
processes

Article

Principal Component Analysis of Process Datasets
with Missing Values

Kristen A. Severson, Mark C. Molaro † and Richard D. Braatz *

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
kseverso@mit.edu (K.A.S.); mmolaro@gmail.com (M.C.M.)
* Correspondence: braatz@mit.edu; Tel.: +1-617-253-3112
† Current address: Element Analytics, San Fransisco, CA 94107, USA.

Academic Editor: John D. Hedengren
Received: 31 May 2017; Accepted: 30 June 2017; Published: 6 July 2017

Abstract: Datasets with missing values arising from causes such as sensor failure, inconsistent
sampling rates, and merging data from different systems are common in the process industry.
Methods for handling missing data typically operate during data pre-processing, but can also occur
during model building. This article considers missing data within the context of principal component
analysis (PCA), which is a method originally developed for complete data that has widespread
industrial application in multivariate statistical process control. Due to the prevalence of missing
data and the success of PCA for handling complete data, several PCA algorithms that can act on
incomplete data have been proposed. Here, algorithms for applying PCA to datasets with missing
values are reviewed. A case study is presented to demonstrate the performance of the algorithms and
suggestions are made with respect to choosing which algorithm is most appropriate for particular
settings. An alternating algorithm based on the singular value decomposition achieved the best
results in the majority of test cases involving process datasets.

Keywords: principal component analysis; missing data; process data analytics; chemometrics; machine
learning; multivariable statistical process control; process monitoring; Tennessee Eastman problem

1. Introduction

Principal component analysis (PCA) is a widely used tool in industry for process monitoring.
PCA and its variants have been proposed for process control [1], identification of faulty sensors [2],
data preprocessing [3], data visualization [4], model building [5], and fault detection and
identification [6] in continuous as well as batch processing [7,8]. PCA has been applied in a variety
of industries including chemicals, polymers, semiconductors, and pharmaceuticals. Classic PCA
methods require complete observations; however, often online process measurements or laboratory
data have missing observations. Causes of missing data in this context include sensor failure, changes
in sensor instrumentation over time, different sampling rates, merging of data from different systems,
and samples that are flagged as poor quality and subsequently dropped from storage [9]. The nonlinear
iterative partial least squares (NIPALS) algorithm was an early approach for handling missing process
data when applying PCA [10,11]. The problem started to gain more attention in the late 1990s [12,13]
and, because of the ubiquity of missing data, many PCA algorithms that can handle missing data have
been proposed since. This article reviews these approaches and provides guidance to practitioners on
which methods to apply.

A framework for analysis in the presence of missing data has been available since the mid
1970s [14], which introduces categories of missingness and explains when missingness can be ignored.
Three categorizations of missingness are (1) missing completely at random (MCAR), (2) missing at
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random (MAR), and (3) not missing at random (NMAR) [15]. These categories can be described using
the missing-data indicator matrix, M, which is of the same size as the data matrix X where Mij = 1 if
Xij is missing and 0 otherwise. The MCAR assumption applies when the independence statement

f (M|X, φ) = f (M|φ), ∀ X, φ, (1)

is true, where f is a probability density, variables to the right of | indicate the conditioning set,
and φ are unknown parameters. MCAR implies that the missingness is not a function of the data,
regardless of whether the data points are observed or missing. The MAR assumption applies when the
independence statement

f (M|X, φ) = f (M|Xobs, φ), ∀ Xmis, φ, (2)

is true. MAR implies that the missingness depends on the observed data. NMAR is assumed when
neither of these criteria apply [15].

Recently, access to large amounts of process data have been enabled by improved sensor
technology, the Industrial Internet of Things, and decreased data storage costs. Due to an increasing
number and diversity of measurements [16], data with missing elements will become increasingly
common. When working with a dataset, the first step is to identify which data are missing and why.
If the missingness mechanism is MCAR or MAR, a model for the missingness mechanism is not needed
and is referred to as ignorable when performing inference. To perform inference, the quantity of interest
is the likelihood, which is the probability of the observed data, given the distributional parameters.
If the MAR assumption holds, the likelihood is proportional to the probability of the observed data
given the true parameters and therefore it is not necessary to model the missingness [15]. However,
when data are NMAR and the missingness mechanism is not taken into account, algorithms can lead to
systemic bias and poor prediction [15]. Conclusive tests for determining the appropriate missingness
categorization do not exist, and so the categorization is selected based on process understanding. The
conclusions of missingness categorization depend on the specific scenario, but some typical examples
for the process industry are presented here to provide guidance to practitioners. MCAR is applicable
to data that are missing due to random sensor failure or mishandling of the data. MAR applies to
scenarios where data are acquired sequentially, for example, a quality test that is only performed
based on the results of previous testing. NMAR applies to measurements that are not recorded due to
censoring, where the value is outside of limits of detection [9].

