Supplementary Materials: Mathematical Modeling of **Tuberculosis Granuloma Activation** ## Steve M. Ruggiero, Minu R. Pilvankar, and Ashlee N. Ford Versypt The equations (1)–(4) for TB granuloma activation in the paper are combined with the immune response model developed in [1], which included the following equations (S1)-(S16) to track the populations of - macrophages - resting macrophages, M_R - infected macrophages, M_I - activated macrophages, M_A - CD4+ T cells - Th0 cells, T₀ - Th1 cells, T₁ Th2 cells, T₂ - CD8+ T cells - T80 cells, T₈₀ - T8 cells, T₈ TC cells, T_c - bacteria - intracellular bacteria contained inside of infected macrophages, B_I - extracellular bacteria located inside the granuloma but outside of any cells, B_E (note that in [1] the only source of B_E is the $B_{E,IR}$ contribution from the immune response, whereas the model developed in the present work also includes a contribution $B_{E,L}$ from the bacterial - total bacteria, $B_T = B_E + B_I$ and concentrations of - cytokines - TNF- α , F_a IFN- γ , I_{γ} IL-4, I_4 IL-10, I_{10} - IL-12, I₁₂ - with the parameters defined in Table S1: $$\frac{dM_R}{dt} = sr_M + \alpha_{4A}(M_A + \omega_2 M_I) + sr_{4B} \frac{F_a}{F_a + f_8 I_{10} + s_{4b}} - k_2 M_R \frac{B_E}{B_E + c_9} - k_3 M_R \frac{I_\gamma}{I_\gamma + f_1 I_4 + s_1} \frac{B_T + \beta F_\alpha}{B_T + \beta F_\alpha + c_8} - \mu_{MR} M_R$$ (S1) $$\frac{dM_{I}}{dt} = k_{2}M_{R}\frac{B_{E}}{B_{E} + c_{9}} - k_{17}M_{I}\frac{B_{I}^{2}}{B_{I}^{2} + (NM_{I})^{2}} - k_{14A}M_{I}\frac{(T_{c} + \omega_{3}T_{1})/M_{I}}{(T_{c} + \omega_{3}T_{1})/M_{I} + c_{4}} - k_{14B}M_{I}\frac{F_{\alpha}}{F_{\alpha} + f_{9}I_{10} + s_{4B}} - k_{52}M_{I}\frac{(T_{c}(T_{1}/(T_{1} + c_{T1})) + \omega_{1}T_{1})/M_{I}}{(T_{c}(T_{1}/(T_{1} + c_{T1})) + \omega_{1}T_{1})/M_{I} + c_{52}} - \mu_{MI}M_{I}$$ (S2) $$\frac{dM_A}{dt} = k_3 M_R \frac{I_{\gamma}}{I_{\gamma} + f_1 I_4 + s_1} \frac{B_T + \beta F_{\alpha}}{B_T + \beta F_{\alpha} + c_8} - k_4 M_A \frac{I_{10}}{I_{10} + s_8} - \mu_{MA} M_A \tag{S3}$$ $$\frac{dT_0}{dt} = \alpha_{1A}(M_A + \omega_2 M_I) + sr_{1B} \frac{F_a}{F_a + f_8 I_{10} + s_{4b2}} + \alpha_2 T_0 \frac{M_A}{M_A + c_{15}} - k_6 I_{12} T_0 \frac{I_\gamma}{I_\gamma + (f_1 I_4 + f_7 I_{10}) + s_1} - k_7 T_0 \frac{I_4}{I_4 + f_2 I_\gamma + s_2} - \mu_{T0} T_0$$ (S4) $$\frac{dT_1}{dt} = \alpha_{3A}(M_A + \omega_2 M_I) + sr_{3B} \frac{F_a}{F_a + f_8 I_{10} + s_{4b1}} + k_6 I_{12} T_0 \frac{I_{\gamma}}{I_{\gamma} + (f_1 I_4 + f_7 