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Abstract: The micropipette manipulation technique is capable of making fundamental single 
particle measurements and analyses. This information is critical for establishing processing 
parameters in systems such as microfluidics and homogenization. To demonstrate what can be 
achieved at the single particle level, the micropipette technique was used to form and characterize 
the encapsulation of Ibuprofen (Ibp) into poly(lactic-co-glycolic acid) (PLGA) microspheres from 
dichloromethane (DCM) solutions, measuring the loading capacity and solubility limits of Ibp in 
typical PLGA microspheres. Formed in phosphate buffered saline (PBS), pH 7.4, Ibp/PLGA/DCM 
microdroplets were uniformly solidified into Ibp/PLGA microparticles up to drug loadings (DL) of 
41%. However, at DL 50 wt% and above, microparticles showed a phase separated pattern. Working 
with single microparticles, we also estimated the dissolution time of pure Ibp microspheres in the 
buffer or in detergent micelle solutions, as a function of the microsphere size and compare that to 
calculated dissolution times using the Epstein-Plesset (EP) model. Single, pure Ibp microparticles 
precipitated as liquid phase microdroplets that then gradually dissolved into the surrounding PBS 
medium. Analyzing the dissolution profiles of Ibp over time, a diffusion coefficient of 5.5 ± 0.2 × 10−6 

cm2/s was obtained by using the EP model, which was in excellent agreement with the literature. 
Finally, solubilization of Ibp into sodium dodecyl sulfate (SDS) micelles was directly visualized 
microscopically for the first time by the micropipette technique, showing that such micellization 
could increase the solubility of Ibp from 4 to 80 mM at 100 mM SDS. We also introduce a particular 
microfluidic device that has recently been used to make PLGA microspheres, showing the 
importance of optimizing the flow parameters. Using this device, perfectly smooth and size-
homogeneous microparticles were formed for flow rates of 0.167 mL/h for the dispersed phase (Qd) 
and 1.67 mL/h for the water phase (Qc), i.e., a flow rate ratio Qd/Qc of 10, based on parameters such 
as interfacial tension, dissolution rates and final concentrations. Thus, using the micropipette 
technique to observe the formation, and quantify solvent dissolution, solidification or precipitation 
of an active pharmaceutical ingredient (API) or excipient for single and individual microparticles, 
represents a very useful tool for understanding microsphere-processes and hence can help to 
establish process conditions without resorting to expensive and material-consuming bulk particle 
runs. 
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1. Introduction 

Emulsions and other colloidal materials are usually studied as multi-particle suspensions. 
Processes that the emulsion may undergo include formation, creaming, settling, coalescence, 
coagulation, Ostwald-ripening, dissolution, solvent-exchange, phase separation, and phase inversion. 
Although the scale-up of emulsion formulation at a manufacturing level has been well-established, 
in order to improve and develop the study of emulsions and polymer microparticles, for example, of 
drug encapsulation in a biodegradable PLGA polymer particle, it would be an advantage to be able 
to make observations of individual particle formation as a function of composition, any emerging 
structure, and measurements of fundamental properties like mechanical deformation of these 
materials at the single microparticle level. 

In this respect, we introduce here our micropipette manipulation technique [1–4], capable of 
making fundamental single particle measurements and analyses, and how this information is critical 
to processing parameters such as in microfluidic processing, and also homogenization. Thus, in this 
paper, where we start to combine the two techniques, we simply wanted to introduce and show that 
the micropipette manipulation technique can guide certain aspects of scale-up study associated with 
parameters especially the use of microfluidic devices. We introduce a particular microfluidic device, 
that of de Bruijn that has recently been used to make PLGA microspheres [5], where the flow 
parameters have been critically established, as an example of where the pairing of the two 
technologies could impact future emulsion and microparticle processing. This contribution to the 
special edition of “Emulsification Processes” therefore presents and discusses both technologies and 
suggests that these technologies can support each other to study the fundamental properties of 
microparticle formation. Thus, we believe that introducing these details of each technique can inform 
readers of the major concepts of single particle studies and scaling up of microparticle formation to 
the manufacturing level. 

1.1. The Micropipette Technique 

As shown in Figure 1b, if a human hair is 70 μm in diameter, the micropipette tip we routinely 
use to manipulate single microparticles is around 10 μm, and compares with the size of red- and 
white-blood cells that are on the order of 7 μm diameter. In some of the original studies that used 
micropipette techniques for exploring the micromechanical properties of biological cells, it can be as 
small as 1.2 μm for experiments with single erythrocytes, as shown in the experiment pictured in 
Figure 1c. Hochmuth et al., as far back as 1979 [6], the deformation of red blood cell under 
micropipette aspiration was already measured. An initial aspiration of the discoid erythrocyte 
membrane, that was point-attached to the glass cover slip, allows the cell to be extended in shear to 
full extension as the micropipette is moved back. The cell was then released by reducing the suction 
pressure to zero, and was observed to recoil elastically, limited by its intrinsic membrane shear 
viscosity, returning to its discoid shape in ~1 second. This could be repeated several times, as shown 
in the Video S1 in Supplementary Materials. 

As reviewed in a series of recent papers [7–10], experimental developments in micropipette 
manipulation, measurements, analyses, and modeling were initially focused on biological cells, 
principally the red and white blood cells. Since the pioneering studies on sea-urchin eggs of Mitchison 
and Swann in 1954 [11,12], and ten years later, when Rand and Burton were interested in the problem 
of the shape of the red cell [13], these micropipette techniques have provided a unique ability to apply 
well-defined stresses for dilation, shear, and bending modes of membrane and cellular deformation. 
The simultaneous measurement of strain, and rates of strain, resulting from these applied stresses 
has generated the elastic moduli and viscous coefficients for cell membrane material, and the cellular 
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constituents [14] of individual erythrocytes [15], leukocytes [16], and cancer cells [17] as well as their 
inter-surface interactions [18]. 

Starting in the 1980s, the technique was adapted and developed by Evans and Kwok [19,20] and 
then by Evans and Needham [21] to study the ultra-thin, two-molecule-thick lipid bilayer membrane 
of individual Giant Unilamellar Vesicles (GUVs) of various lipid compositions [10]. A recent 
insightful, retro- and pro-spective, review on the mechanics and thermodynamics of lipid 
biomembranes has been given by Evans et al. [22]. It emphasized the inherent softness of fluid–lipid 
biomembranes and the important entropic restrictions inherent in the elastic properties of vesicle 
bilayers exemplified by experimental results from studies of neutral phosphatidylcholine (PC ) lipid 
bilayers, and especially ones containing cholesterol. Thus, the technique and mechano-chemical 
analyses have been well established for micromechanical studies and mechanistic understanding of 
biological cells and lipid vesicle membranes. 

 

Figure 1. Micropipette and scale. (a) Photograph of an actual micropipette held by hand; (b) 
Magnification and scale comparing the diameter of a human hair of ~70 μm, to scale with the tip of a 
typical micropipette of 10 μm that is routinely used for manipulation of emulsion microdroplets and 
microparticles. Also shown are a neutrophil and erythrocyte that are ~7 μm in diameter; (c) A 1.2 μm 
diameter micropipette as used in the experimental measures and mechanical analyses of the shear 
viscosity of a single erythrocyte, and the experiment that takes about 1 second: (i) initial aspiration of 
the discoid erythrocyte membrane that was point attached to the glass cover slip; (ii) movement of 
the micropipette back extends the cell in shear; (iii) full extension; (iv) release of the cell and 
observation of its elastic recoil against its shear viscosity; (v) cell returns to its discoid shape (see Video 
S1 in Supplementary Materials). 

It was with this background and knowledge that Needham et al. took the technique into the 
realm of colloidal particles and interfaces. First used in a non-mechanical way in 1998 to simply 
position micro-hydrogel beads with and without a loaded-drug (doxorubicin) in a controlled flow 
field of different pH [23,24], the micropipette technique was then developed by Needham et al. [1–
4,25–37],, Tony Yeung et al. [38], and others, in a series of papers on adsorption at interfaces and two-
phase oil-aqueous systems. It has now become a highly versatile experimental setup that allows a 
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wide variety of studies at microscopic interfaces and with single- and pairs- of microparticles. Among 
other applications, the technique has been established for studying solvent dissolution, measuring 
fundamental properties such as diffusion coefficients and solubilities of the dissolving liquids 
[4,27,30], and for evaluating the phase separation, precipitation of droplets containing different 
solutes upon solvent loss, such as the micro-glassification of proteins by fast removal of water into 
water-imbibing solvents like octanol [3,31], and drug-containing polymer microspheres by removal 
of the organic solvent into water [28,29]. It is this last application that has motivated and guided the 
current studies with poly(lactic-co-glycolic acid) (PLGA) microparticles containing Ibuprofen [34]. 