2. Methods

2.1. Introduction to PCA

Principal component analysis is a technique for dimensionality reduction. Pearson [17] and
Hotelling [18] are typically attributed with the first descriptions of the technique [19]. Hotelling
described PCA as the set of linear projections that maximizes the variance in a lower dimensional space.
For a data matrix X ∈ Rd×n where d is the number of measurements and n is the number of samples,
the linear projection described by Hotelling can be found via the singular value decomposition (SVD),

X = UΣV>, (3)

where U ∈ Rd×d and V ∈ Rn×n are orthogonal matrices and Σ ∈ Rd×n is a pseudo-diagonal matrix.
The linear projection matrix P ∈ Rd×a, also called the matrix of loading vectors, is defined by the
columns of U that correspond to the largest a singular values. The principal components, also called
the scores, are defined as

T = P>X (4)
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or as the first a rows of ΣV>. Equivalently, P can be found by solving the eigenvalue decomposition of
the sample covariance matrix,

S =
1
n

XX> = UΛU>, (5)

where the diagonal matrix Λ = Σ>Σ, with P defined as the columns of U that correspond to the largest
a eigenvalues.

Pearson [17] described PCA as the optimal rank a approximation of a data matrix X for a < d
using the least-squares criterion. Here, the observed data are modeled as

x̂i = Pti + µ (6)

where x̂i is the reconstruction of a column of the previously defined data matrix X, P is again an
orthogonal matrix, ti is the score and is equivalent to a column of the previously defined matrix T,
and µ is the mean of the observed data such that the reconstruction error

C =
n

∑
i=1
‖xi − x̂i‖2 (7)

is minimized.
PCA can also be described as the maximum likelihood solution of a probabilistic latent variable

model [20,21]. This formulation is referred to as PPCA. PPCA assumes the data are modeled by a
generative latent variable model,

xi = Pti + µ + εi, (8)

where the variables are defined as above and εi is the error. The distributional assumptions are

ti ∼ N (0, Ia) (9)

εi ∼ N (0, σ2Id) (10)

xi|ti ∼ N (Pti + µ, σ2Id) (11)

xi ∼ N (µ, PP> + σ2Id) (12)

where Ik is the k × k identity matrix, N (µ, Σ) indicates a normal distribution with mean µ and
covariance Σ, and all other terms are defined as above. Tipping and Bishop [20] and Roweis [21]
independently proposed finding the maximum likelihood estimates of the distributional parameters via
expectation maximization (EM). EM is a general framework for learning parameters with incomplete
data which iteratively updates the expected complete data log-likelihood and the maximum likelihood
estimates of the parameters [22]. In PPCA, the data are incomplete because the principal components,
ti, are not observed. Typically, ti are referred to as latent variables, as opposed to missing data,
because they cannot be observed. Generally, EM is only guaranteed to converge to a local maximum,
but Tipping and Bishop [20] showed that EM converges to a global maximum for PPCA. To apply
EM to PPCA, first the observed data are mean-centered using the sample mean. Then the algorithm
alternates between calculating the conditional expectations of the latent variables,

〈ti〉 = W−1P>(xi − µ), (13)

〈tit>i 〉 = σ2W−1 + 〈ti〉〈ti〉>, (14)
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where W = P>P + σ2Ia, and updating the parameters

P =

(
n

∑
i=1

(xi − µ)〈ti〉>
)(

n

∑
i=1
〈tit>i 〉

)−1

(15)

σ2 =
1

nd

n

∑
i=1

(
‖xi − µ‖2 − 2〈ti〉>P>(xi − µ) + tr(〈tit>i 〉P>P)

)
(16)

Before application of the PCA algorithm, each measurement (i.e., row when X ∈ Rd×n) in the data
matrix is typically mean centered around zero and rescaled to have standard deviation equal to one.
For all PCA implementations, it is necessary to choose the latent dimension a, and several approaches
exist. Scree plots [23] visualize the singular values in decreasing order and look for an “elbow” or “gap”
and truncate at that point. The percent variance explained approach considers the variance, defined as
the square of the corresponding singular value, of each loading vector and truncates at a specified
threshold, often 90% or 95%. Cross-validation strategies choose a such that the reconstruction error of
a held-out set is minimized. In the PPCA framework, the negative log-likelihood of a validation set can
also be used. Parallel analysis [24] compares the scree plot of the data matrix to that of a random matrix
of the same size and thresholds at the crossing point. Donoho and Gavish [25] propose an optimal
threshold based on the asymptotic mean-squared error.

