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Abstract: Biofilms are spatially-structured communities of different microbes, which have a
huge impact on both ecosystems and human life. Mathematical models are powerful tools for
understanding the function and evolution of biofilms as diverse communities. In this article, we give
a review of some recently-developed models focusing on the interactions of different species within a
biofilm, the evolution of biofilm due to genetic and environmental causes and factors that affect the
structure of a biofilm.
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1. Introduction

Despite the common view of microbes in their free state, pure culture planktonic growth is rarely
how microbes exist in nature. Instead, most microbial species in nature live in the form of biofilms,
which are described as a multicellular consortium of microbial cells that are attached to a surface and
encased in a self-secreted, extracellular polymeric matrix [1,2]. Biofilms are usually heterogeneous in
both their spatial structures and component species and interact with the surrounding environment in
a complicated way.

Microbial biofilms are ubiquitous in both natural and industrial settings, and bacteria living in a
biofilm often behave very differently from their planktonic counterpart. Bacteria inside a biofilm are
usually more resistant to antimicrobial agents [3] and usually possess big competitive advantage over
bacteria growing in suspension. This means that it is often difficult to remove biofilms efficiently.

Biofilms can cause many severe problems, such as chronic infections, food contamination and
equipment damage due to bio-fouling. Biofilms can also be used for good and constructive purposes,
such as waste water treatment, heavy metal removal from hazardous waste sites, biofuel production
and microbial fuel cells. From a neutral point of view, since much of the microbial biomass appears
in the form of biofilm and due to their ability to produce and consume organic materials, the biofilm
communities also have a big impact on the global ecosystem and geochemical system.

In order to promote good biofilms and prevent bad biofilms, it is important to understand
the mechanisms for biofilm formation, growth and its removal. The development of a biofilm is a
complicated process affected by many biological, physical and chemical factors, and understanding it
requires both experimental and modeling efforts. Experiments provide directly-measured qualitative
or quantitative data of biofilm properties that are of interest, such as cell counts, cell viability, biofilm
morphology and EPS structure, nutrient profile, as well as genetic information. A mathematical model
translates the conceptual understanding of the biofilm system into mathematical terms, usually by
combining the important processes involved, but omitting the less important ones, and the solutions
(either analytical or numerical) are obtained by using available mathematical or statistical tools. Since a
model can connect different processes and assess their relative importance, modeling results can help
us to understand the biofilm system, facilitate experimental design and make predictions that can be
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tested by experiments. In this sense, progresses made in experimental and modeling research always
promote the development of each other.

Mathematical modeling of biofilm started in the 1970s with models studying substrate utilization
and mass transport in a homogeneous slab of biofilm [4,5]. In the 1980s, models including multispecies
and the non-uniform distribution of different biomass types started to emerge [6,7], but they were
still primarily for one space dimension and steady-state growth dynamics. Starting in the 1990s
and up to today, aided by the fast advancement in computing power and better understanding of
biofilms through experimental data, multidimensional, multispecies, multisubstrate models are being
developed to incorporate realistic biofilm morphology, biofilm mechanics, interactions between biofilm
and the environment and interactions between different species within a biofilm, as well as various
time scales involved in biofilm-related processes [8–12].

There is a rich literature on the review of mathematical models for biofilms. A few representative
ones are listed below.

The IWAtask group gives an excellent review of mathematical modeling of biofilms [13]. The book
explains the basic steps in creating a mathematical model, emphasizes that the “golden rule” of
modeling is that “a model should be as simple as possible, and only as complex as needed” and presents
the model derivation based on mass conservation in detail. Models are classified into analytical models
(A), Pseudo-Analytic models (PA), Numerical one-dimensional (N1) and multi-dimensional Numerical
models (N2 and N3). The features, definitions and equations, as well as the application of each type
of model are discussed. The performances of all models for solving three characteristic benchmark
problems are compared, which help identify the trade-offs inherent to using different types of models.
The book also points out the significance of the definitions and units of model parameters.

Klapper and Dockery [14] discuss how macroscale physical factors might influence the
composition, structure and function of ecosystems within microbial communities from the modeling
perspective and emphasizes that despite its difficulty and complexity, it is important to include the
physical, chemical and biological processes at a variety of time and length scales in the model to fully
understand the physiology and ecology of the microbial communities. Specific modeling aspects
discussed include quorum sensing, growth, mechanics and antimicrobial tolerance mechanisms.

Wang and Zhang [15] give a chronological review of some biofilm models developed from the
1980s to the early 2000s. Based on their dimensionality, the way in which diffusion is treated and the
complexity in terms of the incorporation of the physics, chemistry and biological effects, models are
classified into four main categories: one-dimensional continuum models, diffusion-limited aggregate
models, continuum-discrete diffusion models and biofilm-fluid coupled models.