1.2. Microfluidics 

Microfluidic emulsification, or “droplet microfluidics”, has been reported since 2001 as a tool for 
generating uniform droplets in a carrier liquid [39]. In therapeutic applications, microspheres are 
complex formulations employing a carrier material, typically a biodegradable polymer, that 
molecularly, or physically, encapsulates an active pharmaceutical ingredient (API), typically a drug 
substance. The usual goal is to achieve a well-controlled sustained-release of the encapsulated drug 
for subcutaneous or intramuscular depot delivery, which is mostly achieved by degradation of the 
polymer in vivo, providing prolonged exposure to drug substances that would otherwise have been 
cleared quickly if simply injected as a solution. These formulations can deliver high added value in 
difficult and chronic treatments, by providing therapeutic quantities of an API for months of 
treatment in one injection. Especially retinal diseases and other intraocular pathologies can effectively 
be treated by using biodegradable microspheres [40]. One of the most well-known controlled-release 
microsphere systems is the commercially available Lupron depot [41], a synthetic gonadotropin-
releasing hormone used in men to treat the symptoms of prostate cancer, and in women to treat 
symptoms of endometriosis or uterine fibroids. Despite its commercialization, on-going research is 
still being carried out [42] on the effects of various incubation media on release from leuprolide-
loaded PLGA microspheres in order to more fully understand the influence of external pH, 
plasticization, and buffer type on mechanism of accelerated release. As described in general in many 
reviews [43], while PLGA has been well-studied as a polymeric carrier for biodegradable 
microparticles, multiple factors affect their formation and API release. These include: polymer 
molecular weight; viscosity of the internal phase of the emulsion formed when preparing the 
microspheres; the content of terminal COOH groups on low-molecular-weight polymers; and indeed 
the burst release —an ever-present problem that appears to be somewhat due to the use of lyophilized 
material. In general, each of these has to be evaluated and solved case-by-case.  

Microfluidic emulsification is an excellent tool to prepare microspheres and microbeads, because 
of the direct production of droplets and elimination of errors and disruptions related to turbulent 
processes like homogenization. Moreover, the approach developed by de Bruijn et al., in the patent 
“Process for preparing monodispersed emulsions” [5], adds exquisite control over the droplet formation 
and eventual microparticle size. Optimizing the operating flow conditions provides consistent size 
and eliminates fouling and other process failures. What de Bruijn et al. have established is a unique 
process for preparing a microscopic emulsion where flow rates are controlled dependent on a series 
of physicochemical parameters [5]. 

1.3. Ibuprofen Formulations 

Ibuprofen [2-(4-isobutylphenyl) propionic acidg (Ibp) belongs to the clinically designated group 
of non-steroidal anti-inflammatory drugs (NSAID). It is one of the most commonly used pain 
relievers due to its effectiveness and high tolerability when taken orally in recommended doses of 
200 mg and 400 mg [44]. However, the long-term use of Ibp and related NSAIDs are associated with 
a variety of well-recognized side effects [45], in particular those involving the gastro-intestinal system 
(GIT) such as erosions and ulcerations, because of loss or diminished protection of the GIT mucosa. 
Therefore, in order to reduce such side effects during NSAIDs treatment of patients, a localized 
therapeutic approach that is based on the development of intra-articular drug delivery systems has 
been suggested [46–50]. In order to improve the permanence of drugs in the joint cavity, 
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biodegradable polymers including PLGA have been proposed with the ability to provide long-term 
sustained release, and maintain a therapeutic concentration of drug in joint cavity [51]. Fernandez-
Carballido et al. addressed the problem of previous studies where Ibp shows a high initial burst when 
formulated as microspheres. In order to get a more controlled release rate of Ibp, a biodegradable oil, 
Labrafil® (M1944CS, polyethylene glycol 300 derivative), was used as an additive and lowered the 
initial Ibp burst, prolonging the release rate of the drug from 24 h (without additive) up to 8 days 
incorporating the oil. 

Also, of note, Ibp has been considered and tested in vitro for non-traditional uses including as 
an anti-cancer agent. Bonelli et al. [52] delivered Ibp by PLGA nanoparticles to a cell culture of the 
human gastric cancer cell line MKN-45, and found that they exerted anti-proliferative activity at 
concentrations ~100 times less than free Ibp administration. 

1.4. The Main Aims of This Work 

The aims of the present work are to introduce a new single-microparticle technique for studying 
emulsified solvent and drug-microparticle dissolution, as well as polymer microsphere-drug 
formation, and use it to characterize the encapsulation of Ibp into PLGA microspheres, measuring 
the loading capacity and solubility limits of Ibp in typical PLGA microspheres. Working with single 
microparticles we also estimate the dissolution time of pure Ibp microspheres in buffer or in detergent 
micelle solutions, as a function of the microsphere size and compare that to calculated dissolution 
times using the Epstein-Plesset model [53] as developed for the droplet dissolution [27]. Other 
characterization was also of interest including the extent to which Ibp would undergo supercooling 
i.e., if it was a solid microparticle or still liquid, when it was precipitated by the solvent dissolution 
as the pure material. 

2. Materials and Methods 

2.1. Materials 

Ibuprofen sodium (purity ≥ 98%) was purchased from Fluka Analytical. Poly(D,L-lactide-co-
glycolide) (PLGA) 50:50, MW(average) 54,000–69,000, Sodium dodecyl sulphate (SDS, ≥ 99.0%), 
dichloromethane HPLC grade, buffers and other reagents were obtained from Sigma Aldrich. 
Hydrochloric acid (HCl) and ethanol 96% were purchased from VWR. 

2.2. Preparation and Recrystallization of Ibuprofen H 

Ibp crystals were obtained by precipitating the sodium-form of Ibp and then recrystallizing it 
using dichloromethane (DCM). The aim with this approach was to obtain the low water-soluble form 
of Ibp, and use it as a hydrophobic model drug. Ibp was precipitated as the free acid form (Ibuprofen-
H), by first solvating 1.5 g of Ibp-Na with 5 mL Milli-Q water, forming a clear solution, where the 
concentration of Ibp-Na was below the solubility limit. This solution was then acidified by adding an 
excess amount (3 mL) of 1N HCl to the solution, giving a pH of the mixture of 1.4. The predicted pKa 
value of Ibp used was 4.41. The formed suspension was vacuum-filtered, and Ibp was recrystallized 
from DCM, dried in an oven for 2 h at 55 °C to remove any residual solvent or water, and stored at 
4 °C. 

2.3. Thermal Characterization of Ibuprofen 

The crystallized Ibp was thermally characterized using a Differential Scanning Calorimetry 
(DSC) apparatus (Perkin-Elmer, DSC 8500, Waltham, MA, USA). This was done in order to assess the 
crystallinity, melting point, enthalpy of fusion and possible polymorphism of Ibp. The DSC apparatus 
utilized a liquid cooling system, with a gas flow of 20 mL/min. Samples of Ibp were accurately 
weighed (3.5–5 mg) in a 30 μL aluminum pan, and hermetically sealed. A heating rate of 10 °C/min 
was used, and the range of the temperature-scan was between 30 and 100 °C. After an initial heating, 
the sample was held for 1 min at 100 °C, and then cooled at 10 °C/min to 30 °C thereby bracketing the 
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melting transition of Ibp (measured in the literature to be ~75 °C [54,55]). Because of evidences of 
supercooling, in some instances the sample was taken to −10 °C, and then reheated. The thermograph 
was analyzed on the associated software, PYRIS (PerkinElmer), in terms of onset of melting 
temperature and enthalpy of fusion. Three sample measurements were conducted. 

2.4. The Micropipette Technique 

As shown in Figure 2, the micropipette manipulation technique is centered around an inverted 
microscope that can mount up to 4 micromanipulators directly on the microscope stage plate [9,56]. 
Control over micropipette suction pressure is in the range of micro-atmospheres to tenths of 
atmospheres (0.1 N/m2 to 10,000 N/m2) and is achieved by a water-filled manometer equipped with 
a sensitive micrometer-driven displacement and coarser syringe control; positive and negative 
pressures are recorded by in-line pressure transducers (Validyne, Northridge, CA, USA). 

  
(a) (b) 

Figure 2. The micropipette manipulation station. (a) The setup consists of an inverted microscope to 
place and visualize the micropipette tip, operated by micromanipulators, connected to a 
pressurization system (μatm to matm); the samples are placed in a custom-made microchamber and 
all the experiments are recorded in real time by using a side-port camera for subsequent analysis. (b) 
The micropipette (i) is mounted via a chuck (ii) in a custom-built holder controlled by 
micromanipulators (iii), mounted on a stage micrometer, (iv) bolted firmly to the microscope platform 
(v). The image of the pipette tip in the microchamber (vi) is viewed via a 40× objective lens (vii). 