2.2. PCA Methods for Missing Data

To apply an algorithm to a dataset with missing data, the simplest approaches are complete case
analysis, in which only samples that have all of the measurements are used in analysis, and mean
imputation, in which missing elements are replaced with the sample mean. These techniques can lead
to large amounts of data loss or bias and are undesirable. Because complete case analysis and mean
imputation first address missing data and then proceed with modeling, these techniques are referred
to as two-step procedures. More advanced two-step procedures exist, such as multiple imputation [26],
as well as two-step procedures that are designed for certain types of missingness, such as lifting [27]
which is applied to multi-rate missingness. Here, the focus is on methods that integrate missing data
handling and model building for PCA. All of the PCA methods in the previous section assume that
the data matrix is complete, however in practice, the data matrix may not be complete and several
approaches have been proposed for finding the principal components in the presence of missing data.

Grung and Manne [13] proposed an alternating least-squares type of approach. Their algorithm is
initialized by computing the singular value decomposition where missing values have been filled in
using the sample mean. The algorithm then alternates between minimizing

C = ∑
ij
(1−Mij)

(
Xij −∑

k
tik pjk

)2 (17)

with either fixed scores T, or fixed loadings P where Mij = 1 if Xij is missing and zero otherwise. The
first set of update equations are

t>i = x>i Ai(A>i Ai)
−1 (18)

where ti is the ith column of T, xi is the ith column of X, and Ai is a d × a matrix with elements
Ajk = (1−Mij)pjk. The second set of update equations is

p>j = (B>j Bj)
−1B>j x>j (19)

where pj is the jth row of P, xj is the jth row of X, and Bj is a n × a matrix with elements
Bik = tik(1−Mij). To address the estimation of µ, Grung and Manne [13] suggest augmenting the
model with an additional loading vector with a corresponding principal component equal to all ones.
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This approach leverages the reconstruction error derivation of the PCA problem and uses the change
in the reconstruction error as the convergence criteria.

Another approach is to start from the SVD derivation of PCA. The origin of this method is unclear,
with Troyanskaya et al. [28] and Walczak and Massart [29] both studying alternating algorithms
utilizing the SVD. The algorithm is initialized as before, using mean imputation. The singular value
decomposition is then performed and the data matrix is reconstructed. The missing elements are
replaced using the reconstructed elements and the algorithm continues until convergence. Convergence
is again based on the reconstruction error of the observed data. This approach is referred to as
SVDImpute here.

Imtiaz and Shah [9] alter SVDImpute to account for measurement error by combining the
ideas of SVD-based imputation with bootstrap re-sampling, which is referred to as PCA-data
augmentation (PCADA). In this approach, when replacing the missing elements with the reconstructions,
the estimates are augmented with residuals from the observed data. The residuals are defined as

Rij = Xobs
ij − X̂obs

ij (20)

and the missing data estimates are
X̃mis

ij = X̂mis
ij + Rkj (21)

where k is a random integer between 1 and n. The reconstruction estimates using X̃mis
ij are then used

in the next iteration. To calculate the SVD, K bootstrap datasets are created by randomly drawing
samples from the reconstructed data. The loading matrix is then calculated from

P̃ =
1
K

K

∑
k=1

Pk (22)

with P̃ then used in the reconstruction step. Convergence is based on the reconstruction error of the
observed data, which is not guaranteed to decrease at each iteration due to the stochastic nature of
the algorithm.

Another approach to performing PCA in the presence of missing data utilizes the PPCA
formulation. The EM framework is amenable to problems with missing data and the framework
as applied to PPCA can be extended to account for missing observations [30]. In the E-step, the
expectation of the complete-data log-likelihood is taken with respect to the conditional distribution of
the unobserved variables given the observed variables. Two approaches to this expectation calculation
have been proposed in the literature. Ilin and Raiko [31] propose using an element-wise version of
PPCA and taking the expectation using T as the unknown variables, i.e., missing data, and P, µ, and
σ2 as the parameters. The resulting update equations are

〈ti〉 = W−1
i ∑

j∈oi

pj(xij − µj), (23)