In recent years, fast advancement in experimental technologies, such as microscopy and
high-throughput sequencing, has provided an abundance of data at both the genetic and community
level and helped researchers to understand biofilms much better. In particular, it is a common belief
that biofilms should be viewed as spatially-structured communities of microbes, and the structure
and function of the communities are determined by both the surrounding environment and the
local interactions between different species within biofilms via complex metabolic networks [16–20].
To understand biofilms as a diverse community and the evolution of different species and its genetic
causes, mathematical modeling again serves as a powerful tool. Experimental data with a high level
of detail provide both opportunities and challenges for researchers working on biofilm modeling.
On the one hand, there are more data available to improve conceptual understanding of biofilm and
to compare with model predictions; on the other hand, more sophisticated models are demanded
in order to accommodate the data. Song et al. [21] give a methodological review on mathematical
modeling of microbial community dynamics. Widder et al. [22] address the challenges in building
predictive models for understanding the function and dynamics of Microbial Communities (MCs).
Several specific examples where model-experiment integration has already resulted in important
insights into MC function and structure are discussed. These include inferring species interactions
from proximal data, predicting species interactions using stoichiometric models and kinetic models for



Processes 2017, 5, 5 3 of 17

community dynamics. The conclusion is that addressing this challenge requires close coordination of
experimental data collection and method development with mathematical model building.

In this article, we review some recent mathematical models that focus on studying biofilms as a
diverse community. The rest of the article is organized as follows. Section 2 discusses the genetic basis
for biofilm development based on experimental results and its mathematical modeling with emphasis
on the models based on the idea of Quorum Sensing (QS); Section 3 discusses models based on Flux
Balance Analysis (FBA) and stoichiometry; Section 4 discusses models based on statistical inference;
Section 5 discusses models with novel growth kinetics and the ability to resolve the complex spatial
structure of biofilm. Table 1 gives a brief overview of the models discussed in the article.

Table 1. Summary of biofilm models discussed in the article. QS, Quorum Sensing; FBA, Flux Balance
Analysis; IbM, Individual-based Model.

Model Category Specific Models/Mathematical Tools Biofilm Aspects Modeled

gene-centric model biofilm structure, genetic composition
Genetic modeling trait-based model species interaction, ecosystem diversity

QS model species interaction, biofilm structure

FBA model constraint species interaction,
optimization problem biofilm structure

Statistical inference model similarity-based method, species interaction,
regression-based method community stability

biofilm structure,
Kinetic growth model IbM continuum model interaction with environment,

mechanical property

2. Modeling the Genetic Basis of Biofilm Development

Costerton et al. [3] pointed out that biofilms consist of microcolonies on a surface and that
within these microcolonies, the bacteria have developed into organized communities with functional
heterogeneity. Clinical characteristics of biofilm infections are discussed, and multiple mechanisms
of biofilm resistance to antimicrobial agents are proposed. Furthermore, P. aeruginosa and the
chronic lung infections it causes in most patients afflicted with the recessive genetic disease Cystic
Fibrosis (CF) are used as a model to reveal information about the molecular and genetic basis
of biofilm development. There is evidence [23,24] showing that during the attachment phase of
biofilm development, the transcription of specific genes (such as the genes required for the synthesis
of the extracellular polysaccharide) is activated. Research on quorum sensing in Gram-negative
bacteria [25,26] has shown that acyl homoserine lactone signals are produced by individual bacterial
cells. At a critical cell density, these signals can accumulate and trigger the expression of specific
sets of genes. Detachment and dispersal of planktonic cells from biofilms could also have a genetic
basis. It has been suggested that increased expression of the alginate lyase in the mucoid strain of
P. aeruginosa led to alginate degradation and increased cell detachment [27,28]. Antibiotic therapy
in patients colonized with P. aeruginosa often gives a measure of relief from symptoms, but fails to
cure the basic ongoing infection [29,30]. One interpretation of this is that the antibiotics act on the
planktonic cells that are shed by the biofilms, but cannot eliminate the antibiotic-resistant sessile biofilm
communities, and the microcolonies of sessile bacteria in the lung act as niduses for the spread of the
infection [31,32]. The conclusion from [3] is that the effective control of biofilm infections will require
a concerted effort to develop therapeutic agents that target the biofilm phenotype and community
signaling-based agents that prevent the formation, or promote the detachment, of biofilms.