A temperature-controlled chamber allows the sample temperature to range from 5 °C to 50 °C. 
Recent increases in data storage and image processing allow all experiments, along with the 
temperature and pressure data, to be recorded using digital recording and analyzed after the 
experiment. 

The setup is built around an inverted optical microscope (Axiovert 200, Zeiss, Oberkochen, 
Germany) with 3D micrometers (Newport, Irvine, CA, USA) mounted on the stage that hold the 
micropipettes and the experimental chamber. To fabricate the tapered pipettes, borosilicate 
capillaries (A–M Systems) were heated and pulled using a horizontal pipette puller (Sutter 
Instruments, Novato, CA, USA) and the tips were cut down to the desired radius (~1–10 μm) by using 
a microforge (MF 900, Narishige, East Meadow, NY, USA). Pressure control was achieved by a simple 
syringe and monitored by using a pressure transducer (Valydine Engineering Corp., Northridge, CA, 
USA). Real-time images were acquired using a CCD camera (DAGE-MIT, Michigan City, IN, USA), 
all monitored image was recorded in real time on a computer by using a home-built LabVIEW 
program, and analyzed with ImageJ software provided by National Institutes of Health (NIH, 
Bethesda, MD, USA) [1]. 

2.5. Microdroplet Dissolution: Calculation of Diffusion Coefficient of Solvent or Drug in the Aqueous Phase 

The dissolution process of a single liquid microdroplet into water is accurately explained by the 
Epstein-Plesset model [53] that was originally developed for the gas microbubble dissolution and 
growth. The application of this model was described for the dissolution of single gas microbubbles 
into aqueous media [53] and later modified by Duncan and Needham for liquid-liquid systems [27]. 
If the water solubility of the dissolving liquid (here, solvent or drug) is known, the model provides a 
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direct measure of its diffusion coefficient into the surrounding medium; conversely, if the diffusion 
coefficient of the dissolving material is known, then its water solubility can be obtained. According 
to this model, the time dependent decrease of the microdroplet radius, R, upon dissolution into the 
surrounding medium, follows the equation: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −
𝐷𝐷𝐶𝐶𝑠𝑠(1 − 𝑓𝑓)

ρ
�
1
𝑑𝑑

+
1

√𝜋𝜋𝐷𝐷𝑑𝑑
� (1) 

Where D and Cs are, respectively, the diffusion coefficient and solubility limit of the dissolving 
material (here, DCM or Ibp) into the surrounding medium (water); f is the saturation fraction for the 
dissolving material in the initial surrounding medium; and ρ is the density of the dissolving material. 
In the present experiments, we assume an essentially infinite dilution (given the chamber volume, 
200 μL, and the droplet volume of only 20–30 pL, we get a dilution of around 0.05 ppm), and therefore 
we can assume f ~ 0. Furthermore, the time to establish the stationary layer, given by 𝑑𝑑 = 𝑑𝑑2 𝜋𝜋𝐷𝐷⁄ , 
around a droplet of R ~ 50 μm and D ~ 10−5 cm2/s is only ~0.8 s. It is then possible to neglect the 
transient approach to steady state if 𝑑𝑑 ≪ √𝜋𝜋𝐷𝐷𝑑𝑑 → 𝑑𝑑 ≫ 𝑑𝑑2 𝜋𝜋𝐷𝐷⁄ : 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

~ −
𝐷𝐷𝐶𝐶𝑠𝑠
ρ

�
1
𝑑𝑑
� (2) 

This expression can then be integrated and the following linearized expression is obtained: 

𝑑𝑑02 − 𝑑𝑑2 =
2𝐷𝐷𝐶𝐶𝑠𝑠
ρ

𝑑𝑑 (3) 

2.6. Formation and Investigation of Microdroplets/Microparticles 

This section will briefly present the method(s) employed in a series of experiments focused on 
the formation of microdroplets or microparticles of three compositions, DCM, PLGA/DCM, 
Ibp/PLGA/DCM, and a solution of just the drug, Ibp/DCM. Since the procedure for these experiments 
was essentially the same (forming a microdroplet and observing the solvent or drug loss), the 
experiment is described in detail for the formation of DCM microdroplets, and additional pertinent 
details are then provided for each of the other systems as necessary. 

2.6.1. Preparation of Samples 

The organic solvent, DCM, was used as obtained from the supplier. For the formation of pure 
PLGA microparticles, a solution of PLGA/DCM was made at a PLGA concentration of 25 mg/mL (2.5% 
w/v). For the formation of Ibp/PLGA microparticles, DCM solutions containing 2.5% w/v PLGA and 
Ibp drug loadings DL% (= Ibp/(Ibp + PLGA) × 100) of 0, 5, 10, 15, 23, 33, 41, 50 and 60 wt%  were 
prepared. The determined amounts of PLGA and Ibp were weighed accurately and dissolved in 0.5 
mL DCM. For the formation of pure Ibp microparticles, 5% (w/v) Ibp/DCM solutions were prepared, 
dissolving the aforementioned recrystallized Ibp. 

2.6.2. Solvent Microdroplet Formation and Dissolution 

All solutions were prepared in small (1 mL) glass vials, in which the delivery pipettes are 
vertically inserted to front-load them with the sample by applying suction with an external syringe. 
Prior to this, the delivery pipettes were front-loaded with a small volume (~nL, comparable to the 
loaded sample volume) of DCM-saturated Milli-Q water, which provides a “pipette cap” used in all 
of the experiments to minimize DCM evaporation. A small volume (~150 μL) of Milli-Q water was 
transferred to the microchamber, functioning as the dissolution medium.  

As shown in Figure 3a, the two pipettes, the “delivery” and the “catching” pipette [1], were held 
in the 3D stage micrometers and aligned inside the chamber. In order to make diffusion-controlled 
dissolution of the microdroplets, the chamber was then sealed with hexadecane to avoid water 
convection due to water evaporation at the chamber edges. 
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As shown by the video micrographs in Figure 3b, a single microdroplet (~40 µm diameter) was 
then injected by the delivery pipette and transferred to the catching pipette and held in the center of 
the chamber, as recently described [1]. The droplet formation and dissolution process were recorded 
by using a CCD camera. Data from at least three separate runs for each condition tested was 
subsequently analyzed by using ImageJ [57]. 

  
(a) (b) 

Figure 3. Single microdroplet catching method. (a) Two micropipettes, sample-filled (loading, right 
hand) and water-filled (catching, left hand) pipettes, were inserted in a water-filled glass chamber 
under proper applied pipette pressure for each one. The chamber was sealed with hexadecane 
plugging after the pipettes were inserted; (b) Microdroplet dissolution in medium at 20 °C. A 
microdroplet was formed by injection with the loading micropipette (i), and it was trapped instantly 
with the catching pipette just by capillarity forces (ii, iii). The isolated microdroplet dissolved 
gradually into the surrounding medium phase, and all the process was recorded continuously for the 
subsequent video analysis. 

2.6.3. Polymer Microsphere and Polymer Microsphere-Drug Formation 

Single PLGA/DCM and PLGA/Ibp/DCM solution microdroplets were formed in a similar 
manner to the pure DCM droplets. Because this polymer solution was slightly more viscous than 
pure DCM, a larger initial microdroplet diameter was used (~60 µm diameter) to enable catching and 
holding the microdroplet and the formation of the subsequent microparticle. For each concentration, 
at least three different runs were recorded and analyzed. 

2.6.4. Formation and Dissolution of Pure Ibuprofen Microdroplets 

Ibp/DCM microdroplets were prepared and formed similarly to the DCM microdroplets 
described above, although containing just 5% (w/v) Ibp in solution. Four videos were recorded, of 
which three were used in the investigation: one with a short observation time, another showing a 
long observation time, and the last one was used to observe the physical nature of Ibp. It was also of 
interest to measure the dissolution rate of Ibp into in the presence of a micellar sink, and so a series 
of single Ibp microparticles were formed into aqueous media containing sodium dodecyl sulphate 
(SDS). Specifically, Ibp/DCM microdroplets were formed and held with the micropipette, and 5 mM 
PBS solutions, pH 7.4, with 1, 5, 20, 40, 60, 80 and 100 mM SDS were used as the dissolving medium. 

2.7. Microfluidic Emulsification for PLGA Microsphere Production 

2.7.1. Single Channel System 

Dripping and jetting flow regimes of microfluidic systems have been investigated to control the 
formulation of microdroplets [58,59], and several microfluidic devices have been introduced, such as 
flow-focusing [60,61], coaxial [62–64] and T-junction [39,65]. The flow-focusing technique in 
particular has been developed for monodisperse microdroplet-formulation devices [5,66–68]. Droplet 
formation in this technique is controlled by hydrodynamic confinement, where the dispersed and 
continuous phase flows are forced in a common exit channel. 