〈tit>i 〉 = σ2W−1
i + 〈ti〉〈ti〉> (24)

where Wi = ∑j∈oi
pjp
>
j + σ2Ia,

µj =
1

#(oj)
∑
i∈oj

(
xij − p>j 〈ti〉

)
, (25)

pj =
(

∑
i∈oj

〈tit>i T〉
)−1 ∑

i∈Mj

(
〈ti〉(xij − µj)

)
, (26)

σ2 =
1

#(O) ∑
ij∈O

(
(xij − p>j 〈ti〉 − µi)

2 + p>j σ2W−1
i pj

)
, (27)



Processes 2017, 5, 38 6 of 18

O = 1−M is the observed data indicator matrix, and #(·) represents the number of observed elements
in the set. Alternatively, the unknown variables can be taken to be T and the missing elements of the
data matrix X [32,33]. The resulting update equations are

〈ti〉 = W−1
i ∑

j∈oi

pj(xij − µj) (28)

〈xij〉 =
{

pj〈ti〉+ µj if Mij = 1

xij if Mij = 0
(29)

〈tit>i 〉 = σ2W−1
i + 〈ti〉〈ti〉> (30)

〈xix>i 〉jk =



σ2(pjW
−1
i p>k ) + 〈xij〉〈xik〉 if Mij = Mik = 1, ∀j 6= k

σ2(1 + pjW
−1
i p>k ) + 〈xij〉〈xik〉 if Mij = Mik = 1, ∀j = k

〈xij〉xij if Mij = 1, Mik = 0

xij〈xik〉 if Mij = 0, Mik = 1

xijxik if Mij = Mik = 0

(31)

〈xit>i 〉 =
{

σ2pjW
−1
i + 〈xi〉〈ti〉> if Mij = 1

xi〈ti〉> if Mij = 0
(32)

where Wi = ∑j∈oi
pjp
>
j + σ2Ia and

µ =
1
n

n

∑
i=1
〈xi〉 − P〈ti〉 (33)

P =

(
n

∑
i=1

(〈xiti〉> − µ〈ti〉>)
)(

n

∑
i=1
〈tit>i 〉

)−1

(34)

σ2 =
1

nd

n

∑
i=1

tr
(
〈xix>i 〉 − 2〈xit>i 〉P> − 2µ〈xi〉> + 2µ〈ti〉>P> + P〈tit>i 〉P> + µµ>

)
. (35)

Performing PPCA using this conditioning set is referred to here as PPCA-M.
Bayesian PCA (BPCA) is a variation on the PPCA approach [34]. A limitation of PPCA is that the

method can be prone to overfitting [31], which BPCA attempts to prevent by using a prior distribution
on the parameters. Conjugate priors are used for µ and σ2 and a hierarchical prior is used for P. When
the PPCA problem is modified in this way, the E-step no longer has a closed form and variational
approaches are preferred [35]. Oba et al. [36] extended the BPCA method to cases with missing data.

The last approaches for PCA in the presence of missing data presented here are from the matrix
completion literature. In matrix completion, sometimes also referred to as robust PCA, elements of a
matrix are corrupted and the goal is to recover a low rank reconstruction. If the corrupted elements are
treated as missing, this is exactly the same problem as has been discussed, however the problem is
often framed directly as the optimization

minimize
A

‖A‖∗, subject to Aij = Xij, (i, j) ∈ O, (36)

where ‖ · ‖∗ denotes the nuclear norm of a matrix, which is the sum of the singular values of the matrix,
Xij are the observed elements in the data matrix, and O is the set of observed indices. An approach for
solving this problem is singular value thresholding (SVT) [37], which solves

minimize
A

‖A‖∗, subject to PO(A) = PO(X), (37)
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where PO is the orthogonal projector onto the span of matrices vanishing outside of O. Cai et al. [37]
propose an alternating algorithm that approximately solves (37) which results in a matrix that is
sparse and low rank. A second approach for the matrix completion problem is the inexact augmented
Lagrange multiplier method (ALM) [38], which solves

minimize
A

‖A‖∗, subject to A + E = X, PO(E) = 0, (38)

where PO is a linear operator that also is zero outside of O. ALM was proposed to solve the more
general problem of a corrupted matrix without knowledge of which entries are corrupted but can also
be applied in this setting.

3. Case Study

The performance of the different techniques are compared in several case studies. Two types of
simulations are considered: one based on distributional assumptions and one based on a chemical
process simulation.

