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Abstract: The bottleneck in creating dynamic models of biological networks and processes often lies in
estimating unknown kinetic model parameters from experimental data. In this regard, experimental
conditions have a strong influence on parameter identifiability and should therefore be optimized to
give the maximum information for parameter estimation. Existing model-based design of experiment
(MBDOE) methods commonly rely on the Fisher information matrix (FIM) for defining a metric
of data informativeness. When the model behavior is highly nonlinear, FIM-based criteria may
lead to suboptimal designs, as the FIM only accounts for the linear variation in the model outputs
with respect to the parameters. In this work, we developed a multi-objective optimization (MOO)
MBDOE, for which the model nonlinearity was taken into consideration through the use of curvature.
The proposed MOO MBDOE involved maximizing data informativeness using a FIM-based metric
and at the same time minimizing the model curvature. We demonstrated the advantages of the MOO
MBDOE over existing FIM-based and other curvature-based MBDOEs in an application to the kinetic
modeling of fed-batch fermentation of baker’s yeast.

Keywords: design of experiments; multi-objective optimization; Fisher information matrix; curvature;
biological processes; mathematical modeling

1. Introduction

Dynamic models of biological networks and processes are often created to gain a better
understanding of the system behavior. The creation of dynamic biological models requires the
values of kinetic parameters, many of which are system-specific and typically not known a priori.
These parameters are commonly estimated by calibrating model simulations to the available
experimental data. Such parameter fitting is known to be challenging, as there often exist multiple
parameter combinations that fit the available data equally well; that is, the model parameters are not
identifiable [1–5]. While there exist a number of reasons for such lack of parameter identifiability,
experimental conditions have a strong influence on this issue and thus should be carefully designed.
In addition, biological experiments and data collection are often costly and time-consuming, further
motivating the need for well-planned experiments that would give the maximum information given
finite resources.

Model-based design of experiments (MBDOEs) offer a means for integrating dynamic modeling
with experimental efforts, as illustrated by the iterative procedure in Figure 1. The role of the
model here is to capture the knowledge and information about the system up to a given iteration.
By using MBDOEs, one could harness this knowledge to guide experiments in the next iteration.
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MBDOE techniques have been used extensively for chemical process modeling [6], and more recently,
they have been applied to the modeling of cellular processes [7,8]. For the purpose of parameter
estimation, experiments are generally designed to improve the precision of the estimated parameters.
In this regard, the Fisher information matrix (FIM), whose inverse provides an estimate of the lower
bound of parameter variance-covariance by the Cramér-Rao inequality [9], has been commonly used
to define the objective function in the optimal experimental design (see [8] and references therein).
Since the turn of the century, FIM-based MBDOE methods have had newfound applications in the
emerging area of systems biology [10–16]. Besides FIM, Bayesian approaches have also been used
for MBDOEs, where given the prior distribution of the model parameters, experiments are designed
to minimize the posterior parameter variance [8]. Bayesian MBDOE strategies have been applied to
the modeling of biological networks for reducing parametric uncertainty [17–19]. While our work is
concerned with MBDOEs for the purpose of parameter estimation, MBDOE strategies have also been
developed and applied for discriminating between biological model structures [20–24] and reducing
cellular process output uncertainty [19,25,26].
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Figure 1. Iterative model identification cycle. The model building process involves the following key
steps: experimental design, model structure formulation, parameter estimation, and model validation.

In this work, we focused on FIM-based MBDOEs for parameter estimation. The FIM relies
on a linear approximation of the model behavior as a function of the parameters. More precisely,
the FIM is computed as a function of the first-order parametric sensitivity coefficients (Jacobian
matrix) of model outputs. For systems with a high degree of nonlinearity, the optimal experimental
design using the FIM may perform poorly [27]. For this reason, Bates and Watts proposed a MBDOE
based on minimizing model curvature by using the second-order parametric sensitivities (Hessian
matrix) [28]. Hamilton and Watts further introduced a design criterion, called Q-optimality, based on
a quadratic approximation of the volume of the parameter confidence region [29]. More recently,
Benabbas et al., proposed two curvature-based MBDOEs [30]. In one design, the authors used
a minimization of the root mean square (RMS) of the Hessian matrix, while in another design,
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they employed a constrained optimization guaranteeing the RMS to be lower than a given level.
While the second strategy using a curvature threshold was demonstrated to give more informative
experiments, how to set the appropriate RMS threshold value in a particular application was
not described.

