
processes

Review

Embedded Control in Wearable Medical Devices:
Application to the Artificial Pancreas

Stamatina Zavitsanou, Ankush Chakrabarty, Eyal Dassau * and Francis J. Doyle III

Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University,
Cambridge, MA 02138 , USA; szavitsanou@g.harvard.edu (S.Z.); achakrabarty@seas.harvard.edu (A.C.);
frank_doyle@seas.harvard.edu (F.J.D.)
* Correspondence: dassau@seas.harvard.edu; Tel.: +1-617-496-0358

Academic Editor: B. Wayne Bequette
Received: 14 July 2016; Accepted: 15 September 2016; Published: 23 September 2016

Abstract: Significant increases in processing power, coupled with the miniaturization of processing
units operating at low power levels, has motivated the embedding of modern control systems into
medical devices. The design of such embedded decision-making strategies for medical applications
is driven by multiple crucial factors, such as: (i) guaranteed safety in the presence of exogenous
disturbances and unexpected system failures; (ii) constraints on computing resources; (iii) portability
and longevity in terms of size and power consumption; and (iv) constraints on manufacturing
and maintenance costs. Embedded control systems are especially compelling in the context of
modern artificial pancreas systems (AP) used in glucose regulation for patients with type 1 diabetes
mellitus (T1DM). Herein, a review of potential embedded control strategies that can be leveraged
in a fully-automated and portable AP is presented. Amongst competing controllers, emphasis is
provided on model predictive control (MPC), since it has been established as a very promising control
strategy for glucose regulation using the AP. Challenges involved in the design, implementation
and validation of safety-critical embedded model predictive controllers for the AP application
are discussed in detail. Additionally, the computational expenditure inherent to MPC strategies is
investigated, and a comparative study of runtime performances and storage requirements among
modern quadratic programming solvers is reported for a desktop environment and a prototype
hardware platform.

Keywords: embedded control systems; artificial pancreas; software architecture; model predictive
control (MPC); safety-critical applications

1. Introduction

Embedded electronics are widely incorporated in medical devices for diagnosis, prognosis
and monitoring of a disease. Examples of such devices, generally implemented with humans
in the decision-making process, include: digital thermometers, blood pressure monitors,
blood glucose monitors, ECG (Electrocardiography), radiography, MRI (Magnetic Resonance Imaging),
CT (Computed Tomography) and PET (Positron Emission Tomography). The pressing need to develop
fully-automated therapeutic devices (therefore, removing the human-in-the-loop formalism) for active
decision-making, coupled with demands for portability and cost-effectiveness, has prompted the
progress of embedded control systems for medical applications.

A medical embedded controller is a miniaturized, automated system, informed by measurements,
i.e., feedback, from the patient and his or her external environment, designed to perform a dedicated
function related to immediate treatment or overall management of patient health. Sensors, transducers
and human-computer interactions are used for the embedded controller to interact with the
environment, and processing units such as microcontrollers/microprocessors are typically employed to

Processes 2016, 4, 35; doi:10.3390/pr4040035 www.mdpi.com/journal/processes

http://www.mdpi.com/journal/processes
http://www.mdpi.com
http://www.mdpi.com/journal/processes

Processes 2016, 4, 35 2 of 29

execute decision-making strategies based on the acquired measurement information. Additional design
specifications, such as, for example, (i) runtime constraints imposed by the implementation platform;
(ii) reliable operation in the presence of exogenous disturbances and potential system failures;
(iii) optimal power management for the prevention of overheating and to enhance device longevity
and (iv) security regulations to guarantee patient privacy, are also considered while designing the
embedded controller.