3.1. Simulations of Gaussian Data

The design of the distributional-assumption simulations is based on the study by Ilin and
Raiko [31] and uses data from multivariate Gaussian distributions. The distributional assumptions
follow the development of the PPCA model. While data that exactly follow the model are idealized, the
assumptions approximately hold for data that have been pre-processed using standard methods.
That is, data that have been pre-processed by sub-sampling and z-scoring approximately have
independent and identically distributed multivariate Gaussian (symmetric) distributions. This type of
pre-processing can introduce error in the presence of missing data, particularly if missingness is due to
censoring. Therefore, this analysis lays a foundation of the best-case results.

The loading matrix P is modeled using a random orthogonal matrix of size d× a where a = 4
and the columns of P rescaled by 1, . . . , a. µ is modeled using a standard normal distribution. Two
scenarios are considered. In the first, n � d. Specifically, the dataset is n = 1000 samples from a
10-dimensional Gaussian distribution described by N (µ, PP> + σ2Id) where σ2 = 0.25. In the second
scenario, the opposite case is considered, d > n, and n = 100 samples from a 200-dimensional Gaussian
distribution described by N (µ, PP> + σ2Id) where σ2 = 0.25. For each of the scenarios, 20 simulations
are used, each with four types of missingness, described below.

Ten PCA approaches were tested: mean imputation (MI), alternating least squares (ALS) as
implemented by MATLAB’s pca command, alternating least squares (Alternating) as implemented by
Ilin and Raiko [31], SVDImpute as implemented by Ilin and Raiko [31], PCADA as implemented by
the authors, PPCA as implemented by MATLAB’s ppca command, PPCA-M as implemented by the
authors, BPCA as implemented by Oba et al. [36], SVT as implemented by Cai et al. [37], and ALM as
implemented by Lin et al. [38]. All approaches were implemented in MATLAB, used a convergence
tolerance of 10−6, and were limited to 1000 iterations. Alternating, SVDImpute, PCADA, BPCA, SVT,
and ALM use relative change in the reconstruction error as the convergence criteria. ALS uses relative
change in the reconstruction error as well as the relative change in the parameters are the convergence
criteria. PPCA and PPCA-M use the relative changes in the negative log-likelihood and parameters as
the convergence criteria.

To evaluate performance, two metrics were used: the root mean square error (RMSE), and the
subspace angle between the true and recovered principal component loadings. The RMSE is defined

RMSE =

√√√√ 1
nd

n

∑
i=1

d

∑
j=1

(xij − x̂ij)2 (39)
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and is reported for only the missing data. The full definition of the subspace angle is provided in the
Appendix A. A subspace angle of 0 implies that the subspaces are dependent, which is the desired
result here. The maximum value of the subspace angle is π

2 . In all analysis, the subspace angle is
calculated using the MATLAB function subspace.

3.2. Tennessee Eastman Problem

The Tennessee Eastman problem (TEP) is a benchmark dataset that models an industrial chemical
process [39]. The benchmark contains datasets both under normal operation as well as during several
process faults. The process consists of five major units: reactor, condenser, compressor, separator,
and stripper. There are 8 components, 41 measured variables, and 11 manipulated variables. Several
control structures have been proposed for plant-wide control of the TEP. The datasets can be found
online [40] and utilize “control structure 2” as described by Lyman and Geogakis [41]. Unlike the
Gaussian data simulations, the latent dimension a is unknown. To determine a, parallel analysis was
used. Three missingness mechanisms were considered, as described below, and 20 simulations were
used for each. The same 10 approaches for PCA as described above were implemented with a small
change to the mean imputation approach. Because the data are collected in time, the last measurement
before and the first measurement after the missing data point are averaged and used to fill-in. The
learned model is then used in two tasks: reconstruction of a test dataset and fault detection. For the
fault detection problem, the Q statistic, defined as

Q = r>r, r = (Id − PP>)xi, (40)

was used. The Q statistic, also known as the squared prediction error, has been well studied in the area
of fault detection [11,42–44]. To determine the detection threshold, the tenth largest value of Q on the
nominal test set was used [44].

To evaluate the performance, three metrics were used: the RMSE on a held-out test of nominal
data, the detection time, and whether or not a false detection occurred. Two faults are chosen for
analysis: Fault 1, which is a step change in A/C feed ratio in stream 4, and Fault 13, which is a slow
drift of the reaction kinetics. In both cases, the testing dataset is used and the faults are introduced
at t = 160. The mean detection time is defined as the average detection time for all models in which
the detection time is greater than 160 and the number of false detections is defined as the number
of models where there is a detection before 160. For a given model, either a detection time or a false
detection time is recorded.