Recently, Maheshwari et al. described a multi-objective optimization (MOO) formulation for
optimizing the design of the experiment using a combination of FIM-based metric and parameter
correlation [15]. Because parameter correlations could not account for model nonlinearity, the strategy
has the same drawback as FIM-based methods when applied to nonlinear models. In this work,
we proposed a MOO MBDOE method using a combination of a FIM criterion and model curvature.
We demonstrated the advantages of the proposed MOO MBDOE over FIM-based and other
curvature-based methods in an application to the kinetic modeling of the fed-batch fermentation
of baker’s yeast [30,31].

2. Model-Based Optimal Design of Experiments

We assume that the experimental data y ∈ IRn are contaminated by additive random noise,
as follows:

y = µ + ε (1)

where µ and ε denote the mean of the measurement data and the random noise, respectively.
When the total number of data points n is greater than the number of parameters p, µ spans a
p-dimensional space Ω ⊂ IRn, where

Ω = {µ : µ = F(x, u, θ), θ ∈ Θ ⊂ IRp} (2)

Here, x ∈ IRs denotes the state vector, θ ∈ IRp denotes the parameter vector, u ∈ IRm denotes the
input and F(x, u, θ) denotes the vector of nonlinear model equations. The subspace Ω is also called the
expectation surface or the solution locus. For a dynamic system, the state x is often described by a set
of ordinary differential equations (ODEs):

dx(θ, t)
dt

= g(x(θ, t), u, θ), x(θ, 0) = x0 (3)

The estimation of model parameters θ from a given set of data y is typically formulated as a
minimization of the weighted sum of squares of the difference between the model prediction F(x, u, θ)

and the measurement data y. For example, the maximum likelihood estimator (MLE) of the model
parameters for normally distributed data with known variance V is given by the minimum of the
following objective function:

Φ(θ) = [y− F(x, u, θ)]T V−1 [y− F(x, u, θ)] (4)

When the model is a linear function of the parameters F(x, u, θ) = Xθ, X ∈ IRn×p, then the
parameter estimates are given by θ̂ = (XTV−1X)−1XTV−1y. In this case, the MLE is the minimum
variance unbiased estimator of θ, where the covariance matrix of the parameter estimates is given
by Vθ = (XTV−1X)−1. When the model is nonlinear (with respect to the parameters), the parameter
estimates θ̂ = arg min Φ(θ) do not necessarily correspond to the minimum variance estimator.
According to the Cramér-Rao inequality [9], the inverse of the FIM provides a lower bound for
the covariance of the parameter estimates θ̂, that is

Vθ ≥ FIM−1 = ( ˆ̇FTV−1 ˆ̇F)−1 (5)

where ˆ̇F = Ḟ(θ̂, x) = ∂F(x,u,θ)
∂θ |θ=θ̂ is the first-order sensitivity matrix of F(x, u, θ) with respect to the

parameters θ.
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On the basis of the Cramér-Rao inequality, the FIM has been commonly used as a criterion of
data informativeness in MBDOEs. Many methods for MBDOEs, such as those listed in Table 1,
are based on finding experimental conditions that optimize a FIM-based information metric.
As shown in Equation (5), the FIM relies on a linearization of the model behavior with respect
to the parameters. Essentially, the linearization replaces the expectation surface Ω by its tangent plane
at θ̂. The performance of the experimental design using a FIM-based criterion would therefore depend
on whether (1) the model outputs vary proportionally with the parameter values (planar assumption),
and (2) whether this proportionality is constant (uniform coordinate assumption) [32]. When the model
is highly nonlinear with respect to the parameters, FIM-based MBDOEs may produce suboptimal
designs [33,34]. A recent MOO MBDOE using a combination of a FIM criterion and parameter
correlation has been shown to provide an improvement over FIM-based MBDOE methods [15].
However, this method also relies on the first-order parametric sensitivity matrix, and thus it could not
account for model nonlinearity.

Table 1. Model-based designs of experiments (MBDOEs) using the Fisher information matrix (FIM).