Figure 4 shows the process of microfluidic emulsification using one of these flow-focusing 
devices, designed to prepare polymer or polymer/drug microspheres [5], which involves the injection 
of two solutions: the dispersed solvent phase (the liquid to form the droplet containing the polymer and 
any API, flow rate Qd); and the aqueous continuous phase (the carrier liquid surrounding the droplet, 
also called the dissolution medium, flow rate Qc). With this device, the dispersed phase is injected 
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through the central inlet, indicated as (ii), which is continuous with a cross-junction geometry that 
connects it to the outer cross-inlet, labeled as (i), through which the continuous phase flows. 

  
(a) (b) 

Figure 4. The microfluidic system. (a) (top) Schematic 3D picture of droplet formation showing the 
arrangement of the two inlet tubes: (i) continuous phase inlet that then splits into two tubes; (ii) 
dispersed phase inlet; (iii) mixing head. (bottom) High-speed microscope image of the single-channel 
production window. (b) Flow map, depicting all combinations of liquid properties, microchannel size 
and flow rates. Combinations in the white area (region A) yield the desired process, i.e., spherical 
particles; combinations in the black area (region B) lead to instabilities and non-uniform droplets; and, 
in the grey area (region C), to droplets larger than the exit channel. 

The dispersed phase is pumped into a microchannel that can be varied in size, between 5 and 
1000 µm, shown in Figure 4a, iii. When the dispersed phase enters the cross junction, the so-called 
‘hydrodynamic flow focusing’ of the continuous phase breaks the polymer solution into microdroplets. 
To characterize the microdroplet formation, parameters such as viscosity, μ, flow rate, Q, and 
interfacial tension, γ, become important according to fluid physics [58,68,69]. In order to create well-
defined and perfectly controlled droplet sizes, the key is a precise control over the flow rate Qc and 
Qd from the inlet channels (Figure 4a). The control of the process lies in the two most important force-
balances at the intersection: the balance between interfacial and viscous forces (characterized by the 
capillary number of dispersion phase, Cad [58]); and the balance between the dispersed phase and the 
continuous phase that is forced into the same outlet (characterized by the ratio of flow rates Qd/Qc). 
The dimensionless parameter of Qd/Qc is cited often to show the profile of characterized microdroplet 
distribution such as the flow map (Figure 4b). In region A, the produced microparticles become nicely 
spherical. However, in regions B and C, the microdroplets become non-uniform and can be larger 
than the exit channel, respectively. 

While the cross-junction is an essential part of the flow system that generates the microdroplets, 
in order to use the droplet formation in this setup in the most robust way, the correct flow rates are 
best calculated using the flow mapping [5], schematically given in Figure 4b. The pertinent equations 
for pre-setting the flow rates are: 

𝑄𝑄𝑐𝑐 = 𝑓𝑓 ×
𝐴𝐴γ
µ𝑐𝑐

 (4) 

𝑄𝑄𝑑𝑑
𝑄𝑄𝑐𝑐

=
0.00272
𝑂𝑂ℎ𝑐𝑐 × 𝑂𝑂ℎ𝑑𝑑

 (5) 

𝑂𝑂ℎ𝑖𝑖 =
µ𝑖𝑖

�ρ𝑖𝑖𝛾𝛾𝑑𝑑
 (6) 

where A is the exit area of the microchannel (17), γ is the interfacial tension between the two liquids; 
μc is the viscosity of the continuous phase, f is an empirical constant parameter in the range from 0.04 
to 0.25; Ohi , μi and ρi are the Ohnesorge number, viscosity and density, respectively, of phase i (either 

 



Processes 2016, 4, 49 10 of 28 

the continuous or the dispersed phase, denoted by “c” and “d”, respectively); and R is the radius of 
the exit microchannel. 

For the process of creating an emulsion it is preferred that the ratio of the dispersed phase flow 
rate Qd to the continuous phase flow rate Qc is ≤ 0.00272 Oh*, where Oh* is the Ohnesorge number of 
the system, being: 

𝑂𝑂ℎ∗  =
µ𝑐𝑐µ𝑑𝑑

√ρ𝑐𝑐ρ𝑑𝑑γ𝑑𝑑
 (7) 

When microdroplets of a solvent-polymer solution (e.g., DCM/PLGA) are formed in this way, 
they are the templates for the eventual microspheres, which reduce in size and eventually precipitate 
and solidify by losing the solvent into the continuous phase. Straightforward preparation of 
microspheres and microbeads of controlled size is confirmed by a light microscopy directly after the 
process, or by an electron microscopy after drying. 

2.7.2. Multichannel System 

A multichannel system comprised of multiple copies of the single-channel shown in Figure 4a, 
arranged radially around a central collection orifice, is shown in Figure 5a  [5]. An actual high-speed 
microscopic image of the exit of a multi-channel prototype device and the droplets moving towards 
the collection tube is shown in Figure 5b. 

  
(a) (b) 

Figure 5. Multichannel chip. (a) Picture of multichannel chip showing each individual droplet head; 
(b) Actual high-speed microscopic image of the exit of a multi-channel prototype device and the 
droplets moving towards the collection tube. Droplets were 50 µm in diameter. Reproduced with 
permission from [5], World Intellectual Property Organization, 2010. 

3. Results and Discussion 

Results will now be presented and discussed for each of the single microdroplet and 
microparticles systems of DCM, DCM/PLGA, DCM/PLGA/Ibp and pure DCM/Ibp. Data will also be 
provided for a scaled-up PLGA microsphere system using the microfluidic emulsification system [5] 
where a series of simple PLGA microsphere samples (not containing Ibp) were made in order to 
evaluate and demonstrate the predicted flow regimes. 

3.1. Solvent Droplet-Dissolution 

The first and simplest experiment that was carried out in analyzing these multicomponent 
systems was to measure the droplet dissolution of the pure solvent, in this case DCM into water. As 
shown in Figure 6a–i, once the microdroplet of DCM has been formed using the “microdroplet catching 
method” [1], it was clearly immiscible with water, and so could be held stationary on the end of the 
holding pipette by applying a small suction pressure that did not exceed its interfacial tension of 28.0 
mN/m [70]. Subsequent video images in Figure 6a then show the droplet held on the end of the 
pipette (Figure 6a–ii), and simply dissolving in the aqueous phase (Figure 6a–iii), until it has 
 



Processes 2016, 4, 49 11 of 28 

completely dissolved (Figure 6a–iv). Quantitative plots of the data obtained for three independent 
microdroplets of around 20 μm initial radii were represented as radius versus time, and shown in 
Figure 6b–i. For the particular droplet shown here in Figure 6a, it can be clearly observed that it 
rapidly dissolved and reached the size of the holding pipette in 9 s (dotted line in Figure 6b–i), at 
which point the holding suction pressure in the pipette aspirated the small droplet far into the pipette. 

  
(a) (b) 

Figure 6. Solvent microdroplet dissolution. (a) Video micrographs of a microdroplet formation and 
dissolution: (i) a microdroplet was formed with the delivery pipette (t = 0.6 s); (ii) the isolated 
microdroplet lost dichloromethane (DCM) over time (t = 3 s); (iii) the isolated microdroplet lost DCM 
over time (t = 5 s); (iv) the isolated microdroplet reached the size of the holding pipette (t = 9 s) and 
was aspirated inside of the micropipette. (b) Graphs representing microdroplet dissolution: (i) droplet 
radius vs. time for three separate microdroplets of DCM dissolving in water. Extrapolation of the data 
(green open circles) for the droplet shown in video micrographs (i)–(iv) to radius = 0, shows that the 
droplet was entirely dissolved in ~10 s. Dotted line is the radius of the micropipette tip and so when 
droplet reaches this size it was aspirated up the pipette; (ii) R02–R2 vs. time plot that collapsed the data 
onto a single line. 

A re-plot of the data is presented in Figure 6b–ii, and fitted to the linear form of the Epstein-
Plesset (EP) model, Equation (3). This representation collapses the data onto a single line, 
independent to the droplet initial size. This model predicts that the R02–R2 vs. time plot will follow a 
linear trend, whose slope would be equal to 2DCs/ . Consid ering t      

dissolution into water: CS = 17.22 mg/mL and ρ = 1325 mg/mL (both at 25 °C), the EP model provided 
an experimental value for the diffusion coefficient of DCM in water of D = 1.77 ± 0.01 × 10−5 cm−2/s. 
The estimated D value of DCM from the Wilke and Lee model was 1.22 × 10−5 cm2/s [71], which was 
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in fairy good agreement, given the range of reference values for Cs, i.e., the solubility of DCM in water 
of 0.0132—0.0200 g/mL. Thus, this kind of experiment can be done for any of the immiscible solvents 
used in these microsphere processes, as we have shown for example for ethyl and other acetates [30]. 
These parameters were then used to represent the theoretical R vs. time curves shown in Figure 6b–i 
for the different initial radius. 