I_{10}) + s_1} - \mu_{T\gamma} \frac{I_{\gamma}}{I_{\gamma} + c} T_1 M_A - \mu_{T1} T_1$$ (S5) $$\frac{dT_2}{dt} = \alpha_{3A2}(M_A + \omega_2 M_I) + sr_{3B2} \frac{F_a}{F_a + f_8 I_{10} + s_{4b1}} + k_7 T_0 \frac{I_4}{I_4 + f_2 I_\gamma + s_2} - \mu_{T2} T_2$$ (S6) $$\frac{dT_{80}}{dt} = \alpha_{1A}(M_A + \omega_2 M_I) + sr_{1B} \frac{F_a}{F_a + f_8 I_{10} + s_{4b2}} + \alpha_2 T_{80} \frac{M_A}{M_A + c_{15}} - k_6 I_{12} T_{80} \frac{I_{\gamma}}{I_{\gamma} + (f_1 I_4 + f_7 I_{10}) + s_1} - \mu_{T80} T_{80}$$ (S7) $$\begin{split} \frac{dT_8}{dt} &= m\alpha_{3Ac}(M_A + \omega_2 M_I) + msr_{3Bc} \frac{F_a}{F_a + f_8 I_{10} + s_{4b1}} \\ &+ mk_6 I_{12} T_{80} \frac{I_{\gamma}}{I_{\gamma} + (f_1 I_4 + f_7 I_{10}) + s_1} - \mu_{Tc\gamma} \frac{I_{\gamma}}{I_{\gamma} + c_c} T_8 M_A - \mu_{T8} T_8 \end{split} \tag{S8}$$ $$\frac{dT_c}{dt} = m\alpha_{3Ac}(M_A + \omega_2 M_I) + msr_{3Bc} \frac{F_a}{F_a + f_8 I_{10} + s_{4b1}} + mk_6 I_{12} T_{80} \frac{I_{\gamma}}{I_{\gamma} + (f_1 I_4 + f_7 I_{10}) + s_1} - \mu_{Tc\gamma} \frac{I_{\gamma}}{I_{\gamma} + c_c} T_c M_A - \mu_{Tc} T_c$$ (S9) $$\frac{dF_{\alpha}}{dt} = \alpha_{30}M_I + \alpha_{30}M_A \frac{I_{\gamma} + \beta_2 B_T}{I_{\gamma} + \beta_2 B_T + (f_1 I_4 + f_7 I_{10}) + s_{10}} + \alpha_{32}T_1 + \alpha_{33}(T_c + T_8) - \mu_{F\alpha}F_{\alpha}$$ (S10) $$\frac{dI_{\gamma}}{dt} = s_g \frac{B_T}{B_T + c_{10}} \frac{I_{12}}{I_{12} + s_7} + \alpha_{5A} T_1 \frac{M_A}{M_A + c_{5A}} + \alpha_{5B} T_8 \frac{M_A}{M_A + c_{5B}} + \alpha_{5c} M_I + \alpha_7 T_0 \frac{I_{12}}{I_{12} + f_4 I_{10} + s_4} + \alpha_7 T_{80} \frac{I_{12}}{I_{12} + f_4 I_{10} + s_4} - \mu_{I\gamma} I_{\gamma}$$ (S11) $$\frac{dI_4}{dt} = \alpha_{11}T_0 + \alpha_{12}T_2 - \mu_{I4}I_4 \tag{S12}$$ $$\frac{dI_{10}}{dt} = \delta_7 M_A \frac{s_6}{I_{10} + f_6 I_\gamma + s_6} + \alpha_{16} T_1 + \alpha_{17} T_2 + \alpha_{18} (T_8 + T_c) - \mu_{I10} I_{10}$$ (S13) $$\frac{dI_{12}}{dt} = s_{12} \frac{B_T}{B_T + c_{230}} + \alpha_{23} M_R \frac{B_T}{B_T + c_{23}} + \alpha_8 M_A \frac{s}{s + I_{10}} - \mu_{I12} I_{12}$$ (S14) $$\frac{dB_{I}}{dt} = \alpha_{19}B_{I} \left(1 - \frac{B_{I}^{2}}{B_{I}^{2} + (NM_{I})^{2}} \right) + k_{2}\frac{N}{2}M_{R}\frac{B_{E}}{B_{E} + c_{9}}$$ $$- k_{17}NM_{I}\frac{B_{I}^{2}}{B_{I}^{2} + (NM_{I})^{2}} - k_{14A}NM_{I}\frac{(T_{c} + \omega_{3}T_{1})/M_{I}}{(T_{c} + \omega_{3}T_{1})/M_{I} + c_{4}}$$ $$- k_{14B}NM_{I}\frac{F_{\alpha}}{F_{\alpha} + f_{9}I_{10} + s_{4b}}$$ $$- k_{52}NM_{I}\frac{(T_{c}(T_{1}/(T_{1} + c_{T1})) + \omega_{1}T_{1})/M_{I}}{(T_{c}(T_{1}/(T_{1} + c_{T1})) + \omega_{1}T_{1})/M_{I} + c_{52}} - \mu_{I}B_{I}$$ (S15) $$\frac{dB_E}{dt} = \frac{dB_{E,IR}}{dt} = \alpha_{20}B_E + \mu_I B_I - k_{15}M_A B_E - k_{18}M_R B_E + k_{17}NM_I \frac{B_I^2}{B_I^2 + (NM_I)^2} - k_2 \frac{N}{2} M_R \frac{B_E}{B_E + c_9} + k_{14A}NN_{fracc} M_I \frac{(T_c + \omega_3 T_1)/M_I}{(T_c + \omega_3 T_1)/M_I + c_4} + k_{14B}NN_{fraca} M_I \frac{F_\alpha}{F_\alpha + f_9 I_{10} + s_{4h}}$$ (S16) For detailed descriptions of the derivation of (S1)–(S16), see [1] and [2]. Diagrams of the kinetic processes in the immune response model for macrophages, T cells, and bacteria are illustrated in [2]. **Table S1.** Parameters used in immune response model from [1] | Parameter | Description | Value | Units | |----------------|---|----------------------|--| | α_{5a} | Production of I_{γ} by T_1 | 50 | $\frac{1}{\operatorname{pg} \cdot T_1^{-1} \cdot \operatorname{day}^{-1}}$ | | α_{30} | Production of F_{α} by M_I | 3×10^{-3} | $pg \cdot ml^{-1} \cdot M_I^{-1} \cdot day^{-1}$ | | α_{5c} | Production of I_{γ} by M_I | 0.03 | $pg \cdot ml^{-1} \cdot M_I^{-1}$ | | α_{4a} | Recruitment of M_R | 5×10^{-3} | day^{-1} | | α_{23} | Production of I_{12} by M_R | 2×10^{-4} | $\operatorname{pg}\cdot\operatorname{ml}^{-1}\cdot M_R^{-1}$ | | α_{5b} | Production of I_{γ} by T_8 | 50 | $pg \cdot T_8^{-1} \cdot day^{-1}$ | | α_{18} | Production of I_{10} by T_c and T_8 | 0.02 | $pg \cdot CD8^{-1} \cdot day^{-1}$ | | α_{3a2} | Recruitment of T_2 by chemokines | 1×10^{-3} | day^{-1} | | α_{3ac} | Recruitment of T_c and T_8 | 3×10^{-3} | day^{-1} | | α_{31} | Production of F_{α} by M_A | 4×10^{-3} | $pg \cdot ml^{-1} \cdot M_A^{-1} \cdot day^{-1}$ | | α_{1a} | Recruitment of T_0 | 4×10^{-3} | day^{-1} | | α_{32} | Production of F_{α} by T_1 | $8.16 imes 10^{-4}$ | $pg \cdot ml^{-1} \cdot T_1^{-1} \cdot day^{-1}$ | | α_{33} | Production of F_{α} by T_8 | 6×10^{-5} | $pg \cdot ml^{-1} \cdot T_8^{-1} \cdot day^{-1}$ | | α_{3a} | Recruitment of T_1 | 5×10^{-3} | day^{-1} | | sr_{3b2} | F_{α} dependent recruitment of T_2 | 1×10^3 | day^{-1} | | sr_{4b} | F_{α} dependent recruitment of M_R | $2 imes 10^4$ | $M_R \cdot \mathrm{day}^{-1}$ | | sr_{1b} | F_{α} dependent recruitment of T_0 | 2×10^5 | $T_0 \cdot \text{day}^{-1}$ | **Table S1.