An extremely important application that requires the successful integration of feedback control
mechanisms embedded in medical devices is the artificial pancreas (AP) for people with type 1 diabetes
mellitus (T1DM). T1DM patients suffer from an auto-immune disorder that prevents the pancreas
from secreting insulin, a hormone essential for the regulation of blood glucose levels. Dysregulation of
blood glucose concentrations typically leads to serious medical conditions, such as hyperglycemia- and
hypoglycemia-induced health complications that can increase mortality rates by 1.5 fold in patients
with diabetes [1]. Consequently, exogenous insulin must be delivered to maintain the blood glucose
concentration within a safe range (70–180 mg/dL). The AP delivers personalized insulin infusions
in a closed-loop, that is the magnitude of insulin infused is computed based on blood glucose
measurements. Currently, the most advanced treatment of T1DM employs a continuous glucose
monitoring system (CGM) that takes measurements of glucose concentration at regular intervals.
These CGM measurements are leveraged by a control algorithm in the AP, which (without the patient’s
active involvement) computes an appropriate magnitude of insulin infusion. The infusion is actuated
by an insulin pump, also referred to as a continuous subcutaneous insulin infusion (CSII) system.

Several control algorithms have been considered for an AP system [2] and have been clinically
evaluated, including: fuzzy logic-based control (FLC) [3,4], proportional-integral-derivative (PID)-type
control [5,6] and model predictive control (MPC) [7–10]. The results indicate that a reliable AP system
can be developed using any of these controller variants [11]. Currently, the control algorithms for
the AP are implemented on CPU-based devices, such as PCs, laptops and tablets, with a recent
shift towards smaller processing units, such as those found in smartphones. It is necessary, however,
to search for alternative control strategies or to modify existing controllers to warrant implementation
on miniaturized devices with limited memory capacity operating at ultra-low power levels.

The inherent robustness to model mismatch and delays, the design flexibility, the ability to handle
multivariable systems, as well as safety and reliability constraints and the flexible use of the system
model make MPC an attractive control algorithm for complex system. The MPC algorithm has been
successfully implemented in industrial safety-critical process control applications, such as oil and gas,
chemicals, aerospace, food and processing [12] and in the automotive and aircraft domains [13,14].
State-of-the-art embedded MPC on platforms like programmable logic controllers (PLCs) [15] and
digital distributed control systems (DCSs) has motivated the consideration of embedded MPC for the
AP system. Therefore, in this study, emphasis is placed on the MPC implementation requirements for
an embedded AP. It is expected that an embedded AP with MPC in the decision-making module can be
replaced by computationally simpler algorithms like PID or fuzzy-logic based controllers if required.

The objective of this paper is to explore current and future trends in the AP technology with a focus
on architecture and algorithms amenable to low-complexity miniaturized devices. We discuss available
hardware and software configurations and provide insight into the configuration for embeddable
AP. We also propose multiple control algorithms for embedded AP, with special emphasis on model
predictive control and its variants due to several important qualities: namely, design flexibility in
terms of complexity reduction and available resource constraints (memory/time/power) along with
the inherent embedding-agnostic advantages discussed above. We also compare different optimization
methods and solvers to demonstrate this design flexibility of the MPC. However, the controller has to
be built around peripheral layers that are responsible for ensuring the security, privacy and integrity of
the patient. To this end, we provide a detailed list of potential embedded AP hazards and methods in
the current literature to mitigate these issues. It is important to clarify that the AP system is considered

Processes 2016, 4, 35 3 of 29

as an exemplar system in this work; however, the configurations, algorithms and safety protocols
covered are generalizable to embedded/wearable medical devices across a wide range of applications.

The rest of this paper is organized as follows. Section 2 presents the AP system configurations for
the implementation on a smartphone or on-chip. Design requirements for the software architecture
based on the specifications of the available hardware resources are discussed. Section 3 lists the
available control algorithms used in modern AP systems that can potentially be embedded in low
complexity hardware platforms. Multiple available MPC solvers are evaluated, and a comparative
study of their runtimes, code size and control performance is made both on a desktop and on
a prototyping hardware platform with representative numerical examples. Challenges associated with
the design, system prototyping and verification methods are discussed in Section 4. Safety requirements
that must be guaranteed in order to develop a reliable AP system are described in Section 5.
Some concluding remarks on the development of embedded AP systems are presented in Section 6.