Monds and O’Toole [33] give a critical review of the causal basis of biofilm formation and its
molecular underpinnings. It discusses the concept of biofilm formation as a developmental process
by evaluating experimental data and concludes that the developmental model of biofilm formation
must be approached as a model in need of further validation, rather than coveted as a robust platform
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on which to base scientific inference. Here, the definition of developmental process is a “series of
stable and meta-stable changes in the form and function of a cell, where those changes are part of the
normal life cycle of the cell” according to [34]. Furthermore, the molecular requirement implicit in
a developmental process is that a series of hierarchically-ordered genetic elements control temporal
transition through the developmental pathway in response to specific cues. The review starts with
the origin of the developmental model of biofilm formation as an analogy with Myxococcus xanthus
fruiting-body formation [35], then provides some unequivocal support for the developmental model,
including both structural transitions occurring during biofilm formation [36] and various phenotypes
with biofilm-specific properties, such as increased antibiotic tolerance [37]. After that, two specific case
studies are presented as evidence that bacteria have evolved genetic pathways that serve to directly
link environmental cues to the regulation of stage-specific transitions in biofilm formation. One case
is that low extracellular phosphate blocks microcolony formation by Pseudomonas fluorescens [38,39];
the other case is intracellular iron as a signal for biofilm maturation [40,41]. However, there is still
lack of success in uncovering comprehensive genetic programs specific for the regulation of biofilm
development [42,43]. Moreover, the development model also requires that groups of biofilm pathways
are connected in a hierarchically-ordered genetic network, and there are causal links between form and
function. Folkesson et al. [44] provide valuable evidence in this direction by showing that Escherichia coli
biofilms formed by F-plasmid-containing cells were more structured and had increased tolerance
to colistin relative to cells without the F-plasmids, but it is still not possible to say that pathways
controlling the structural development of an E. coli biofilm are directly coupled with pathways for
the formation of a subpopulation of cells with increased tolerance to colistin. Next, two examples
are used to demonstrate biofilms as multicellular organisms with functional differentiation and
alternative cell fates. The first one by Klausen et al. [45] investigated differential roles for motile
and non-motile subpopulations in determining the topology (mushroom-like or flat) of P. aeruginosa
biofilms. Burrows [46] gave a thorough review on the twitching motility of P. aeruginosa through
Type IV pili (T4P) structure and function. The second one [47] examined the spatiotemporal patterns
of cell-specific gene expression in B. subtilis biofilms and indicated that different cell types vary in
abundance and location in the biofilm over time. Finally, an alternative experimental model for biofilm
formation based on the ecological adaptation of individuals was proposed by Klausen et al. [48]. In this
experiment, deterministic responses are integrated with stochastic interactions with the environment
to shape biofilm form and function, where biofilm evolution has been driven by the selection for
individual competitiveness in complex and dynamic environments.

Many models have been proposed to describe the genetic processes that regulate biofilm
development, and a few representative ones are discussed below.

Reed et al. [49] proposed the gene-centric approach for integrating environmental genomics and
biogeochemical models. In this model, the production rate or j-th gene is given by:

Rj = Γj · FT · µj · Πs

(
Cs

Ks + Cs

)
· Πx

(
Kx

Kx + Cx

)
, (1)

where Γj is gene abundance (genes per unit volume), FT is the thermodynamic potential factor
accounting for the chemical energy available to drive the metabolism, µj is the specific growth rate,
Cs is the concentration of a reactant or nutrient s, Ks is the half-saturation constant of the reactant or
nutrient s, Cx is the concentration of inhibitor x and Kx is the half-saturation constant of inhibitor x.
Furthermore, metabolic plasticity, whereby growth via one metabolism can lead to the propagation of
functional genes associated with other metabolisms, is incorporated into the model by introducing the
following governing equation for the gene abundance:
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dΓi
dt

= Σj

(
ni
nj

· σij · Rj

)
− λ · Γi, (2)

where ni is the number of the i-th gene per unit mass of cells that contains this gene, σij is a probabilistic
measure of the co-occurrence of genes i and j within a genome and λ is the mortality rate constant
of a gene. Equations (1)–(2) describing the microbial community are coupled to chemical dynamics
by usual reaction equations. There are several advantages of this model: most of its parameters are
either directly measurable (µj, Ks) or easily obtained by calculation (FT); numerical solutions from
the model give gene abundances and chemical concentrations that allow direct comparisons between
model predictions and experimental results; and the metabolic plasticity could be important for
understanding the complex microbial community dynamics. Zhang et al. [50] developed a theory for
the analysis and prediction of the spatial and temporal patterns of gene and protein expression within
microbial biofilms based on similar ideas. The theory integrates the phenomena of solute reaction
and diffusion, microbial growth, mRNA or protein synthesis, biomass advection and gene transcript
or protein turnover. Case studies illustrate the capacity of the theory to simulate heterogeneous
spatial patterns and predict microbial activities in biofilms that are qualitatively different from those of
planktonic cells.