3.2. PLGA Microsphere Formation in PBS 

Similar to the pure DCM solvent dissolution shown in Figure 6, the dissolution of a DCM/PLGA 
solution microdroplet shown in Figure 7a, was quite homogeneous in appearance, with no inclusions, 
phase separation, or structure during solvent loss and concentration of the PLGA, leaving a solidified 
microparticle of PLGA in 5 mM PBS (pH 7.4). 

  
(a) (b) 

Figure 7. Poly(lactic-co-glycolic acid) (PLGA) microsphere formation by solvent dissolution in 5 mM 
PBS (pH 7.4) at room temperature. (a) Dissolution of DCM from a solution droplet of DCM/PLGA at 
the tip of the micropipette (PLGA concentration = 25 mg/mL); (b) Graphs representing microdroplet 
dissolution: (i) Droplet radius vs. time for three separate DCM/PLGA microdroplets of dissolving in 
5 mM PBS. Extrapolation of the data (green open circles) for the droplet shown in video micrographs 
(i)–(iv) to radius = 10 μm, shows that this microdroplet lost almost all of its DCM, in ~19 s and 
concentrated to a final density of CPLGA = 1,012 ± 20 mg/mL. In this case, the measured loss of DCM 
gave a DCM diffusion coefficient D = 1.77 ± 0.01 × 10−5 cm−2/s); (ii) 𝑑𝑑02 − 𝑑𝑑2 vs. time plot that collapsed 
the data onto a single line up until the PLGA solidified out of the solvent. 

Formed in less than a second, the held microdroplet of 60 μm diameter lost DCM into the 
aqueous phase over a period of 19 seconds, at which point the dissolution ceased and the 
microparticle of PLGA was formed and remained so for the hundreds of seconds of further recording. 
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The formed microparticle, indicating a very viscous state initially, became eventually solid-like state 
about 10 minutes after reaching the final size.,  Until reach the solid-like state, it could be slightly 
deformed by the indentation test. Plotting the microdroplet radius versus time, see Figure 7b–i, shows 
that the DCM was lost to the aqueous phase at approximately the same rate as for pure DCM. This 
signifies that there was little influence of the dissolved polymer on the transport of DCM out of the 
ever-concentrating solution. Again, a replot of the data in Figure 7b–ii, according to Equation (3), 
yields a value for the diffusion coefficient of DCM in water D = 1.77 ± 0.01 × 10−5 cm−2/s, which is in 
excellent agreement with that from the pure solvent dissolution. Again, as with pure solvents, the 
solvent dissolution experiment can also be carried out for any solvent polymer-solvent solution 
where the solvent is dissolved into the aqueous phase and the polymer either emerges from the 
solvent as in the case of PLGA, or precipitates or even crystallizes in a critical phase separation event, 
as we have seen previously for other materials including: octaethylporphyrin from chloroform-
triolein mixtures [35]; waxes from ethyl acetate (unpublished data); or from aqueous solutions 
dissolving into oil (long chain alcohol) systems where microdroplets of aqueous lysozyme [3] or 
albumin [3,31] formed microglassified beads upon loss of the aqueous solvent. 

3.3. Ibuprofen Encapsulation in PLGA Microparticles 

Having evaluated the dissolution of the solvent DCM and the formation of PLGA microspheres 
as shown above, the third experiment was to measure the solvent dissolution rate and final 
concentrations of the multicomponent DCM/PLGA/Ibp system. Shown in Figure 8, is the DCM 
dissolution plot from a DCM/PLGA/Ibp solution microdroplet in PBS at room temperature for drug-
loadings, DL = 0, 15, 50 and 60 wt%. The experiment again provided important parameters that 
characterized the dissolution and formation of the multicomponent system. As before, comparing the 
plot of the dissolution phase (Figure 8b–i) to the pure DCM microdroplet system, the rate of loss of 
DCM into the aqueous phase of 5 mM PBS is indeed still the rate-determining step. Importantly, as 
shown in Figure 8a, there are no other structures visually evident in the microdroplet that could 
potentially retard this transport mechanism, such as a shell formation by the drug. 

By measuring the final size of the microsphere and considering the initial solute concentration, 
we can also obtain critical information about the encapsulation process. The radius vs. time plot 
(Figure 8b–i) was easily converted into a concentration of PLGA vs. time plot (Figure 8b–ii) by simply 
assuming that no solute was lost into the water medium. Thus, the volume decrease was directly 
translated into a concentration increase both for PLGA and Ibp. In the absence of ibuprofen (0 wt% 
Ibp), from Figure 7, the pure PLGA concentration reached the final concentration (which was actually 
its “hydrated density”) of 1012 ± 20 mg/mL. In general, the PLGA concentration in a dried 
microparticle is higher than for a water-wetted microparticle because the wetted PLGA particles 
adsorb some of their surrounding liquid, —in fact this is how they begin their hydrolytic-degradation, 
by adsorbing water. Therefore, a wetted PLGA microparticle will have lower “concentration” than 
that of a dried microparticle. Here, a “concentration” (of drug/polymer in the organic solution) 
becomes a “density” (of a drug/polymer microparticle, with respect to the total particle volume). 
Arnord et al. showed that the swelling ratio dw/dd, as the diameter between a wet (dw) and dry (dd) 
particle of PLGA (50:50, Mw 31,000) polymer, is 1.06–1.10 [72]. Therefore, the volume ratio, Vw/Vd, of 
wet and dry PLGA particle was calculated to be 1.16–1.37. By using the swelling ratio, we estimated 
a possible dry PLGA particle concentration of 1200–1400 mg/mL from our measured microparticles, 
which was quite a reasonable density value for pure PLGA (50:50), reported as ρPLGA = 1340 mg/mL 
[29,72]. 
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(a) 

 
(b) 

Figure 8. DCM/PLGA/Ibp  solution microdroplet dissolution in PBS at room temperature. (a) 
Videomicrographs of three different PLGA microdroplets formation and precipitation with different 
DL of Ibp. (i)–(iii) DL 15 wt% Ibp obtaining a final PLGA concentration of 1020 ± 11 mg/mL and a final 
Ibp concentration of 180 ± 2 mg/mL (the original video is available at Supplementary Materials, Video 
S2); (iv)–(vi) DL 50 wt% Ibp, obtaining a final PLGA concentration of 670 ± 16 mg/mL and a final Ibp 
concentration of 670 ± 16 mg/mL; (vii)–(ix) DL 60 wt% Ibp, obtaining a final PLGA concentration of 
496 ± 15 mg/mL and a final Ibp concentration of 745 ± 22 mg/mL. At DL = 50 and 60 wt%, a mosaic 
pattern was observed during the solidification (vi,ix). At these high concentrations, visible trapped 
inclusions were also formed in the microdroplets and particles; (b) (i) Droplet radius vs. time for four 
separate microdroplets of DCM/PLGA/Ibp (DL = 0, 15, 50 and 60% Ibp) dissolving in 5 mM PBS; (ii) 
PLGA concentration (mg/mL) vs. time for the same four microdroplets, indicating the final 
concentrations (“hydrated densities”, see main text) by dashed lines. 

Figure 8b-ii shows that, when Ibp was added into the system, the final PLGA concentration 
became 1020 ± 11 mg/mL for DL 15 wt% Ibp, and the final Ibp concentration became 180 ± 2 mg/mL—
calculated from the initial concentrations and the relative volume change of the droplet. Increasing 
the amount of Ibp to DL 50 wt%, the final PLGA and Ibp concentration became 670 ± 16 mg/mL and 
670 ± 16 mg/mL; and for DL 60 wt% Ibp, the final PLGA and Ibp concentration became 496 ± 15 
mg/mL and 745 ± 22 mg/mL. Observing this process in real time and visualizing the single 
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microdroplet also allowed us to determine any morphological change in the microdroplets. At the 
lower concentration of Ibp DL ≤ 15 wt%, the encapsulation of Ibp showed a quite uniform image of 
the microparticle without visible phase separation or surface structure. However, at DL = 50 and 60 
wt%, small inclusions were evident in the microdroplet and were retained in the final microparticle 
(Figure 8a–vi and –ix).  