2. AP System Architecture

2.1. Components of the AP System

The AP system consists of the following three components: a continuous glucose monitor (CGM),
a control algorithm and a pump for delivering insulin (and glucagon in bi-hormonal therapy). In this
work, the single hormone approach will be discussed because it is commonly available. The CGM
provides the controller with glucose measurements, typically every 5 min for currently available
CGM devices. Subsequently, the controller processes the information reported by the CGM, and the
appropriate insulin dosage is computed. The calculated control action is then signaled to the insulin
pump to execute the control action and actuate the prescribed insulin dose. An AP consisting of
the three necessary elements of CGM, CSII pump and control law regulates glucose in a closed-loop
manner, without necessitating the active participation of the patient in the decision-making process.

2.2. Hardware Configurations of the AP System

The AP system architecture has been clinically evaluated for three potential configurations,
based on the hardware platform where the controller was implemented, specifically:
computer/laptop [7,16–18], tablet [8,19,20] and smartphone [21]. In this study, we examine
two possible AP hardware configurations; we refer to them as Configuration A and Configuration
B. In Configuration A, the control unit is an application installed on a commercially available
handheld device. A future design aim is that the application can be employed concurrently with
other applications run by the user. To this end, a smartphone-based AP platform (currently, for the
development phase of the Diabetes Assistant (DiAS) platform, the smartphone is employed as
a dedicated controller, and no other phone-related functions are permitted) (DiAS; University of
Virginia, Charlottesville, VA, USA) has been developed [22] and evaluated in outpatient
studies [10,23–26]. Extended studies involving a two-month evening and night closed-loop
control study have also been performed [27]. Results from these studies indicate that the developed
platform is reliable in terms of computational efficiency and safety. An iPhone 4S was used in [28]
to run a control algorithm for bi-hormonal therapy that was evaluated in an outpatient study of
preadolescent children with T1DM. A hand-held computer [29] was used to run the control algorithm
in [30,31]. A free-living conditions clinical trial was performed using a smartphone that implemented
the controller [32]. A hybrid closed-loop delivery system implemented on a cellular device was
evaluated in a supervised outpatient study [33]. A wearable device that integrates the CGM, CSII,
a glucagon pump, the control algorithm and wireless transmitters was presented and evaluated in
a pilot at home clinical study [34]. A bio-inspired AP system implemented on a miniature silicon
microchip within a portable hand-held device is evaluated in [35]. In Configuration B, on the other
hand, the controller is embedded directly into the pump. In this case, no additional peripheral devices
(such as smartphones) are required to run the control algorithm.

Processes 2016, 4, 35 4 of 29

Configurations A and B are presented in a schematic; see Figure 1. There are two main components:
the data acquisition unit and the control unit. Possible inputs to the data acquisition unit include:
(i) the real-time glucose concentration values sent wirelessly from the sensor; (ii) discrete finger stick
values used for the calibration of the sensor; and (iii) manually = provided patient information,
such as announced meals, that may permit tighter control by feed-forward action. A transmitter that is
operatively coupled with a microprocessor is configured to communicate with the sensor and the user
input. The microprocessor in the data acquisition unit is used to transmit control signals to the receiver
during operation, and to control the retrieval and processing of stored data. The data acquisition
unit can be either a standalone monitoring or displaying device (as for example seen in Figure 1,
Configuration A) or it can be integrated into the insulin pump (see Configuration B). In Configuration
A, the data acquisition unit wirelessly sends information to the handheld controller [22]. The measured
glucose values and insulin treatment can be saved on a secure virtual cloud [36,37] for analysis and
evaluation by the patient and their healthcare provider.

Processes 2016, 4, 35 4 of 29

B, on the other hand, the controller is embedded directly into the pump. In this case, no additional
peripheral devices (such as smartphones) are required to run the control algorithm.