Genetic changes via horizontal gene transfer often make taxonomic distinction among species
obscure; thus, sometimes, it is convenient to characterize the dynamics of microbial communities
by different traits. Trait-based models were developed based on this idea and applied for analyzing
the diversity of ecosystems. Shipley et al. [51] developed the maximum entropy (MaxEnt) model,
and Laughlin et al. [52] developed the the Traitspace model; both have been applied to predict the
relative abundance of species for plant communities. Both approaches are based on statistical methods
and are composed of three key elements: an underlying trait distribution, a performance filter defining
the fitness of traits in different environments and a projection of the performance filter along some
environmental gradient. The objective of the modeling is to estimate the relative abundance of the
some species in a given environment by incorporating information about individual-level functional
traits. The MaxEnt model tends to overestimate the relative abundance of species since it maximizes
the evenness of their distribution. On the other hand, the Traitspace model tends to underestimate
the relative abundance of species since it is based on Bayesian theory and predicts a low probability
of abundances for functional groups that do not pass through environmental filters. Though the
trait-based models have not be widely adopted for modeling of the biofilm yet, it is certainly promising
to apply the methodology to study biofilm as a microbial community. For example, Lennon et al. [53]
have found that certain traits are related to the biofilm-producing capability of strains and identified
functional groups of microorganisms that will help predict the structure and functioning of microbial
communities under contrasting soil moisture regimes. Furthermore, current biofilm models can
provide accurate predictions of the environmental gradients inside the biofilm, which can be used as
the input of the trait-based models.

Quorum sensing is the regulation of gene expression in response to fluctuations in cell-population
density [54–56]. Quorum sensing bacteria produce and release chemical signal molecules called
autoinducers, and the concentrations of autoinducers increase as the cell density increases. Once the
concentration of an autoinducer reaches a threshold, an alteration in gene expression is triggered.
Recent research on many different bacterial species has shown that quorum sensing systems play an
important role in regulating the expression of genes involved in biofilm formation, biofilm maturation,
biofilm dispersal and detachment [57–59]. Naturally, modeling of QS is an important part of the
general effort in modeling the genetic processes involved in biofilm development. Ward [60] gives a
good review of early mathematical modeling of QS.

The modeling of QS starts with a circuit describing the gene regulation involved in the QS
system, which is usually given by a schematic diagram showing all of the genes, autoinducers
and the corresponding positive and negative interactions. For example, the las and rhl systems in
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P. aeruginosa [61] are extensively studied. James et al. [62] and Dockery and Keener [63] pioneered the
work on modeling QS at the molecular level. These early QS models use a system of coupled Ordinary
Differential Equations (ODEs) to describe the dynamics of the intracellular concentrations of genes
(or proteins), autoinducers and substrates, where the reaction kinetics are carefully designed to reflect
the interactions within the QS system. Due to their simple forms, these models can be investigated
by both numerical and analytical tools, and results suggest that QS works as a biochemical switch
between two stable steady states of the system, one with low levels of autoinducer and one with high
levels of autoinducer.

The signal production in QS in biofilm can be affected by many physical, chemical and biological
factors [64]. Examples include diffusion of nutrients and QS molecules inside the biofilm and
mass transfer affected by the hydrodynamics of the bulk fluid and biofilm structure. For example,
Kirisits et al. [65] studied the influence of the hydrodynamic environment on QS in a P. aeruginosa
biofilm and concluded that the amount of biofilm biomass required for full QS induction of the
population increases as the flow rate increases.

These more advanced QS models use either the continuum approach with Partial Differential
Equations (PDEs) or the individual-based approach, both capable of capturing the spatial structure of
the biofilm and its interaction with the surrounding environment, to study the effect of QS on either
the biofilm structure or interactions among species within a biofilm. A continuum model involving QS
will be discussed in Section 5, and here, we describe the work of Nadell et al. [66], which implemented
detailed simulations using individual-based modeling methods [67–69] to investigate evolutionary
competitions between strains that differ in their polymer production and quorum-sensing phenotypes.
It is known that EPS secretion in the process of biofilm formation is under quorum-sensing control
in a number of bacterial model systems in very different ways. For example, P. aeruginosa activates
EPS production at high cell density [70]. In contrast, V. cholerae initiates EPS secretion after attaching
to a surface and losing flagellar activity, but halts EPS secretion once it reaches its high cell density
quorum-sensing threshold [71]. The model presented in [66] focuses on three strains with the following
behavior: (1) no polymer secretion and no quorum sensing (EPS−); (2) constitutive polymer secretion
and no quorum sensing (EPS+); and (3) polymer secretion under negative quorum-sensing control,
such that EPS secretion stops at high cell density (QS+). Cells consume substrate according to their
strain-specific metabolism kinetics and produce additional biomass; all cells secrete an autoinducer
without cost and at a constant rate, and QS+ cells synthesize EPS only when the local autoinducer
concentration is below the quorum-sensing threshold concentration, which is represented by a single
dimensionless parameter. Results from Nadell et al. [66] suggest that QS+ cells have a competitive
advantage over EPS+, but only for a limited time window. In contrast, QS+ cells suffer an initial
disadvantage due to a lower growth rate when competing with EPS− cells, then rapidly ascend
to a majority in the biofilm and remain there indefinitely. In addition, the QS+ strain can invade
populations composed mostly of either EPS+ or EPS− cells, but not vice versa. The importance of the
work in [66] is that it provides an evolutionary model that can be used to make predictions on the
evolution of specific biological outcomes based on the biological constraints, and these predictions can
be tested by experiments. In particular, it predicts that pathogenic strains, such as V. cholerae, selected
for rapid colonization of, and efficient dispersal from, human hosts or other temporary environments,
will exhibit negative quorum-sensing-regulated EPS production. In contrast, upregulation of EPS
secretion at high cell density, which focuses resource investment into sustained local competitive ability,
is more likely to be favored for organisms occupying specific niches long term, such as P. aeruginosa in
chronic infections.