We have seen similar inclusions before (E. Laureano, 2012, unpublished data) in experiments 
that formed PLGA microspheres from ethyl acetate, and that we assumed were attributable to 
trapped water condensing out of the solvent, since ethyl acetate has a relatively high solubility for 
water of ~3%. DCM, on the other hand, has a much lower solubility for water and no inclusions were 
seen for the formation of pure DCM/PLGA microspheres. In the present case, there could be one or 
more explanations for the inclusions seen in Figure 8. One source of the inclusions could be caused 
by a phase separation of Ibp from PLGA because of such a high concentration-encapsulation of Ibp. 
Alternatively, Ibp could help to imbibe water that then condenses out. Another explanation could be 
that the high Ibp concentrations help the otherwise non-wetting DCM/PLGA solution to wet the glass 
pipette to an extent that allows trapped water at this solution-glass boundary to be brought into the 
droplet as it forms. Since these inclusions seem to be formed during the process of making the initial 
droplet, we favor the latter explanation that it was the poor wetting of the micropipette wall by the 
Ibp solution that initiated the inclusions at this glass boundary. Thus, it appears that at higher 
concentrations of Ibp, the interface with the micropipette could capture some PBS droplets during 
the action of pushing out the droplet and during microdroplet isolation. In any event, in the 
micropipette experiments (Figure 8a–iv and –ix) at these high Ibp DL of 50 and 60 wt%, visible 
trapped inclusions were formed in the liquid microdroplet and solidified microsphere. If such 
wetting also occurs in a microfluidic channel, then here is another example of the additional 
information that the micropipette experiment can bring to an otherwise unobservable event in the 
microdroplet formation of bulk samples. Obviously, these observations deserve further 
experimentation and analyses, including making and observing bulk emulsification samples. 

3.4. Ibuprofen Phase-Separation from DCM/PLGA 

Looking more closely at the resulting microspheres for DL = 50 and 60 wt% Ibp shown in Figure 
8a–vi and –ix, there was also some graininess (mosaic pattern) that was not evident at lower Ibp 
concentrations. This could signify some kind of phase separation and therefore solubility limit for 
Ibp in this polymer system. In fact, further evidence for the phase separation of Ibp from the PLGA 
into its own Ibp-rich phase-domains was observed at very high Ibp concentrations. Figure 9 shows a 
microdroplet formed with an initial DL of 80 wt% Ibp encapsulation, and the resulting PLGA-Ibp 
microparticle. 25 seconds after forming the microdroplet, once all the DCM had dissolved out, the 
microdroplet was precipitated as a solid particle. As can be seen in the image in Figure 9i at t = 25 s, 
the top right hand portion of the microparticle had a more clear appearance than the mottled 
appearance of the rest of the microsphere. Then, over the next tens of seconds, this part of the particle 
at the top right hand side started dissolving into the PBS bulk solution. After 245 seconds, at Figure 
9iii, the shape was not spherical anymore, and the size became visually nearly half of the initial 
diameter, as other Ibp-rich domains dissolved out from the microparticle. These images clearly show 
that the PLGA polymer had a limitation for the encapsulation of Ibp, and that the Ibp phase-separated 
between DL = 60 and 80 wt%. 

A similar kind of phase separation was spectacularly shown to occur in real-time in previous 
work with Yang [28], where fusidic acid (FA) was seen to precipitate out of a DCM/PLGA/FA solution 
microdroplet, and even form surface spheroids that were clearly not entrapped or retained in the 
polymer microsphere. In the current experiment, as shown in Figure 9, the phase-separated Ibp then 
simply dissolved away, presumably at its own dissolution rate. In the final experiment, we measured 
directly the dissolution rate for pure Ibp, as presented and discussed next. 
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Figure 9. Evidence for Phase of Ibp separation at very high Ibp concentrations. Images of Ibp/PLGA 
(50:50) microsphere at DL = 80 wt%. (i) 25 s after formation of the droplet the microparticle formed in 
which all the DCM had been dissolved into aqueous phase; (ii) at t = 88 s, a large part of the 
microparticle had dissolved; (iii) at 245 s other parts of the microparticle were lost and the 
microparticle became deformed This loss of material appeared to be dissolution of large domains of 
Ibp that were not seen for DL = 60 wt% and below, signifying massive phase separation into Ibp rich 
domains. 

3.5. New Measure of Ibp Diffusion Coefficient and Dissolution Time from DCM/Ibp Microparticle 
Dissolution into PBS 

Finally, in these single-microparticle formation and dissolution experiments, it was also possible 
to characterize the formation of pure Ibp microparticles from DCM and then observe and quantify 
Ibp dissolution itself into an aqueous phase. As shown in the video micrographs of Figure 10a and 
the radius vs. time plots of Figure 10c–i, the DCM solvent, as expected, rapidly dissolved into the 
surrounding buffer, over a period of only 10 s. What remained in Figure 10b was a pure Ibp 
microparticle that itself then continued to dissolve into the buffer, as shown in the next series of 
videomicrographs in Figure 10b at 15–50 s. The slower dissolution was thus represented in the lower 
part of the radius vs. time plot in Figure 10c–i, where the radius of the pure Ibp reduced over the next 
50 seconds as it dissolved in the buffer. Actually, a back-extrapolation shows that a significant 
amount (~30 wt%) of the ibuprofen could dissolve during the initial solvent-loss phase, where, as 
shown by Su and Needham [30] (short dashed lines at time 0 s on Figure 10c–i), mixture-dissolution 
followed an analysis in which the area fraction of each component dissolved in accordance with their 
volume fraction in the microdroplet, which was continually changing. We simply assume that there 
was this initial dissolution of Ibp from the DCM/Ibp microdroplet. 

Regarding the second dissolution regime, corresponding to the pure Ibp dissolution, we used 
again the linearized EP model to obtain an experimental value for the Ibp diffusion coefficient in PBS 
(pH 7.4) at room temperature, yielding D = 5.5 ± 0.2 × 10−6 cm2/s. This value for the Ibp diffusion 
coefficient was exactly the same as that measured by NMR, 5.5 × 10−6 cm2/s, [73], and by another 
method for free Ibp in a phosphate buffer utilizing a USP-2 dissolution bath [74]. To calculate the D 
value from the dissolution profile, the solubility of Ibp, 0.825 mg/mL, in 5 mM PBS pH 7.4 at 25 °C 
was used [75,76]. 

Another important parameter for scale-up in emulsification mixers and in microfluidics is the 
actual time for dissolution, since this is the point at which all the solvent has been removed and the 
particles are less likely to coalesce. For microfluidics, this time has an inverse relation to the velocity 
of the fluid in the microchannel and is directly proportional to the length of that channel. Thus, 
calculations of the time for dissolution are readily obtained from the EP model for the dissolution of 
microparticles as done previously [2,4,27,30]. The time, tD, for a spherical microparticle of Ibp to 
dissolve in infinite medium is given by the following equation, 

𝑑𝑑𝐷𝐷 = 
𝑑𝑑𝑜𝑜2

2𝐷𝐷
 
ρ
𝐶𝐶𝑠𝑠

 (8) 

where Ro is the initial radius of the particle, ρ is the density of the Ibp (1030 mg/mL), D is the diffusion 
coefficient of the molecule in aqueous media (5.5 ± 0.2 × 10−6 cm2/s), and Cs is its solubility limit in PBS 
(pH 7.4) buffer, 0.825 mg/mL (4 mM) [75]. This calculation can be used to estimate the time for 
dissolution of any material knowing the above parameters, including in the presence of a non-

 



Processes 2016, 4, 49 17 of 28 

limiting hydrophobic lipid sink if the solubility in this sink is known. The td analysis for Ibp in buffer 
is shown in Figure 11 for different sized Ibp microparticles, from 2 μm to 1000 μm diameter. Since 
the time for dissolution goes as the radius squared, small particles dissolve very quickly. For example, 
a 2 μm diameter particle dissolves in 1.1 s, but a 1000 μm particle can take 3.2 days in infinite dilution. 
Testing this equation, we see that for the 14.6 μm diameter Ibp microparticle shown in Figure 10b, 
the predicted initial Ibp microparticle at t = 0 s would have a pure Ibp diameter of 16.4 μm. The time 
to dissolution measured in Figure 10c (blue symbols), was ~75 s (red star in Figure 11) which agrees 
very well with the predicted value on the plot of Figure 11. This calculation shows how important it 
is in applications of the pure drug dissolution to not only know the size of the drug microparticles 
but to actually control it. And so, the microfluidic system now offers exquisite control over size and 
therefore the dissolution rates for pure drug microparticles. 