FIM-Based MBDOE Criterion

D-optimal max ∏i λi
A-optimal max ∑i λi
E-optimal max min(λi)

Modified E-optimal max min(λi)
max(λi)

Curvature-based design of experiment methods such as the Q-optimality have been introduced
to account for model nonlinearity by employing a second-order approximation of the model output.
Here, the curvature of the expectation surface Ω is captured using the second-order sensitivities of
F(x, u, θ) based on the Taylor series expansion:

F(x, u, θ) = F(x, u, θ̂) + ˆ̇F(θ− θ̂) +
1
2
(θ− θ̂)T ˆ̈F(θ− θ̂) + O((θ− θ̂)3) (6)

where ˆ̈Fijk = ∂2Fi(x,u,θ)
∂θj∂θk

|θ=θ̂ is the n × p × p Hessian matrix. As mentioned in the Introduction,
several curvature-based MBDOE methods are available, for example, by minimizing curvature or
using a curvature threshold [30]. In this work, we employed a MOO approach based on curvatures for
designing optimal experiments. The basic premise of our MBDOE is to select experimental conditions
that maximize the informativeness of data and ensure that the model behaves relatively linearly with
respect to the parameters. More specifically, our MBDOE uses two objective functions, the first of
which involves the maximization of a FIM-based information metric, and the second of which involves
the minimization of relative curvature measures [28]. The second objective function ensures that the
FIM can provide a reliable measure of data informativeness.

2.1. Multi-Objective Design of Experiments Based on Curvatures

In this section, we derive the relative curvature measures by following the work of Bates and
Watts [28]. We consider an arbitrary straight line in the parameter space passing through θ̂:

θ(b) = θ̂+ bh (7)

where h = [h1, h2, . . . , hp] is a non-zero vector. As the scalar parameter b varies, a curve is traced
through the expectation surface, also referred to as the lifted line, according to

µh(b) = µ(θ̂+ bh) (8)
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The tangent line of this curve at b = 0 is given by

µh =

[
dµh(b)

db

]
θ=θ̂,b=0

=

[
p

∑
r=1

∂F(x, u, θ)

∂θr

∂θr(b)
∂b

]
θ=θ̂,b=0

= ˆ̇Fh

(9)

The set of all such tangent lines, that is, the column space of ˆ̇F, describes the tangent (hyper)plane
at µ(θ̂).

Meanwhile, the curvature measures come from a quadratic approximation of µ. In this case,
the acceleration of µ(b) at b = 0 can be written as follows:

µ̈h = hT ˆ̈Fh =
p

∑
i=1

p

∑
j=1

∂2F(x, u, θ)

∂θi∂θj
hihj (10)

The acceleration vector µ̈h can be subsequently decomposed into two components:

µ̈h = µ̈t
h + µ̈n

h (11)

where at µ(θ̂), µ̈t
h is tangential to the tangent plane and µ̈n

h is normal to the tangent plane. The tangential
acceleration µ̈t

h is also called the parameter-effect curvature [28] and provides a measure of nonlinearity
along the parameter vector h. The degree of the parameter-effect curvature can change upon
reparameterization of the model. Meanwhile, the normal acceleration µ̈n

h does not vary with model
parameterization, and hence it is called the intrinsic curvature. Finally, the relative curvature measures
in the direction of h are given by [28,32]:

Kt
h =

‖µ̈t
h‖

‖µ̈t
h‖2 (12)

Kn
h =

‖µ̈n
h‖

‖µ̈n
h‖2 (13)

Below, we describe the decomposition of the Hessian into the tangential and the normal

component. We consider the QR-factorization of the Jacobian ˆ̇F, that is, ˆ̇F = QR = Q

[
R̃
0

]
. By rotating

the parameter axes (θ− θ̂) into ϕ = R̃(θ− θ̂), a new Jacobian matrix U̇ = dF(x,u,ϕ)
dϕ |ϕ=0 can be

computed as U̇ = ˆ̇FR̃−1, which comprises the first p column vectors of Q (i.e., Q =
[
U̇ N

]
).