Mathematical tools used for modeling genetic processes related to biofilm include differential
equations, statistical methods and individual-based approaches. These models usually enjoy success,
but face challenges at the same time. For example, it is challenging to apply the gene-centric model
to complex ecological systems since it is not easy to obtain associations between functional genes
and reactions. Among many models for studying QS in biofilm systems, most of them focus on
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upregulation and downregulation of certain genes, and only a few emphasize the effect of QS on
biofilm structure, function and its interaction with the environment, which leaves much room for
model improvement.

3. Models Based on Flux Balance Analysis and Stoichiometry

Interactions of different species within a biofilm are closely related to the substrate consumption
and metabolite exchange, and mathematical models based on FBA are excellent tools for predicting
these interactions.

Early work in this direction involves the synthesis of metabolic pathways. Seressiotis and
Bailey [72] developed a computer software system for metabolic pathway synthesis, which can be used
to identify biochemical pathways, to predict on a qualitative basis the effects of adding or deleting
enzymatic activities to or from the cellular environment, to classify pathways with respect to cellular
objectives and to extract information about metabolic regulation. Mavrovouniotis et al. [73] extended
the work in [72] by including stoichiometric constraints. Schilling et al. [74] gave a review on the
development of computer-aided algorithms for the synthesis of metabolic pathways and explained the
important algebraic concepts used in pathway analysis, such as null space and convex cone.

Orth et al. [75] covered the theoretical basis of FBA and provide several practical examples
and a software toolbox for performing the calculations. Figure 1 from [75] explains the conceptual
basis of FBA as a constraint optimization problem. In FBA, metabolic reactions are represented as
a stoichiometric matrix (S) of size m × n. Each row of S represents one unique compound (for a
system with m compounds), and each column represents one reaction (n reactions). The entry Sij of
S is the stoichiometric coefficient denoting the number of moles of the i-th compound formed in the
j-th reaction. The coefficient is positive if the metabolite is produced, negative if the metabolite is
consumed and zero if the metabolite does not participate in a particular reaction. The flux through
all of the reactions in a network is represented by the vector v of length n, and the concentrations of
all metabolites are represented by the vector x of length m. The system of mass balance equations at
steady state (dx/dt = 0) gives a set of equality constraints Sv = 0. Each reaction also has upper
and lower bounds, which gives a set of inequality constraints on the flux components, namely
ai < vi < bi, 1 ≤ i ≤ n. FBA seeks to maximize or minimize an objective function Z = cTv, which
can be any linear combination of fluxes, where c is a vector of weights indicating how much each
reaction (such as the biomass reaction when simulating maximum growth) contributes to the objective
function. The constraint optimization problem is usually solved by linear programming. It is important
to note that the stoichiometric matrix S can be directly constructed from knowledge of an organism’s
metabolic genotype, which in turn can be efficiently determined from the results of genome annotation.

Figure 1. The conceptual basis of FBA as constraint-based modeling. Reprinted from [75] with
permission from Nature Publishing Group.
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Models based on FBA are used to study the role of interspecies exchange of metabolites in
determining the spatiotemporal dynamics of microbial communities. Harcombe et al. [76] developed
a model that integrates dynamic Flux Balance Analysis (dFBA) [77] with diffusion on a lattice and
applied it to engineered communities. Simulations from the model predict the species ratio to which a
two-species (E. coli/S. enterica) mutualistic consortium converges, the equilibrium composition of an
engineered three-member (E. coli/S. enterica/M. extorquens AM1) community and the beneficial effect of
a competitor in spatially-structured mutualism. All predictions are confirmed by experimental results.
The strength of the model is highlighted by the fact that it requires very few free parameters and no a
priori assumptions on whether or how species would interact.

Phalak et al. [78] developed a model to investigate the multispecies metabolism of a biofilm
consortium comprised of two common chronic wound isolates: the aerobe P. aeruginosa and the
facultative anaerobe S. aureus. The model combines genome-scale metabolic reconstructions for growth
rates via FBA and partial differential equations for metabolite diffusion and provides both temporal
and spatial predictions with genome-scale resolution. In particular, the two-species system was
predicted to support a maximum biofilm thickness much greater than P. aeruginosa alone, but slightly
less than S. aureus alone, suggesting an antagonistic metabolic effect of P. aeruginosa on S. aureus.