 
(a) 

 
(b) 

 
(c) 

Figure 10. Ibp microparticle formation from DCM/Ibp solution and pure Ibp dissolution in 5 mM PBS 
(pH 7.4) solution at room temperature. (a) Newly formed microdroplet of 25 mg/mL Ibp in DCM 

 



Processes 2016, 4, 49 18 of 28 

showing dissolution of the DCM into PBS, in videomicrographs at t = 0, 5, and 10 s. Original video is 
available at Supplementary Materials (Video S3). (b) Pure Ibp particle dissolution into PBS, in 
videomicrographs at 15–50 s; (c) (i) Plot of radius and (ii) the 𝑑𝑑02 − 𝑑𝑑2  vs. time plot of three 
microdroplets of DCM/Ibp and then pure Ibp as it dissolves in PBS, showing data for the same droplet 
as in the video micrographs from (a) to (b) (green symbols). Each fitting (i) curves and (ii) lines follow 
the EP model with the parameters. 

 

Figure 11. Ibp dissolution time tD vs. microparticle diameter. Blue filled squares are calculated values 
using Equation (8) and the red star is the measured value from Figure 10. 

As with other aspects of the micropipette technique for studying single microdroplets and 
microparticles, the pure drug dissolution experiment can be performed on many such drugs when 
formed from solvent and observed dissolving in PBS or indeed into surfactant micelles or other sink 
conditions, as shown next for Ibp dissolution into a micellar sink. 

3.6. Ibuprofen Dissolution into a Micellar Sink 

The experiments of Ibp precipitation from DCM solution and Ibp dissolution into an aqueous 
medium were carried out in the presence of a hydrophobic sink. Namely, SDS solutions below, 
around and above the detergent CMC were used in order to study the effect of the presence of SDS 
monomers and micelles on Ibp dissolution rates, and evaluate the potential micellization of the drug. 
The ability of SDS and other detergents to solubilize Ibp molecules has been already characterized in 
bulk solutions [77,78], but a more detailed and microscopic characterization of Ibp micellization can 
be achieved using the micropipette technique, together with a quantitative description of dissolution 
rates as a function of Ibp and SDS concentrations. In order to do this, we measured the dissolution 
profiles (radius vs. time) of DCM/Ibp microdroplets formed in 5 mM PBS, and in PBS with increasing 
SDS concentrations, namely 1, 5, 20 and 100 mM, where the CMC value of SDS in the buffer equals 
4.7 mM [77]. The SDS concentrations tested here correspond to Ibp-to-SDS molar ratios of 121.2, 24.2, 
6.0 and 1.2, respectively, and so they range between relatively high detergent-to-drug ratios to 
practically 1:1 molar ratio. The dissolution experiments were each performed for three independent 
droplets; for convenience, the results for one representative droplet tested at each condition are 
shown in Figure 12. As can be seen in Figure 12a for all SDS concentrations, and similarly for pure 
PBS solutions, the radius vs. time plots clearly showed the presence of two distinct regions of droplet 
dissolution, as discussed previously: the first one occurred faster, which corresponds to DCM (and a 
small part of Ibp) dissolution, and the second one corresponds exclusively to pure Ibp dissolution. 
We then converted these plots into 𝑑𝑑02 − 𝑑𝑑2 vs. time plots in order to apply the linearized form of 
the Epstein-Plesset model (Equation (3)), as shown in Figure 12b. 
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(a) 

 
(b) 

Figure 12. Dissolution profiles of representative microdroplets of 25 mg/mL Ibp in DCM solution 
injected into 5 mM PBS containing increasing sodium dodecyl sulphate (SDS) concentrations. (a) 
Change of microdroplet radius versus time, where two distinct regions were clearly observed: joint 
DCM/Ibp dissolution, and pure IBP dissolution; (b) Linearized representation where the two regions 
were fitted by the Epstein-Plesset model (Equation (3)). 

The representation in Figure 12b collapsed the first region of the data onto a single line until the 
point at which all the DCM was lost, which showed that there was no significant differences in the 
slopes (2DCS/ρ) for DCM dissolution with increasing SDS concentrations. In Figure 12b, the linear fit 
was represented for this first region using the average slope value of all the measured droplets (~50 
μm2/s), a rate of dissolution that would contain contributions from the two dissolving compounds, 
DCM and Ibp, in a solubility- and concentration-dependent manner as carefully analyzed in the 
previous microdroplet studies [30], but that is again beyond the present study. Therefore, this 
common slope indicated that the dissolution rates of DCM+Ibp were not significantly affected by the 
presence of SDS monomer or micelles. On the contrary, the second part of the droplet dissolution 
curves in Figure 12a did show significant differences with SDS concentration, and, as seen in Figure 
12b, the slopes measured for the dissolution of pure Ibp particles were higher for increasing SDS 
concentrations above the CMC (4.7 mM), while no difference was observed below the CMC at 
between 0 and 1 mM SDS. 

In order to further quantify the effect of SDS micelles on Ibp solubility, we analyzed the 
dissolution of the pure Ibp microparticles, after all DCM was lost. At and above the CMC, micellar 
solubilization can occur, so hydrophobic compounds can be incorporated into the micelles rather 
than remaining in solution in the water phase. This would create, in turn, an increase in the apparent 
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solubility limit (Cs) of Ibp in the micelle suspension, compared to the one in buffer. Furthermore, we 
assumed here that the diffusion coefficient of molecular-Ibp in the aqueous media, D, was not 
affected by increasing SDS concentrations. That is, the initial loss of Ibp from the microparticle relied 
exclusively on its diffusion from that surface into the receiving micellar solution, and that any 
diffusion in micelles would be slower according to the Stokes-Einstein model of being proportional 
to 1/R, i.e., approximately a factor of at least 0.5 nm of Ibp to 5 nm for the micelle. Also, at this surface, 
there is a solubility limit for Ibp in water, but for the purposes of the new solubility calculation, we 
assume that the solubility of Ibp in the micellar solution is increased. This approximation seems 
reasonable since the effective volume occupied in solution by SDS monomers or micelles in the 
millimolar range is negligible compared to the total volume of the solution, and so the rate-
determining loss of Ibp from the microparticle would be its initial dissolution into the aqueous phase, 
and micelles would diffuse slower than the single molecule. Thus, we applied the Epstein-Plesset 
model (Equation (3)) to obtain the apparent solubility limit, Cs, of Ibp in increasing SDS 
concentrations, by using the diffusion coefficient obtained for Ibp dissolution in PBS (D = 5.5 ± 0.2 × 
10−6 cm2/s), and the density of Ibp (ρ = 1.03 mg/mL). As shown in Figure 13, the apparent solubility 
limit determined this way for single Ibp microparticles increased significantly from 0.83 mg/mL at 0 
mM SDS, to 0.87 mg/mL at 1 mM, and up to around 3 mg/mL in the presence of 100 mM SDS, 
indicating a 3–4 fold increase in solubility above the CMC that appeared to follow a somewhat 
exponential fashion when plotted in the semi log plot of Figure 13. 

 

Figure 13. Apparent solubility limit CS of Ibp as a function of SDS concentration in 5 mM PBS, 
measured from single microdroplets and determined by using the Epstein-Plesset model. A constant 
diffusion coefficient for Ibp was assumed, D = 5.5 × 10−6 cm2/s, obtained at 0 mM SDS, at which the 
solubility limit of Ibp was experimentally determined to be 4 mM = 0.82 mg/mL [77]. Mean and 
standard deviation for at least three different droplets are indicated. 

We can compare these results to other studies already published for Ibp solubilization into 
increasing SDS concentrations, where experimental Cs values of Ibp have been obtained from bulk 
experiments by spectroscopical methods [77]. In the study by Rangel-Yagui and coworkers, the Ibp 
solubility limit was measured to be Cs = 4 mM = 0.825 mg/mL. They found a significant increase in Cs 
values of around 5.5 times between 0 and 80 mM SDS, which although relatively higher is quite 
comparable to our measured 3–4 fold increase between 0 and 100 mM SDS. 

Our assumptions that the rate-determining step for dissolution is molecular diffusion of Ibp 
could account for this slight discrepancy. That is, this more sustained increase in apparent solubility 
measured with our microscopic method might indicate that the rate-determining step for dissolution 
studied from single microdroplets could be micelle diffusion to or away from the droplet surface; in 
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that case, the dissolution rate (slope of the linear representation, 2DCS/ρ) would increase less than 
expected theoretically, since the effective D would be also reduced. 

It is finally worth mentioning that, during these experiments, spontaneous emulsification was 
directly observed under the microscope at 5 mM SDS and above, seen as very faint layers of material 
being formed and expelled from the microparticle surface during Ibp dissolution. This observation 
might suggest that mixed Ibp/SDS microscopic emulsified structures were created by mutual Ibp/SDS 
hydration. This would be consistent with the amphiphilicity of Ibp and with other studies that have 
shown the aggregation behavior of Ibp with other amphiphilic compounds and the formation of 
mixed structures [79–81]. It also indicates that mixed monolayers of SDS and Ibp have a quite low 
interfacial tension such that the lateral, repulsive force between SDS molecules in the monolayer is 
sufficient to curve the interface and emulsify the liquid material. 