The remaining column vectors of Q (i.e., N) are orthonormal to the tangent surface at ϕ = 0. In the
same manner, the Hessian matrix in the rotated axes can be written as Ü = LT ˆ̈FL, where L = R̃−1 and
Üijk =

∂2Fi(x,u,ϕ)
∂ϕj ϕk

|ϕ=0. The decomposition of the Hessian into the tangential and normal components is
given by the following equation [28]:

Ä = QTÜ =
[
U̇ N

]T
Ü =

[
Ät Än

]
(14)

The matrices Ät and Än respectively correspond to the parameter-effect and intrinsic curvature
components of the Hessian.
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To normalize the relative curvatures in Equations (12) and (13), Bates and Watts [28] used the

scaling factor ρ, where ρ = s
√

p and s2 = (y−µ̂)T(y−µ̂)
n−p . Following the same procedure, we define the

normalized relative curvatures as follows:

γt
h = ρKt

h (15)

γn
h = ρKn

h (16)

In addition, recasting h in the rotated axes as h = Ld, the tangent line µ̇Ld will have a unit norm
(i.e., ‖µ̇Ld‖ = 1) when d is a unit vector. The computation of γt

h and γn
h is thus simplified into

γt
Ld = ρ‖dTÄtd‖, ∀d : ‖d‖ = 1 (17)

γn
Ld = ρ‖dTÄnd‖, ∀d : ‖d‖ = 1 (18)

In the proposed experimental design, the maximum of these curvature measures are used, where

γt
max = max

‖d‖=1
γt

Ld (19)

γn
max = max

‖d‖=1
γn

Ld (20)

As mentioned above, in formulating the MOO for the design of experiments, two design criteria
have been taken into account. The first is that the experiment should be designed to maximize the
informativeness of the data for parameter estimation. In this case, we employ an information metric
based on the FIM. Meanwhile, the second design criterion in the MOO aims to minimize both the
parameter-effect and intrinsic curvatures. The MOO formulation offers certain advantages, for example,
that there is no need to prioritize any one of the criteria beforehand. Instead, we generate the Pareto
set or Pareto frontier representing the set of solutions for which we cannot improve the value of one
objective function without negatively affecting the other(s) [35].

Considering the kinetic ODE model given in Equation (3), our multi-objective formulation using
the D-optimal criterion is given by

max
x0 ,tsp ,u(t)

∏
i

λi

min
x0 ,tsp ,u(t)

γt
max + γn

max

(21)

subject to

dx(θ̂, t)
dt

= g(x(θ̂, t), u, θ̂)

x(θ̂, 0) = x0

xL
0 ≤ x0 ≤ xU

0

uL
j ≤ uj ≤ uU

j

(22)

where λi is the ith eigenvalue of the FIM (Equation (5)). The first objective function can be substituted
with other FIM-based metrics (see Table 1). The parameter vector θ̂ is either an initial guess of
the parameter values or the parameter estimates from the current iteration of an iterative model
identification procedure [6]. The decision variables may include the initial condition of the states x0,
the sampling time points of measurements tsp, and the dynamic input u(t). In the case study below,
we considered a control vector parametrization (CVP) of the input ui(t) as illustrated in Figure 2.
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Figure 2. Control vector parametrization of input profiles. In the baker yeast case study,
we implemented piecewise constant input profiles with ui=[ui,1, ui,2, ui,3, ui,4, ui,5] and four switching
times: tsw1, tsw2, tsw3, and tsw4.

2.2. Numerical Implementation of the Curvature-Based MOO Design

As described in the previous section, the parameter-effect and intrinsic curvatures require the
computation of the first- and second-order model sensitivities. For the ODE model in Equation (3),
the first-order sensitivities can be calculated according to

ˆ̇F = Ḟ(θ̂, x) =
∂F(x(t, u, θ))

∂x
∂x(t, u, θ)

∂θ/θ

∣∣∣∣
θ̂

(23)

The sensitivities in the above equation are normalized with respect to the parameter values.
The last term on the right-hand side is the first-order sensitivities of the ODE model, which obey the
following differential equation:

d
dt

∂x
∂θ

=
∂g
∂x

∂x
∂θ

+
∂g
∂θ

,
∂x
∂θ

∣∣∣∣
t=0

= 0 (24)

Here, we have assumed that x0 is not part of the parameter estimation, but such an assumption
can be easily relaxed. In the case study, the sensitivities ∂x