Sigurdsson et al. [79] used a systems biology approach to identify candidate drug targets for
biofilm-associated P. aeruginosa. This study employed the published reconstruction of P. aeruginosa
iMO1056 [80] and used FBA to simulate different medium and oxygen conditions. The effect of
single and double gene deletion on bacterial growth in planktonic and biofilm-like environmental
conditions was investigated. Condition-dependent genes were found that could be used to slow
growth specifically in biofilm-associated P. aeruginosa. In particular, eight gene pairs were found to
be synthetically lethal in oxygen-limited environments, and these gene sets may serve as metabolic
drug targets to combat biofilm-associated P. aeruginosa. Results from [79] show that FBA can be used
to determine key metabolic differences between planktonic and biofilm colonies and shed light on
searching for novel drug targets.

The application of models based on FBA in studying biofilm as a microbial community is very
promising, but also challenging. In particular, efficient and standardized methods are necessary for
generating reliable stoichiometric models when a large number of species is involved. Furthermore,
it is important to develop mathematical tools that can effectively incorporate omics-based metabolic
pathway information into kinetic functions, which can be used directly in kinetic growth models.
The cybernetic approach developed by Song et al. sheds some light on future research in this direction,
and a review of this approach is given by [81].

4. Models Based on Statistical Inference

Species within a biofilm rarely live in isolation; instead, they often coexist and have complex
interactions that affect the community structure and function [82–84]. The types of interactions
include win-win (mutualism), win-zero (commensalism), win-lose (predation , parasitism), zero-lose
(amensalism) and lose-lose (competition). Community-wide information on microbial interactions
can be obtained using statistical inference based on correlations between taxon abundances from
high-throughput sequence data [85,86].

Faust and Raes [87] reviewed strategies to construct community models from abundance
data and use the models to predict the outcome of community alterations and the effects of
perturbations. The prediction of microbial association networks from abundance data is known
as the network inference problem [88]. The network inference methods can be classified into two
categories: the similarity-based methods, which predict pairwise relationships, and the regression- and
rule-based methods, which predict complex relationships. Figure 2 from [87] explains the principle
of similarity- and regression-based network inference. Network inference starts from an incidence
or an abundance matrix. Pairwise scores between two taxa are then computed using a suitable
similarity or distance measure, and relationships involving more than two taxa are detected by either
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multiple regression or association rule mining [89]. Then, a random score distribution is generated by
repeating the scoring step, and the P-value is computed to measure the significance of the predicted
relationship. Finally, taxon pairs with P-values below a given threshold are visualized as a network.
Inferred networks can be considered as static models of microbial communities, which describes the
community status at a particular time. However, time series data obtained by network inference
methods can provide important input (such as growth rates or interaction strengths) for dynamic
models of microbial interactions; see [90] for modeling of cheese fermentation community interactions
with generalized Lotka–Volterra equations. Network inference has several strengths. It is generic;
it can integrate different data types; and it can identify community properties that are encoded
in the network structure. However, network inference also suffers from several pitfalls, such as
normalization, similarity measure biases, the choice of appropriate null models and multiple testing
issues. Despite these pitfalls, network inference is a versatile tool for studying microbial interactions,
can be used to build dynamic models that can predict community stability, alternative stable states
and microbial succession and ultimately shed light on the manipulation of microbial communities to
enhance the abundances of beneficial species and to suppress harmful ones.

Figure 2. Principle of similarity- and regression-based network inference. Reprinted from [87] with
permission from Nature Publishing Group.

Faust et al. [91] applied an ensemble method based on multiple similarity measures [92] in
combination with Generalized Boosted Linear Models (GBLMs) [93] to taxonomic marker (16S rRNA
gene) profiles of the Human Microbiome Project (HMP) cohort [94], resulting in a global network of
3005 significant co-occurrence and co-exclusion relationships between 197 clades occurring throughout
the human microbiome. Analysis of the network revealed strong organization of the human microbiota
into body area niches, mostly among closely-related individual body sites representing microbial
habitats. For example, Fusobacterium species can bridge organisms in the development and maturation
of oral biofilms by co-aggregation through physical contact, allowing a more complex use of resources,
such as sugars and proteins. The approach in [91] provides a starting point for future mechanistic
studies of the microbial ecology of the human microbiome.

Widder et al. [95] investigated the effect of features inherent to fluvial networks on the structure
and function of biofilm communities in these ecosystems by combining co-occurrence analyses of
biofilms based on pyrosequencing profiling and a probabilistic hydrological model. Co-occurrence
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networks were constructed using 454 pyrosequencing data of the 16S rRNA gene from benthic biofilms
from 114 streams of the pre-alpine Ybbs catchment. Results suggested that hydrological disturbance
and metacommunity dynamics affect the co-occurrence patterns of benthic biofilm communities in
fluvial networks. In particular, the removal of gatekeepers disproportionately contributed to network
fragmentation. This study provides a linkage between the biofilm communities and flow dynamics
across fluvial networks, which are important for understanding the whole ecosystem processes.

Although network inference methods can uncover previously-unknown interactions, they still
require validation by experimental data, which could be challenging. Some of these interactions could
be indirect, such as bacteria modifying their environments via the secretion of metabolically-costly
proteins and metabolites [96]. Since these indirect interactions usually happen on larger spatial scales
than direct interactions, it is very important to develop non-invasive spatially-resolved experimental
techniques to collect structure and population data.