3.7. Micromanipulation and DSC Showed That Ibp Microparticles Are Possibly Supercooled Liquids 

Since the micropipette technique also allows us to apply a suction pressure to the formed 
microparticle, and hence deform it in situ, another interesting observation was that the Ibp 
microparticle that was formed, for example, in Figure 10b, was actually deformable, and behaved like 
a liquid droplet. When a suction pressure was applied at the tip of catching pipette, the Ibp 
microdroplet was easily aspirated inside of the micropipette tip and was deformed from sphere to an 
elongated shape, indicating it was a liquid microparticle at room temperature. For the pure solid 
material, the melting temperature and the enthalpy of fusion

 
were determined to be 74.98 °C and 

21.25 ± 1.08 kJ/mol respectively, which were in good agreement with literature values [54,55]. Figure 
14 shows the heat endotherm associated with the phase transition from crystalline to liquid phase by 
increasing temperature. 

 
Figure 14. DSC thermograph scanning of recrystallized Ibp. The scanning rate was 10 °C/min, and the 
temperature range was from 30 to 100 °C. 

However, the thermograph showed no exothermic depression during the cooling process, which 
indicates that there was no recrystallization from the melt. Also, when cooled to −10 °C and then 
reheated, there was no endothermic peak during the reheating process of the Ibp sample. Therefore, 
a liquid phase microparticle of Ibp that emerged from its DCM dissolution at room temperature, even 
though Ibp was 50 °C below its melting temperature, did not solidify and possibly remained as a 
supercooled liquid microdroplet at 25 °C. The characteristic of supercooled amorphous phase of 
ibuprofen (Tg ~ −45 °C) at room temperature has been described in the literature [82,83]. Bras et al. 
(2008) verified the existence of intermolecular hydrogen-bonded associations in the supercooled Ibp 
by IR spectroscopy, electrospray ionization mass spectrometry and molecular dynamic simulation. 
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They assumed that there was a specific supramolecular arrangement of Ibuprofen aggregation that 
could form a liquid crystalline mesophase, which persisted in supercooled state. 

For a bulk sample in a round bottom flask, Ibp did crystallize when the DCM solvent was 
evaporated, showing that crystal formation could take place on the inner surface of the round bottom 
glass, indicating that heterogeneous nucleation was propagated [84]. However, for an isolated 
microdroplet, it is possible to achieve supercooling without heterogeneous nucleation and maintain 
a supercooled liquid of Ibp on the end of the pipette. Future experiments using the micropipette 
technique (as done previously for other oil-water systems [38]) will use this phenomenon to measure 
surface tensions against aqueous media for a range of drugs, including Ibp in its supercooled state at 
the more convenient room temperature. 

3.8. Microfluidic Single Channel Scale-Up 

Finally, we present some data on microfluidic emulsification of DCM/PLGA droplets that lead 
to PLGA microsphere formation, informed by the parameters and observations that the single-
particle micropipette techniques can offer. Given the control over flow rates, the microfluidic 
equipment and flow method [5] provides a very robust microfluidic system, ensuring droplet 
uniformity. Flow rates need to be tuned together and optimized to achieve the perfect microsphere 
quality. 

Several formulations have already been carried out using this technology, including stable cacao 
butter emulsions, W/O/W emulsions, and polystyrene microspheres formed from DCM [5]. An 
additional microfluidics system, that pairs with our current micropipette studies on PLGA, is shown 
in Figure 15. A range of flow rate conditions were assessed in order to evaluate the final particle 
morphology and quality, characterized by scanning electron microscopy (SEM). 

 

Figure 15. PLGA microspheres formed by microfluidic emulsification of DCM/PLGA solution 
droplets. SEM images show the effect of flow rates (Qc = flow rate of continuous phase and Qd = flow 
rate of continuous phase) on the process stability and quality of the microspheres. 
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As shown, by keeping the flow rate of the dispersed phase Qd at 0.167, and decreasing the flow 
rate of the continuous phase Qc from 3.33 to 2.5 and finally to 1.67, perfectly smooth and 
homogeneous microparticles were formed. Thus, the PLGA microsphere morphology was optimized 
at flow rates of 0.167 mL/h for the dispersed phase and 1.67 mL/h for the water phase, so that the 
optimum flow rate ratio Qd/Qc was 10. Flow rates were kept lower to prevent acute blockage by 
polymer deposition in the chip (with 50 μm by 50 μm channel size). The monodispersed droplets 
were gradually hardened by solvent dissolution into the surrounding water phase. Optimized 
microspheres prepared under these kinds of conditions are presented in a higher resolution image in 
Figure 16. 

 

Figure 16. High resolution SEM image of PLGA microspheres prepared by microfluidic 
emulsification. Monodispersed microspheres of 40 μm diameter. 

3.9. Multichannel Microfluidic Scale-Up 

For the typical polymer microsphere process, the rates for a single channel device yield ~5 mg/h 
of microspheres. In order to achieve quantities that can be used for drug release experiments, and 
indeed to provide materials for pre-clinical and clinical trials, scale-up is done on a chip with up to 
400 parallel channels (as shown earlier in Figure 5). The current manufacturing capacity is up to 1 kg 
dry weight of microspheres. However, depending on the application, a typical sustained-release 
product can require up to 500-kg batches. The manufacturing plant, requiring a next hundreds-fold 
scale up, is planned to be designed in the same fashion as the first: by parallelization. A ‘microfluidic 
reactor’ is being designed that will generate up to 20 million microspheres per second. The pilot plant 
project, that has started, has the goal to design, build and test this reactor. 

4. Summary and Conclusions 

The aim of the present work was to investigate the encapsulation of a typical hydrophobic drug, 
Ibuprofen, into PLGA microparticles by using the micropipette technique. By studying such 
microdroplets, solvent dissolution and microparticle formation, the technique could obtain 
quantitative information about times, rates of change, diffusion coefficients and even solubility of the 
drug in micellar solutions. Ibp was precipitated in aqueous media both as a pure drug microparticles 
and formulated into PLGA microspheres. Using the micropipette technique and our newly 
developed “single microdroplet catching method”, we obtained precise, microscopic and real-time 
information about the compound precipitation, final drug loadings (DL) and evidences for phase 
separation at and above DL = 50 wt%. Interestingly, we also found that pure Ibp precipitated as a 
supercooled material from organic solutions both by DSC and microscopy/micromanipulation. The 
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pure drug microparticle gradually dissolved into the surrounding aqueous medium, consistent with 
its already published solubility limit of around 0.83 mg/mL (in 5 mM PBS pH 7.4). From this 
experiment, the measured diffusion coefficient of pure Ibp dissolution into the buffer was found to 
be D = 5.5 ± 0.2 × 10−6 cm2/s, obtained by using the Epstein-Plesset model, which was in excellent 
agreement with already published values measured by NMR of 5.5 × 10−6 cm2/s [73]. Based on the 
measured dissolution rates, the total dissolution times for pure Ibp microparticles in infinite dilution 
were also estimated as a function of size, with dissolution times ranging from 1.1 s for a 2 μm diameter 
particle to 3.2 days for a 1000 μm particle. Our measured value of 75 s for a 14.6 μm diameter Ibp 
microparticle fit exactly on the predicted line. In addition, evidence of the micellar solubilization of 
Ibp into SDS micelles was directly visualized for the first time using a microscopic technique, 
estimating the increased apparent solubility limit of Ibp in SDS solution from a solubility of 4 mM 
(0.825 mg/mL) in water to 80 mM (~3 mg/mL) in 100 mM SDS. All these fundamental properties of 
Ibp as pure drug microparticles and encapsulated in PLGA microspheres can be readily used to guide 
the microsphere scale-up production as in the microfluidic emulsification in multichannel devices 
presented here. Thus, using the micropipette technique to observe the formation, and quantify 
solvent dissolution, solidification or precipitation of an API or excipient for single and individual 
microparticles, represents a very useful tool for understanding microsphere processes and hence can 
help to establish process conditions without resorting to expensive and material-consuming bulk 
particle runs. 

Supplementary Materials: The following are available online at www.mdpi.com/link, Video S1: Original video 
of the experimental measures and mechanical analyses of the shear viscosity of a single erythrocyte; Video S2: 
PLGA microsphere formation by solvent dissolution in 5 mM PBS at room temperature, formed at the tip of the 
micropipette from a solution droplet of DCM:PLGA (PLGA concentration = 25 mg/mL); Video S3: Pure 
Ibuprofen microparticle formation from DCM solution (25 mg/mL) and pure Ibp dissolution into PBS buffer at 
room temperature. 
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