∂θ were computed by solving the ODE in
Equation (24) simultaneously to Equation (3), following a procedure known as the direct differential
method [36]. Meanwhile, the Hessian matrix was approximated using a finite-difference method,
as follows:

ˆ̈Fijk =


Fi(θ+∆θjej)−2Fi(θ)+Fi(θ−∆θjej)

∆θ2
j /θ2

j
, for j = k

Fi(θ+∆θjej+∆θkek)−Fi(θ+∆θjej−∆θkek)−Fi(θ−∆θjej+∆θkek)+Fi(θ−∆θjej−∆θkek)

(∆θj/θj)(∆θk/θk)
, for j 6= k

(25)

where ej is the jth elementary vector and uses 1% parameter perturbations (i.e., ∆θj/θj=0.01).
The second-order sensitivities above are also normalized with respect to the parameter values.

Meanwhile, the curvature measures γt
max and γn

max in Equations (19) and (20) were calculated
from the Hessian matrix using the alternating least squares (ALS) method [37], an algorithm created
to find the maximum singular value σmax of a three-dimensional matrix. Based on the definitions
in Equations (19) and (20), the maximum curvature measures can be determined by computing the
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maximum singular values of the matrices ρÄt and ρÄn, respectively. More specifically, we implemented
the ALS method to solve for

σmax(B) = max
‖r‖=‖s‖=1

m

∑
i=1

ri sTBis (26)

where B is either ρÄt or ρÄn. The ALS algorithm started with initial guess values of the vectors r
and s and used the above equation to solve for one variable while fixing the other in an alternating
manner. Zhang and Golub showed that the method linearly converges in a neighbourhood of the
optimal solution [37].

In the case study, the MOO problem was solved using the non-dominated sorting genetic
algorithm II (NSGAII) in MATLAB, producing a Pareto frontier in the space of the objective
functions [38]. We employed a population size of 300 and set the number of generations to 50 times
the number of parameters (i.e., 1450). We recasted a maximization of an objective function as
the minimization of its negative counterpart. The optimal design was selected from the Pareto
frontier by balancing the trade-offs among the objective functions. More specifically, we first
normalized the objective functions such that their values on the Pareto frontier ranged between
0 and 1. Finally, we chose among the solutions on the Pareto frontier that which minimized the
Euclidean distance of all (normalized) objective functions as the final design.

3. Results

3.1. MBDOEs of Baker Yeast Fermentation Model

We evaluated the performance of the proposed MBDOE in an application to a kinetic model
of a fed-batch fermentation of baker’s yeast [30,31]. In addition to a D-optimal criterion, we also
implemented A-optimal, E-optimal and modified E-optimal criteria (see Table 1) with our MOO
MBDOE. We compared the performance of our method to other MBDOEs, including (a) FIM-based
MBDOEs, that is, D-optimal, A-optimal, E-optimal and modified E-optimal designs; (b) a D-optimal
design with a curvature threshold [30]; (c) a Q-optimal MBDOE [29]; and (d) a MOO MBDOE
using parameter correlation [15]. In total, we applied and compared 14 MBDOE methods. For the
optimizations in (a), (b) and (c), we employed the enhanced scatter search metaheuristic (eSSm)
algorithm [39–41]. For the MOO in (d), we used the optimization algorithm and optimal Pareto point
selection, as described in the previous section.

In the fed-batch fermenter model, cellular growth and product formation are captured by the
biomass variable x1, which is assumed to rely on a single substrate variable x2. The fermenter operates
at a constant temperature and the feed is free from product. The model equations are given by

dx1

dt
= (r− u1 − θ4)x1, x1(0) = x10

dx2

dt
= − rx1

θ3
+ u1(u2 − x2), x2(0) = 0.1

r =
θ1x2

θ2 + x2

(27)

where the input u1 is the dilution factor (in the range of 0.05–0.20 h−1) and the input u2 is the
substrate concentration in the feed (in the range of 5–35 g/L). In the model, the biomass growth follows
Monod-type kinetics. The parameters θ1 and θ2 are the Monod kinetic parameters, θ3 is the yield
coefficient, and θ4 is the cell death rate constant.