3.3. Addition of Missing Data

Four types of missingness were considered: random, sensor drop-out, multi-rate, and censoring.
The types of missingness were chosen based on the authors’ experience with realizations of missing
data in process datasets. Random, sensor drop-out, and multi-rate missingness are all MCAR but have
different patterns: random exhibits no pattern, sensor drop-out is correlated in time, and multi-rate has
a known frequency of missingness in time. Censor missingness is NMAR. Examples of the patterns
are shown in Figure 1. In all cases, a full dataset is generated or obtained and measurements are
removed to represent the missing data mechanism. For instance, in the censoring case, a random set of
variables is selected to be censored from above or below. The censoring level for each variable is then
iteratively updated until the desired level of missingness is achieved. The location of the code used to
introduce missing can be found in the Supplementary Materials. Missing data are introduced at levels
of 1%, 5%, 10%, and 15% for the Gaussian datasets. The multi-rate pattern is not considered for the 1%
missingness level for the Gaussian datasets. The TEP is naturally a multi-rate missing data problem
at a level of 21% [44]. TEP is individually combined with random, sensor drop-out, and censored
missingness to total 25%.
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Figure 1. Possible realizations of the investigated missingness mechanisms: (a) shows random
missingness; (b) shows sensor failure which results in missingness that is correlated in time; (c) shows
multi-rate data, and (d) shows censored data.

3.4. Results

The results of the Gaussian simulations are shown in Figures 2–4. SVDImpute and the probabilistic
methods (PPCA, PPCA-M, and BPCA) performed the best overall. As the missingness level increased,
the probabilistic models performed slightly better, except for SVDImpute performing better for
censored data at low levels of missingness. PCADA never outperformed SVDImpute. ALS and
the alternating methods both suffered from finding local optima and performed very poorly, as
evidenced by the large standard deviations. ALM failed to converge in many cases, and sometimes in
all cases, as in the d > n scenarios. The SVT approach fell in the middle while never outperforming the
best approaches. For d > n, most approaches did only slightly better than mean imputation whereas
significant improvements were observed for n� d, especially in the censoring case.

For the TEP, the results of the reconstruction task are shown in Figure 5. For all missingness types,
ALS and SVDImpute performed well. ALM failed to converge and Alternating and BPCA had poor
results. PPCA, PPCA-M, and SVT performed moderately well, but were more affected by censoring
than ALS and SVDImpute. The minimum, average, and maximum number of PCs used in the models,
as determined by parallel analysis can be found in Table 1. The number of PCs chosen by SVDImpute,
PPCA, and BPCA were very consistent whereas Alternating and PCADA had widely varying number
of PCs. Across all methods, the amount of variability in the number of PCs is larger in the censoring
case. The results of the fault detection task are in Tables 2 and 3. For Fault 1, ALS and SVD had the best
performance overall, with low detection times and few false detections. MI performed well in terms of
detection time but had many false detections. PCADA and BPCA performed the worst overall. For
Fault 13, SVT performed the best in the random and drop-out cases, whereas SVDImpute performed
the best for the censoring case. PCADA and BPCA again performed the worst overall. ALM was
excluded from analysis as no model was learned during the training phase.
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(a) Random missingness where n � d. The
alternating results that are not displayed have a
mean and standard deviation of 1635 (7307) and
1066 (2376) for the 10% and 15% cases, respectively.
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(b) Random missingness where d > n. The ALS
result that is not displayed has a mean of 354 and
standard deviation of 503 for the 1% case.
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(c) Dropout missingness where n � d. The
alternating results that is not displayed have a mean
of 280 and a standard deviation of 1250 for the
15% case.
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(d) Dropout missingness where d > n. The ALS
result that is not displayed as a mean of 13.6 and
standard deviation of 25 for the 5% case.
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Figure 2. Average RMSE of the missing data with standard deviation for the Gaussian cases. In the
d > n case, ALM never converged to a solution.
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(a) Multi-rate missingness where n � d. The
alternating result that is not displayed has a mean of
11.9 and a standard deviation of 0.08 for 15% case.
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(b) Multi-rate missingness where d > n.
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(c) Censor missingness where n� d. The alternating
results that are not displayed have a mean and
standard deviation of 50.3 (163), 149 (472), and 52.4
(116) for the 5%, 10%, and 15% cases, respectively.
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(d) Censor missingness where d > n. The ALS result
that is not displayed has a mean of 215 and a standard
deviation of 204 for the 1% case.