** Parameters used in immune response model from [1] | Parameter | Description | Value | Units | |------------------|---|---------------------|-----------------------------------| | sr_{3b} | F_{α} dependent recruitment of T_1 | 2×10^4 | $T_0 \cdot \text{day}^{-1}$ | | sr_{3bc} | F_{α} dependent recruitment of T_c and T_8 | $8 imes 10^4$ | $T \cdot day^{-1}$ | | f_9 | Ratio adjustment of F_{α} and I_{10} | 50 | - | | f_7 | Effect of I_{10} on I_{γ} induced T_0 differentiation to T_1 | 1 | - | | f_8 | Ratio adjustment of F_{α} and I_{10} on M_R recruitment | 1 | - | | s_{4b1} | Half-sat constant of F_{α} on T_1 recruitment | 165 | $pg \cdot ml^{-1}$ | | s_{4b2} | Half-sat constant of F_{α} on T_0 recruitment | 450 | $pg \cdot ml^{-1}$ | | s_{4b} | Half-sat constant of F_{α} on M_R recruitment | 200 | $pg \cdot ml^{-1} \cdot day^{-1}$ | | eta_2 | Scaling factor of B_T for F_α production by M_A | 10^{-3} | - | | β | Scaling factor of F_{α} for M_R activation to M_A | 100 | $B_T \cdot pg^{-1}$ | | С | Half-sat constant of I_{γ} on T_1 death | 1.1×10^{3} | $pg \cdot ml^{-1}$ | | c_c | Half-sat constant of I_{γ} on T_c and T_8 death | 550 | $pg \cdot ml^{-1}$ | | c ₅₂ | Half-sat constant of T_1 on T_c cytotoxicity | 50 | T_C | | c_{T1} | Half-sat constant of T_c on T-cell induced M_I killing | 10 | T_1 | | c_{5a} | Half-sat constant of M_A on I_{γ} production by T_1 | 7×10^3 | $M_A \cdot \mathrm{ml}^{-1}$ | | c_T | Half-sat constant of B_T on F_α production by T_1 and | 1×10^4 | B_T | | - 1 | T_8 | - | 1 | | c_{5b} | Half-sat constant of M_A on I_γ production T_8 | 7×10^3 | $M_A \cdot \mathrm{ml}^{-1}$ | | c_{230} | Half-sat constant of B_T on I_{12} production by | 1×10^3 | $B_T \cdot ml$ | | 230 | dendritic cells | 177.10 | 21 111 | | c ₂₃ | Half-sat constant of B_T on I_{12} production by M_R | 5×10^3 | $B_T \cdot ml$ | | c_4 | Half-sat constant of $\frac{T_c + T_1}{M_I}$ on M_I apoptosis | 40 | $T \cdot M_I^{-1}$ | | | Max percent contribution of T_1 to Fas-FasL | 0.4 | 1 141 | | ω_3 | • | 0.4 | - | | . 1 | apoptosis of M_I | 0.15 | | | ω_2 | Max percent contribution of M_I produced | 0.13 | - | | | cytokines to M_R recruitment | 0.5 | | | ω_1 | Max percent contribution of T_1 to cytotoxicity | 0.5 | - | | m | Percent overlap of T_c and T_8 | 0.6 | -
3.4-1 1 -1 | | $\mu_{T\gamma}$ | Rate of I_{γ} induced apoptosis of T_1 | 1×10^{-4} | $M_A^{-1} \cdot \text{day}^{-1}$ | | $\mu_{Tc\gamma}$ | Rate of I_{γ} induced apoptosis of T_c and T_8 | 1×10^{-4} | $M_A^{-1} \cdot \text{day}^{-1}$ | | μ_{T8} | Death rate of T_8 | 0.33 | day^{-1} | | μ_{Tc} | Death rate of T_c | 0.33 | day^{-1} | | μ_{T80} | Death rate of T_{80} | 0.33 | day^{-1} | | μ_I | B_I turnover to B_E , primarily due to M_I death | 4×10^{-3} | day^{-1} | | μ_{TNF} | Decay rate of F_{α} | 1.11 | day^{-1} | | k_{14a} | Apoptosis of M_I induced by Fas-FasL | 0.1 | day^{-1} | | k_{14b} | Apoptosis of M_I induced by F_{α} | 0.1 | day^{-1} | | k_{52} | Cytotoxic killing of M_I | 0.5 | day^{-1} | | s_{10} | Half-sat constant of I_{γ} on F_{α} production by M_A | 80 | $pg \cdot ml^{-1}$ | | s_{12} | Production of I_{12} by dendritic cells | 1×10^3 | $pg \cdot ml^{-1} \cdot day^{-1}$ | | S | Downregulation by I_{10} on I_{12} production by M_A | 10 | $pg \cdot ml^{-1}$ | | δ_7 | Production of I_{10} by M_A | 0.01 | $pg \cdot ml^{-1} \cdot M_A^{-1}$ | | N_{fraca} | Average number of bacteria released from M_I apoptosis by F_α | 0.5 | - | | N_{fracc} | Average number of bacteria released from M_I apoptosis by Fas-FasL | 0.1 | - | **Table S1.** Parameters used in immune response model from [1] | Parameter | Description | Value | Units | |-----------------------|--|----------------------|--------------------------------------| | | Growth rate of B_E | 0.05 | day^{-1} | | α_{19} | Growth rate of B_I | 0.4 | day^{-1} | | α_{12} | Production of I_4 by T_2 | 1×10^{-3} | $pg \cdot T_2^{-1} \cdot day^{-1}$ | | α_{11} | Production of I_4 by T_0 | 5×10^{-4} | $pg \cdot T_0^{-1} \cdot day^{-1}$ | | α_{17} | Production of I_{10} by T_2 | 0.06 | $pg \cdot T_{a}^{-1} \cdot dav^{-1}$ | | α_8 | Production of I_{12} by M_A | 8×10^{-4} | $pg \cdot M_A^{-1} \cdot day^{-1}$ | | α_7 | Production of I_{γ} by T_0 | 0.03 | $pg \cdot ml^{-1} \cdot T_0^{-1}$ | | α_{16} | Production of I_{10} by T_1 | 2×10^{-3} | $pg \cdot T_1^{-1} \cdot day^{-1}$ | | α_2 | Max growth rate of T_0 | 5×10^{-3} | day^{-1} | | sr_m | Recruitment rate of M_R | 1×10^3 | $M_R \cdot day^{-1}$ | | f_6 | Ratio adjustment of I_{10} and I_{γ} on I_{10} production | 2.5×10^{-2} | - | | f_4 | Ratio adjustment of I_{10} and I_{12} on I_{γ} production | 2 | - | | f_2 | Ratio adjustment of I_{γ} and I_{4} on T_{0} differentiation to T_{2} | 1 | - | | f_1 | Ratio adjustment of I_4 and I_γ | 200 | - | | s_2 | Half-sat constant of I_4 on T_0 differentiation to T_2 | 5 | $pg \cdot ml^{-1}$ | | s ₆ | Half-sat constant of I_{10} self-inhibition in production by M_A | 60 | $pg \cdot ml^{-1}$ | | s_4 | Half-sat constant of I_{12} on production of I_{γ} by T_0 and T_{80} | 50 | $pg \cdot ml^{-1}$ | | <i>S</i> 7 | Half-sat constant of I_{12} on I_{γ} production by NK cells | 40 | $pg \cdot ml^{-1}$ | | s_1 | Half-sat constant of I_{γ} on M_R activation to M_A | 7×10^3 | $pg\cdotml^{-1}$ | | s_8 | Half-sat constant of I_{10} on M_A deactivation | 1 | $pg \cdot ml^{-1}$ | | C9 | Half-sat constant of B_E on M_R infection to M_I | 2×10^6 | B_E | | <i>c</i> ₈ | Half-sat constant of B_T on M_R activation to M_A | 2×10^5 | $B_T \cdot \text{ml}^{-1}$ | | c_{15} | Half-sat constant of M_A on I_γ production by T_1 | 2×10^5 | M_A | | c_{10} | Half-sat constant of B_T on I_γ production by NK cells | 1×10^3 | $B_T \cdot \text{ml}^{-1}$ | | μ_{MR} | Death rate of M_R | 3.3×10^{-3} | day^{-1} | | μ_{MI} | Death rate of M_I | 1.1×10^{-3} | day^{-1} | | μ_{MA} | Death rate of M_A | 0.07 | day^{-1} | | $\mu_{I\gamma}$ | Decay rate of I_{γ} | 2.16 | day^{-1} | | μ_{I4} | Decay rate of I_4 | 2.77 | day^{-1} | | μ_{I10} | Decay rate of I_{10} | 5 | day^{-1} | | μ_{I12} | Decay rate of I_{12} | 1.19 | day^{-1} | | μ_{T2} | Death rate of T_2 | 0.33 | day^{-1} | | μ_{T1} | Death rate of T_1 | 0.33 | day^{-1} | | μ_{T0} | Death rate of T_0 | 0.33 | day^{-1} | | k_2 | Rate of M_R infection to M_I | 0.4 | day^{-1} | | k_3 | Rate of M_R activation to M_A | 0.05 | day^{-1} | | k ₁₇ | Max death rate of M_I due to B_I | 0.02 | day^{-1} | | k_4 | Rate of M_A deactivation by I_{10} | 0.08 | day^{-1} | | k_6 | Max rate of T_0 differentiation to T_1 | 5×10^{-3} | $ml \cdot pg^{-1} \cdot day^{-1}$ | | k_7 | Max rate of T_0 differentiation to T_2 | 0.02 | $ml \cdot pg^{-1} \cdot day^{-1}$ | | k_{18} | Rate of B_E killing by M_R | 5×10^{-9} | $ml \cdot M_R^{-1} \cdot day^{-1}$ | **Table S1.** Parameters used in immune response model from [1] | Description | Value | Units | |--|--|---| | Rate of B_E killing by M_A | 1.25×10^{-7} | $\mathrm{ml}\cdot M_A^{-1}\cdot \mathrm{day}^{-1}$ | | Production of I_{γ} by NK cells | 100 | $pg \cdot ml^{-1} \cdot day^{-1}$ | | B_I carrying capacity of M_I | 10 | $B_I \cdot M_I$ | | I | Rate of B_E killing by M_A
Production of I_γ by NK cells | Rate of B_E killing by M_A 1.25 × 10 ⁻⁷ Production of I_γ by NK cells 100 | - 1. Sud, D.; Bigbee, C.; Flynn, J.L.; Kirschner, D.E. Contribution of CD8+ T cells to control of Mycobacterium tuberculosis infection. *J. Immunol.* **2006**, *176*, 4296-4314. - 2. Marino, S.; Sud, D.; Plessner, H.; Lin, P.L.; Chan, J.; Flynn, J.L.; Kirschner, D.E. Differences in reactivation of tuberculosis induced from anti-TNF treatments are based on bioavailability in granulomatous tissue, *PLoS Comput. Biol.* **2007**, *3*, e194.