M_A	0.05	day^{-1}
k ₁₇	Max death rate of M_I due to B_I	0.02	day^{-1}
k_4	Rate of M_A deactivation by I_{10}	0.08	day^{-1}
k_6	Max rate of T_0 differentiation to T_1	5×10^{-3}	$ml \cdot pg^{-1} \cdot day^{-1}$
k_7	Max rate of T_0 differentiation to T_2	0.02	$ml \cdot pg^{-1} \cdot day^{-1}$
k_{18}	Rate of B_E killing by M_R	5×10^{-9}	$ml \cdot M_R^{-1} \cdot day^{-1}$

Table S1. Parameters used in immune response model from [1]

Description	Value	Units
Rate of B_E killing by M_A	1.25×10^{-7}	$\mathrm{ml}\cdot M_A^{-1}\cdot \mathrm{day}^{-1}$
Production of I_{γ} by NK cells	100	$pg \cdot ml^{-1} \cdot day^{-1}$
B_I carrying capacity of M_I	10	$B_I \cdot M_I$
I	Rate of B_E killing by M_A Production of I_γ by NK cells	Rate of B_E killing by M_A 1.25 × 10 ⁻⁷ Production of I_γ by NK cells 100

- 1. Sud, D.; Bigbee, C.; Flynn, J.L.; Kirschner, D.E. Contribution of CD8+ T cells to control of Mycobacterium tuberculosis infection. *J. Immunol.* **2006**, *176*, 4296-4314.
- 2. Marino, S.; Sud, D.; Plessner, H.; Lin, P.L.; Chan, J.; Flynn, J.L.; Kirschner, D.E. Differences in reactivation of tuberculosis induced from anti-TNF treatments are based on bioavailability in granulomatous tissue, *PLoS Comput. Biol.* **2007**, *3*, e194.