1% 5% 10% 15%
0

2

4

6

8

10

R
M

S
E

 o
f 

M
is

s
in

g
 D

a
ta

MI ALS Alternating SVDImpute PCADA PPCA PPCA-M BPCA SVT ALM

Figure 3. Average RMSE of the missing data with standard deviation for the Gaussian cases. In the
d > n case, ALM never converged to a solution.
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(a) Random missingness where n� d.
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(b) Random missingness where d > n.
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(c) Dropout missingness where n� d.
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(d) Dropout missingness where d > n.
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(e) Multi-rate missingness where n� d.
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(f) Multi-rate missingness where d > n.
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(g) Censor missingness where n� d.
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(h) Censor missingness where d > n.
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Figure 4. Average subspace angle of learned vs. true subspace with standard deviation for the
Gaussian cases.
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(a) RMSE of the TEP test data for the random
missingness case. The mean and standard deviation
for alternating and BPCA are 1.10× 105 (3.89× 105)
and 7.19× 103 (83), respectively.
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(b) RMSE of the TEP test data for the drop-out
missingness case. The mean and standard deviation
for alternating and BPCA are 2.01× 104 (4.54× 104)
and 7.16× 103 (161), respectively.
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(c) RMSE of the TEP test data for the censor
missingness case. The mean and standard deviation
for alternating and BPCA are 3.98× 106 (1.13× 107)
and 7.2× 103 (685), respectively.

Figure 5. Average RMSE and standard deviation of the fully observed TEP test set. In all cases ALM
failed to converge.

Table 1. The minimum, average, and maximum number of PCs chosen using parallel analysis for
each method over 20 realizations of the missing data. Each missingness type is combined with the
naturally arising multi-rate missingness to total 25% missing data. ALM never converged and therefore
no results are reported.

MI ALS Alt. SVD. PCADA PPCA PPCA-M BPCA SVT ALM

Random
Min 2 3 1 3 1 3 4 3 4 –
Avg 2.95 3.2 4.15 3 2.55 3 4.3 3 4.95 –
Max 3 4 7 3 4 3 5 3 5 –

Drop
Min 1 3 1 3 1 3 3 3 4 –
Avg 3.15 3.3 4.15 3 2.65 3 4.05 3 4.9 –
Max 4 4 6 3 5 3 5 3 5 –

Censoring
Min 1 3 1 2 1 2 1 2 1 –
Avg 3 3.5 3.65 2.9 2.6 2.85 3.3 2.9 1.65 –
Max 4 5 7 3 7 3 5 3 4 –
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Table 2. The mean detection times for each of the methods and missingness types. Cases are marked
by “–” where every trial resulted in a false detection (e.g., a detection prior to t = 160).

MI ALS Alt. SVD. PCADA PPCA PPCA-M BPCA SVT

Fault 1
Random 163.1 163 163 163 – 163.8 163.1 – 171.0
Drop 163 163 – 163 – 163.7 163.4 – 170.5
Censor 163.1 163.2 163 163.5 – 163.2 163.4 – –

Fault 13
Random 182 181.8 210 182 – 180.3 183.2 – 174
Drop 182 181.4 – 181.3 – 182.3 179.3 – 174.5
Censor 180.3 181.9 411 184.9 – 185 189.7 – –

Table 3. The number of false detections for each of the methods and missingness types.

MI ALS Alt. SVD. PCADA PPCA PPCA-M BPCA SVT

Fault 1
Random 0 0 19 0 20 2 0 20 0
Drop 9 0 20 0 20 1 1 20 1
Censor 5 3 19 3 20 6 9 20 20

Fault 13
Random 7 3 19 1 20 4 4 20 0
Drop 11 4 20 5 20 5 4 20 0
Censor 12 9 19 8 20 19 17 20 20

4. Discussion

Overall, the best technique to apply PCA in the presence of missing data can depend on the scenario.
Several criteria should be considered when choosing an approach, such as the amount of missing data,
the missingness mechanism, and the available computational resources. The computational complexity
per iteration for each of the algorithms can be found in Table 4, which should only be used as a
guideline since the exact implementation will affect computational cost. For instance, SVT [37] and
ALM [38] recommend using the Lanczos algorithm to compute the singular values. The Lanczos
algorithm is iterative and has reported speed-up of 10× vs. traditional calculation of the full SVD. The
Lanczos algorithm returns the singular values that are larger than a certain threshold, which works
well in the SVT and ALM frameworks. On the other hand, Lin et al. [38] report that the full SVD
computation is faster for scenarios where greater than 0.2d of singular values are required. While
experience indicates that a is significantly lower than d in applications, if no bound on a is known
a priori, then the full SVD is typically calculated during procedures to select a, which impacts the
computational cost. The probabilistic frameworks have the convenient relation that

σ2
ML =

1
d− a

d

∑
j=a+1

λj (41)

which can be used to estimate the percent variance without calculating the full SVD. Another benefit
of the probabilistic frameworks is that they are generative and therefore provide parameters for
estimation. For all analysis, the test data have been treated as fully observed, which may not be true
in practice as new data may be subject to the same type of missingness as the data used in model
building. If the data are subject to NMAR missingness, these parameters may not be useful. Note also
that the probabilistic approaches can have slow convergence.
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Table 4. The computational costs of each of the methods where d is the number of measurements, n is
the number of samples, a is the latent dimension, and k is the number of bootstrap samples.