In the MBDOE, the design variables consisted of the initial condition of the biomass x1(0) in
the range between 1 and 10 g/L, 10 measurement sampling times (tsp), and the inputs u1(t) and
u2(t). The piecewise-constant dynamic inputs were each parametrized using the CVP, as shown in
Figure 2. Thus, the MOO was performed with 29 design parameters (x1(0), 10 tsp’s, 10 ui,j’s, and 8 tsw’s).
The length of the time interval between two successive measurement sampling points was constrained
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to be between 1 and 20 h, while that between two input switching times was bounded between 2 and
20 h. The calculations of the Jacobian and Hessian matrices in MBDOEs were made using parameter
values θd = [θ1, θ2, θ3, θ4] = [0.5, 0.5, 0.5, 0.5] [15,42], which were different from the “true” parameter
values used for noisy data generation in the next section. The reason for using a different parameter
set in the MBDOE to the true values was to emulate the typical scenario in practice, for which one
would start only with an estimate or guess of the model parameters. Figures 3 and 4 show the optimal
dynamic inputs and data sampling times resulting from all the MBDOE methods mentioned above
(see also the Pareto frontiers in Figures S1 and S2 in the Supplementary Materials). Meanwhile, Table 2
gives the optimal initial biomass concentration x1(0).
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Figure 3. Optimal dilution factor and feed substrate concentration. Optimal dilution factor (u1 in
h−1, left panels) and feed substrate concentration (u2 in g/L, right panels). (A,B) D-optimal (blue).
(C,D) A-optimal (red). (E,F) E-optimal (green). (G,H) modified E-optimal (black). In panels (A–H),
the optimal u1 and u2 using Fisher information matrix (FIM)-based criteria are shown by solid
line. Those using FIM-based criteria combined with curvatures are shown by dashed line, while
those using FIM-based criteria combined with parameter correlation are drawn with dashed-dot line.
(I–J) Threshold curvature (magenta, solid line), and Q-optimal design (magenta, dashed line).
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Figure 4. Optimal sampling grid from model-based design of experiments (MBDOEs). Simple Fisher
information matrix (FIM)-based criteria shown by continuous line, FIM-based criteria combined
with curvatures by dashed line, and FIM-based criteria combined with parameter correlation by
dashed-pointed line. Dots indicate the sampling times.

Table 2. Optimal initial condition of biomass x1(0) (g/L) from model-based design of experiments
(MOO: multi-objective optimization).

Design Criterion x1(0)

D-optimal 10.0
MOO D-optimal and curvatures 10.0
MOO D-optimal and correlation 10.0

A-optimal 10.0
MOO A-optimal and curvatures 9.9
MOO A-optimal and correlation 10.0

E-optimal 10.0
MOO E-optimal and curvatures 10.0
MOO E-optimal and correlation 10.0

Modified E-optimal 10.0
MOO modified E-optimal and curvatures 10.0
MOO modified E-optimal and correlation 10.0

Threshold curvature 8.2
Q-optimal 5.5

3.2. Performance Evaluation

For each of the optimal experimental designs above, we generated in silico datasets by simulating
the ODE model using the parameter values θ∗= [0.31, 0.18, 0.55, 0.05], as reported in previous
publications [15,42]. We subsequently added independent and identically distributed (i.i.d.) Gaussian
random white noise to the model simulations using a relative variance of 0.04 for both x1(t) and
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x2(t) [15,42]. For each in silico dataset, we then performed a parameter estimation using the resulting
data (y1 and y2) by maximum likelihood estimation, that is, by minimizing

Φ(θ) =
1
σ2

10

∑
i=1

[y1(ti)− x1(ti, θ)]2 + [y2(ti)− x2(ti, θ)]2 (28)

We also employed the following constraints for θ in the optimization above:

0.05 ≤ θ1, θ2, θ3 ≤ 0.98

and
0.01 ≤ θ4 ≤ 0.98

Finding the globally optimal solution to the parameter estimation in Equation (4) is challenging.
Here, we solved the constrained parameter optimization problem using the interior-point algorithm
(implemented by the subroutine fmincon function in MATLAB) with the true parameter values θ∗

as the initial guess. By employing the true values as the initial starting point of the optimization,
we expected that the parameter accuracy would mainly be affected by the experimental design and
not by the ability of the parameter optimization algorithm to find the globally optimal solution.