5. Kinetic Growth Models and Spatial Heterogeneity

Kinetic models predict growth rates of different species within a biofilm based on the
concentrations of growth-limiting nutrients and species-dependent parameters, such as maximum
growth rate. Probably the most widely-used kinetic model is the Michaelis–Menten (or Monod) kinetic
model [97] with the growth rate µ given by:

µ = µmax
S

KS + S
(3)

where µmax is the maximum growth rate, S is the concentration of the growth-limiting nutrient and
KS is the half-saturation constant. The formula given by (3) can be readily generalized to cases with
more than one limiting nutrient [13] by multiplying the contribution from each nutrient together
(Si/(KSi + Si) for the i-th nutrient), but usually, µmax and KSi are considered constants. Under
the nutrient-saturation condition, (3) can be approximated by the zero order kinetics, where µ is
independent of S (µ = µmax). Under the very low nutrient condition, (3) can be approximated by the
first order kinetics, where µ is proportional to S (µ = µmax · S). These two approximations provide
convenient mathematical bounds on the Monod kinetic forms and have the advantages of allowing
analytic solutions [50] to the model equations for simple scenarios (ODE model or 1D in space).

The success of the kinetic models depends crucially both on their particular formula and parameter
values. Since the formula is often empirical and the parameter values are usually measured from
pure and mixed cultures growing in laboratory reactors, they may miss important factors of the
growth kinetics in the biofilm community developed in the natural environment, and their application
may require validation. Recently, new kinetic models have been developed to address this problem.
Quéméner and Bouchez [98] and Jin et al. [99] developed kinetic models with thermodynamics
included. The model proposed in [98] is based on the theory of Boltzmann statistics and builds
a relationship between microbial growth rate and available energy, thus connecting microbial
population dynamics to the thermodynamic driving forces of the surrounding ecosystem. The work
in [99] modified the Monod kinetics by a thermodynamic potential factor, which accounts for the
chemical energy available from the reaction (acetate oxidation and sulfate reduction in this case) and
evaluated the feasibility of applying experimentally-obtained parameters to the natural environment.
The results suggest that some parameters, such as maximum growth rate, can be applied directly to
the environment; but others, such as half-saturation constants, should be determined using data from
the environment of interest. Bonachela et al. [100] relaxed the requirement that the maximum nutrient
uptake rate be a constant; instead, the maximum uptake rate was assumed to increase monotonically as
the external nutrient concentration decreases. The model predicts larger uptake and growth rates than
the standard Monod kinetic, which explains the ability of marine microbes to persist under extreme
nutrient limitation.
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Biofilms usually have a complex spatial structure, which contributes to their distinctive properties,
such as strong antibiotic resistance and diverse population (niches for different species). Mathematical
models designated for characterizing the spatial structure of biofilms include Individual-based Models
(IbMs) [8,67], continuum models [101,102] and hybrid models [9], which combine both. For IbMs,
biofilms are represented as a collection of individual microbes (usually hard spheres) whose growth and
movement are determined by a set of rules depending on the local environment, such as the availability
of nutrients and space. Results from IbMs usually provide more detailed information and are generally
considered superior for studying interactions at the microbe level. Continuum models represent the
biomass by functions depending continuously on time and space, and these functions are governed
by differential equations derived by using physical, chemical and biological principles. Continuum
models allow both numerical solutions obtained using readily-available numerical methods and
theoretical analysis of the qualitative behavior of the solutions, such as stability [103], and they are
often considered more applicable at larger spatial scales.

Recently, models incorporating novel features have been successfully applied to study biofilms
as a microbial community. Below, we discuss an individual-based model and a continuum
model, respectively.

Storck et al. [104] developed an individual-based, mass-spring modeling framework to study
the effect of cell properties on the structure of biofilms. In this model, cells are represented by a
collection of particles connected by springs, which allows variable morphology (e.g., cocci, bacilli
and filaments). Three types of structures are considered: the primary structure, which defines the
shape of individual cells; the secondary structure, which defines microbial assemblies related by filial
links between immediate siblings; and the tertiary structure, which defines non-filial cell-cell and
cell-substratum links, such as sticking and anchoring connections. Forces acted on the cells include
both elastic force from the springs they are attached to and DLVOforce (combination of the van der
Waals and electrostatic force). Simulation results of the growth of rod-shaped cells on a planar surface
suggest that the biofilm may grow as a monolayer if there are no anchoring and filial links; the
biofilm can be much thicker and much less spread if there are cell-substratum anchoring; and with
filial links, but no anchoring to the substratum, a biofilm with an irregular shape (less circularity) is
more likely to develop. Simulation results of the activated sludge floc structure suggest that in the
floc with filament branching, the filaments are shorter than that of a floc made of straight filaments
growing at a similar rate, therefore resulting in greater floc density and attenuating the bulking
tendency of filamentous sludge. Furthermore, simulated flocs with spherical floc formers (in contrast
to rod-shaped floc formers) were less dense, since the denser packing of spherical cells in a colony
leads to a smaller cluster volume, which lowers the chance to encounter a filament former. These
simulations demonstrate the close relationship between the fundamental controlling mechanisms,
such as the intracellular, intercellular and cell-substratum links, and the diverse biofilm structures.