ALS / Alternating / PPCA / BPCA SVDImpute / SVT / ALM PCADA PPCA-M

O(a2dn + a3n + a3d) O(min(nd2, n2d)) O(min(knd2, kn2d)) O(na3 + nda2)

The difference in the results of the two ALS approaches also highlights the importance of the
exact implementation. Both methods are using the same underlying algorithm but differ in the
implementation of the update steps and convergence criteria. Empirically, this results in the Alternating
algorithm finding local optima more often as the amount of missing data increases for the n� d case
and the ALS algorithm finding local optima more often for d > n.

It may be surprising that the robust PCA methods (SVT and ALM) did not perform better, but it
is important to recognize that these methods were developed for cases with very low rank solutions,
a large number of missing values, and random missingness. These assumptions are well suited to
some applications such as computer vision and imaging but do not necessarily fit the assumptions of
missing data in process datasets. A benefit of SVT and ALM is that they can be applied to problems
where the location of the corrupt (missing) data is unknown. In the event that additional information is
known about the measurement error, methods such as maximum likelihood PCA (MLPCA) [45,46] or
heteroscedastic latent variable model (HLV) [47] can be applied to leverage that information. MLPCA
is suited to scenarios where the error covariance matrix is known and the errors are correlated or
uncorrelated. HLV is suited to scenarios the measurement error is evolving in time. Both algorithms
can be applied to scenarios with missing data.

Without additional problem information, we recommend SVDImpute for performing PCA in the
presence of missing data for industrial datasets. SVDImpute can be viewed as an implementation
of EM [31]. In this view, the missing observations are treated as the unknown variables and P, µ,
σ2, and T are the model parameters. The corresponding cost function, for only terms involving the
parameters, is

C = −dn
2

log 2πσ2 − 1
2σ2 ∑

ij∈O
(xij − x̂ij)

2 − 1
2σ2 ∑

ij∈M

(
(x̄ij − x̂ij)

2 + σ2) (42)

where x̄ij are the imputed values from the SVD. This cost function forces the imputed terms to be near
the observed terms which helps to prevent overfitting [31]. A drawback of SVDImpute is that there are
many possible reconstructions that will achieve the same result for the observed data, and different
results for the missing data, which implies a dependence on the initial guess [31].

In the event that the testing data will also have missing elements, PPCA or PPCA-M is
recommended. PPCA-M performs slightly better in the TEP but has higher storage costs during
model training. Both result in generative parameters that can be used during the testing phase.

In summary, for missing data problems, the most important step is to determine why some data
are missing. If censoring is occurring and not accounted for, the results will be biased. Approaches
that incorporate understanding about the underlying mechanisms are likely to perform the best.
Expectation maximization frameworks are an important tool in missing data problems and can be
applied generally if distributional assumptions are made.

Supplementary Materials: The MATLAB software to add missingness to the datasets can be found at
http://web.mit.edu/braatzgroup/links.html.
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Abbreviations

Abbreviations used in this article are:

ALM Augmented Lagrange multipliers
BPCA Bayesian PCA
EM Expectation maximization
HLV Heteroscedastic latent variable model
MAR Missing at random
MCAR Missing completely at random
MLPCA Maximum likelihood PCA
NMAR Not missing at random
PCA Principal component analysis
PCADA PCA-data augmentation
PPCA Probabilistic PCA
RMSE Root mean square error
SVD Singular value decomposition
SVT Singular value thresholding
TEP Tennessee Eastman problem

Appendix A. Definition of the Subspace Angle

To compute the subspace angle between matrices A ∈ Rn×m and B ∈ Rn×p, where
rank(A) ≥ rank(B), compute the orthonormal basis of each matrix using the singular value
decomposition. Then compute the projection

P = B−A(A>B). (A1)

The subspace angle, θ, is defined by

sin θ = min(1, ‖P‖) (A2)

where ‖ · ‖ is the 2-norm. See [48] and [49] for additional information on subspace angles.
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