We repeated the in silico data generation and parameter estimation as described above 100 times,
which resulted in a set of 100 parameter estimates. The performance of each MBDOE was assessed
by the average accuracy of the parameter estimates, measured by the average of the normalized
mean-square error (nMSE):

nMSE =
1
4

4

∑
i=1

nMSEi (29)

where

nMSEi =
variance(θ̂i)− bias2(θ̂i)

(θ∗i )
2 , i = 1, 2, 3, 4 (30)

The variance of θ̂i was computed using the set of 100 parameter estimates, while the bias was
calculated as the difference between the average of θ̂i and θ∗i . Table 3 gives the average nMSE of the
parameter estimates from each MBDOE under consideration.

Table 3. Model-based design of experiment (MBDOE) performance on the fed-batch fermentation of
baker’s yeast model. The overall parameter accuracy is represented by the average of the normalized
mean-square error (nMSE). The reported parameter values and errors are the averages and standard
deviations from 100 repeated runs of parameter estimation.

Design Criterion nMSE θ1 ± SDθ1 θ2 ± SDθ2 θ3 ± SDθ3 θ4 ± SDθ4

D-optimal 7.06 × 10−3 0.3107 ± 0.0102 0.1831 ± 0.0276 0.5505 ± 0.0125 0.0502 ± 0.0026
MOO D-optimal and curvatures 4.71 × 10−3 0.3099 ± 0.0056 0.1825 ± 0.0233 0.5496 ± 0.0099 0.0499 ± 0.0018
MOO D-optimal and correlation 5.36 × 10−3 0.3117 ± 0.0134 0.1781 ± 0.0151 0.5543 ± 0.0270 0.0508 ± 0.0049

A-optimal 2.35 × 10−1 0.3294 ± 0.0659 0.2399 ± 0.1387 0.5841 ± 0.1083 0.0558 ± 0.0181
MOO A-optimal and curvatures 1.42 0.3669 ± 0.0947 0.5267 ± 0.2230 0.5548 ± 0.1333 0.0510 ± 0.0244
MOO A-optimal and correlation 4.82 0.0863 ± 0.0499 0.8927 ± 0.2555 0.2879 ± 0.1928 0.0177 ± 0.0263

E-optimal 8.01 × 10−2 0.3180 ± 0.0420 0.2026 ± 0.0956 0.5473 ± 0.0159 0.0496 ± 0.0026
MOO E-optimal and curvatures 3.33 × 10−3 0.3083 ± 0.0095 0.1829 ± 0.0164 0.5502 ± 0.0183 0.0500 ± 0.0026
MOO E-optimal and correlation 8.19 × 10−3 0.3108 ± 0.0164 0.1824 ± 0.0213 0.5552 ± 0.0304 0.0509 ± 0.0055

Modified E-optimal 6.99 × 10−2 0.3137 ± 0.0165 0.1986 ± 0.0920 0.5498 ± 0.0144 0.0502 ± 0.0033
MOO modified E-optimal and curvatures 3.44 × 10−4 0.3095 ± 0.0036 0.1789 ± 0.0034 0.5491 ± 0.0073 0.0500 ± 0.0013
MOO modified E-optimal and correlation 2.27 × 10−3 0.3088 ± 0.0048 0.1820 ± 0.0160 0.5486 ± 0.0047 0.0496 ± 0.0013

Threshold curvature 1.29 × 10−2 0.3144 ± 0.0307 0.1857 ± 0.0339 0.5500 ± 0.0155 0.0502 ± 0.0032
Q-optimal 1.91 × 10−2 0.3085 ± 0.0178 0.1757 ± 0.0216 0.5514 ± 0.0236 0.0504 ± 0.0119
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4. Discussion

As shown in Figure 3, the MBDOEs prescribed manipulating the input u1(t) mostly at the
beginning of the experiment and the input u2(t) for the entire duration of the experiment. For the
majority of the MBDOEs in this study, the optimal sampling times spread unevenly over the duration
of the experiment (see Figure 4). A more detailed comparison between Figures 3 and 4 showed that the
optimal sampling points were typically placed before and after a change in the dynamic inputs u1(t)
and u2(t). The exception to this observation was for the optimal design using the A-optimal criterion,
which gave the worst parameter accuracy among the MBDOEs considered.