Emerenini et al. [105] developed a continuum model that includes biofilm growth, production of
quorum sensing molecules, cell dispersal triggered by quorum sensing molecules and reattachment
of cells. In this model, two distinct cell types are considered: the sessile cells in the biofilm and
the motile cells, which can move into and in the liquid phase. The volume fraction of sessile
cells and EPS is denoted by M; the motile cell density is denoted by N; and the concentrations
of growth-controlling nutrients and autoinducers are denoted by C and A, respectively. Dispersal of
cells from the biofilm is controlled by the local autoinducer concentration through Hill kinetics with
switching threshold τ and maximum dispersal rate η1. Re-attachment of cells in the biofilm is controlled
by the local biofilm density M through Monod kinetics with maximum rate η2. The autoinducer
production rate is controlled by the local autoinducer concentration, which implicitly represents
the switch between down- and up-regulated cells. The governing equations for M, N, C, A are
reaction-diffusion-type equations with density-dependent (M) diffusion coefficients. Simulation
results suggest that single quorum sensing-based mechanism can explain both periodic dispersal in
discrete events and continuous dispersal, depending on the value of switching threshold parameter
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τ. For smaller values of τ, the switching threshold is reached quickly, leading to a rapid dispersal
of the biomass before the biofilm can grow into a large size. After the first dispersal event, the
biofilm population starts growing again, and the autoinducer concentration increases again, resulting
in an almost periodic pattern of discrete dispersal events. For bigger values of τ, it takes a much
longer time to reach the switching threshold, and the biofilm develops into a stronger colony before
the onset of dispersal. Release of cells from the biofilm into the liquid phase appears continuous,
and the biofilm population reaches a plateau. Simulation also suggests that re-attachment of dispersed
cells is negligible. The study in [105] indicated that important properties, such as biofilm mass and
thickness, can be modified by changing the QS threshold and dispersal rates, and the systems can
change between continuous and oscillating behavior. The findings can also help to optimize treatment
strategies. For example, promoting quorum sensing can enhance cell dispersal and limit biofilm
thickness, which could increase the efficacy of antibiotic treatment, since planktonic cells are generally
assumed to be more vulnerable to antibiotic treatment.

IbMs have the obvious strength of describing the detailed biofilm structure and interactions at
the cell level, and the forces between individual particles can be derived from first principles. On the
other hand, IbMs also suffer the drawback of high computational cost, especially when the goal is
to model a biofilm containing a very large number of cells. Therefore, it is important to use efficient
numerical methods in the implementation of IbMs, and parallel computing is often the choice [106].
The continuum models can often be analyzed using well-established differential equation theory,
and there are many numerical packages available for solving the corresponding discretized system of
algebraic equations. However, continuum models often depend on some empirical formula; examples
include the effective diffusion coefficient of nutrients inside the biofilm and the constitutive equation
for the stress-strain relation when modeling the biofilm as a viscoelastic fluid, and derivation of such a
formula is often nontrivial.

6. Conclusions

We present a review of some recently-developed mathematical models that focus on studying
biofilms as diverse communities. Despite obvious overlapping, these models are categorized based
on their principal methodologies, such as trait-based models, QS, FBA, statistical inference and
spatially-resolved models with specific growth kinetics. There are some important topics that have
been left out, such as models incorporating stochasticity and evolutionary game theory.

Even though currently-available models can describe many aspects of biofilms accurately, it still
remains a challenge to build models that can predict the overall behavior of biofilms as complex and
evolving communities. First, time scales involved in biofilm-related processes can vary in as many as
ten orders of magnitude, ranging from the fast scale for fluid dynamics to the slow scale for biofilm
growth, which is an obvious challenge for modeling. To address this, it is often necessary to assume
equilibrium in the fast processes or a quasi-static biofilm profile, depending on the problem of interest.
Second, fast advancement in the experimental technologies has provided an abundance of omics data
at both the genetic and community level, and many community-scale models have been proposed to
describe the interaction between biology, chemistry and physics inside biofilms. However, there is still
the lack of a systematic approach to link the observational data to the community-level understanding,
namely to tie system kinetics to omics data in a tractable and general way by translating omics to
rate functions at the cellular level. The method based on the FBA approach is very promising in
this direction. Third, long-term challenges for modeling biofilm as an MC include the necessity to
incorporated evolutionary processes, social evolution and bacterial strategies, community assembly
and historical contingency, as well as the importance of spatial structure. Addressing these challenges
would inevitably require an integrated approach that not only selectively combines multiple relevant
models by adding their strengths, but also combines modeling effort and experimental findings.
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