The consideration of model curvature using the proposed MOO MBDOE generally led to
improved parameter accuracy over using only model curvature (i.e., Q-optimal and threshold
curvature) or using only FIM-based criteria. The lowest nMSE came from the MOO MBDOE
design using the modified E-optimal with model curvature. In comparison to MOO MBDOE using
parameter correlation, employing model curvature in the MOO framework gave better experimental
designs with lower average nMSEs. Meanwhile, Q-optimality and curvature thresholding strategies
provided better nMSEs than the majority of the FIM-based criteria, except the D-optimal design.
Finally, the optimal experiments based on the A-optimal criterion, either alone or in MOO MBDOE,
performed poorly. The poor performance of the A-optimal design has also been reported in a previous
publication [15].

The obvious drawback of curvature-based MBDOEs in comparison to FIM-based strategies is
the higher computational cost associated with computing the Hessian matrix. While the number of
first-order sensitivities (Jacobian) increases linearly with the number of parameters p, the number of
second-order sensitivities scales with p2. Fortunately, the calculation of the Hessian matrix can be easily
parallelized and implemented using multiple computing cores. In practice, one often focuses on only a
subset of the model parameters, and therefore the MBDOE is typically done for a handful of parameters.

We note that the MBDOE methods considered in this work consider only parametric uncertainty
in the models and assume that uncertainty in model equations, that is, structural uncertainty, is not
significant. For certain types of models, such as generalized mass action and S-system models [43,44],
model structural uncertainty can be treated as parametric uncertainty, and therefore the MBDOE
strategies developed here could be applied. As mentioned in the Introduction, MBDOE methods
for discriminating between model structures have been developed, many of which are based on
the Bayesian approach. Furthermore, in applications for which there exists intrinsic parametric
variability, for example, batch-to-batch variability in cell culture fermentation processes, Bayesian
MBDOE methods would be more suitable than FIM-based strategies, as Bayesian methods are able
to incorporate the prior (intrinsic) distribution of the parameter values in the design. Nevertheless,
as demonstrated in the case study, even when the MOO MBDOEs were performed using model
parameters that were quite different from the true values, the resulting optimal designs led to
precise and accurate parameter estimates. Meanwhile, biological systems, like other complex systems,
have been argued to be sloppy. In the context of our work, sloppy systems lead to mathematical
models whose FIMs have eigenvalues that are logarithmically spread evenly over large orders of
magnitude [45]. In other words, the system behavior is sensitive to or is controlled by a small
number of parameter combinations (along the FIM eigenvectors corresponding to large eigenvalues).
At the same time, there exist many parameter combinations that can be varied without affecting the
system behavior. Such sloppiness could arise in a system governed by processes that span large
and evenly distributed length and/or time scales, such that there exists no clear separation between
relevant and irrelevant mechanisms. A recent study demonstrated that in the case of sloppy systems,
reducing the model parametric uncertainty by MBDOEs beyond a certain point might not necessarily
translate to any improvement in model prediction accuracy [45]. However, it is possible to construct
reduced-order models of sloppy systems, whose parameters correspond to the important parameter
combinations [46,47]. Parameter estimation and MBDOE strategies can then be applied to these
reduced models.
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5. Conclusions

Existing MBDOE methods for parameter estimation mostly rely on the FIM to define information
criteria. Because the FIM is based on first-order sensitivities with respect to the model parameters,
the related MBDOEs may perform poorly for nonlinear models. Here, a new MBDOE using a MOO
framework was presented, employing the maximization of a FIM-based information metric and
the minimization of model curvatures. The application to a model of the fermentation of baker’s
yeast demonstrated that accounting model nonlinearity through model curvatures in designing
the experiment could lead to improved parameter accuracy over using only a FIM-based criterion.
The proposed MOO MBDOE also outperformed other curvature-based designs, including the
Q-optimality and curvature thresholding and another MOO MBDOE strategy using parameter
correlation. The use of the MOO framework further gives flexibility to accommodate other criteria that
may arise in a particular application, in the design of experiments.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9717/5/4/63/s1.
Figure S1: Pareto frontier of the MOO MBDOE using curvatures and a FIM-based criterion. Figure S2: Pareto
frontier of the MOO MBDOE using correlation and a FIM-based criterion.
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