Configurations A and B are presented in a schematic; see Figure 1. There are two main
components: the data acquisition unit and the control unit. Possible inputs to the data acquisition
unit include: (i) the real-time glucose concentration values sent wirelessly from the sensor; (ii)
discrete finger stick values used for the calibration of the sensor; and (iii) manually = provided
patient information, such as announced meals, that may permit tighter control by feed-forward
action. A transmitter that is operatively coupled with a microprocessor is configured to
communicate with the sensor and the user input. The microprocessor in the data acquisition unit is
used to transmit control signals to the receiver during operation, and to control the retrieval and
processing of stored data. The data acquisition unit can be either a standalone monitoring or
displaying device (as for example seen in Figure 1, Configuration A) or it can be integrated into the
insulin pump (see Configuration B). In Configuration A, the data acquisition unit wirelessly sends
information to the handheld controller [22]. The measured glucose values and insulin treatment can
be saved on a secure virtual cloud [36,37] for analysis and evaluation by the patient and their
healthcare provider.

Figure 1. Schematic artificial pancreas (AP) system architecture. In Configuration A (top), the control
unit is an application installed on a handheld device. In Configuration B (bottom), the embedded
controller is integrated into the actuating insulin pump (BG = blood glucose; CGM = continuous
glucose monitoring; RF = radio frequency).

Figure 1. Schematic artificial pancreas (AP) system architecture. In Configuration A (top), the control
unit is an application installed on a handheld device. In Configuration B (bottom), the embedded
controller is integrated into the actuating insulin pump (BG = blood glucose; CGM = continuous
glucose monitoring; RF = radio frequency).

Processes 2016, 4, 35 5 of 29

In Configuration B, enclosed within the blue dashed line in Figure 1, the control unit is built into
the insulin pump. The ultimate objective for the AP system is to integrate the data acquisition unit
into the pump. Therefore, the two components are combined into a single dedicated device to enable
secure resource sharing at higher speeds.

2.2.1. Configuration A

Due to recent advances in mobile computing, the smartphone (handheld device) has been
established as a useful medium for implementing a myriad range of applications. In the case of
an AP system, the control unit can be implemented as an application on a smartphone. The supporting
hardware specifications for the running AP control application are obtained using ARM Cortex-A15
as a reference microprocessor that is comparable with microprocessors commonly used in modern
smartphone technology (Qualcomm, Samsung, NVidia).

2.2.2. Configuration B

This configuration entails that the control unit is integrated directly into the insulin pump.
Although the exact specifications of the microcontrollers used in commercial insulin pumps are not
openly available, the standard requirements for portable medical devices are met with the low-power
microcontrollers, such as STM32 [38], which uses a Cortex M3 processor core based on the 32-bit
ARMv7 architecture, MAXQ2010 [39] and 8-bit S08 [40].

A comparative overview of microcontrollers used in smartphone-based AP systems and
commercial insulin pumps is presented in Table 1.

Table 1. Hardware specifications for various AP (artificial pancreas) configurations. Comparison
metrics include: processing unit, memory capability, clock frequency, arithmetic logic unit (ALU) and
availability of floating point units (FPU).

Hardware Specifications

Configuration (A) Smartphone (B) Insulin Pump

Processor Core ARM Cortex-A15 ARM Cortex-M3 MAXQ2010 8-bit S08

Memory 2 GB RAM 96 KB on-chip RAM
64 KB Flash 2–128 KB Flash
2 KB RAM 0.128–12 KB RAM

CPU Clock Frequency 1.5–1.7 GHz 72 MHz 10 MHz 16–50 MHz

Integer ALU 32-bit 32-bit 16-bit 8-bit

FPU Optional 8 8 8

2.3. Software Architecture

Given the available hardware resources, the software architecture for a chosen control algorithm
affects the dependability of the embedded AP system, while conforming to expected operational
and technological specifications. The concept of dependability, presented in [41], integrates the
following attributes: (i) reliability; (ii) availability; (iii) safety; (iv) confidentiality; (v) integrity;
and (iv) maintainability.

For a safety-critical application such as an embedded medical system, the most important
attribute to be met during the design stage is safety. System failure can jeopardize the patient’s health,
and, therefore, must be prevented under any circumstances. The other attributes are fundamental to
the design and development of any generic embedded medical device and will be briefly discussed in
the rest of this study.

Sensor dropouts and attenuation, insulin infusion failure or erroneously announced meals
are common issues encountered during typical AP operation [42]. The need to fulfill strict safety
requirements has been evident in most AP designs and alternative software architectures have been
evaluated. Modular architecture, including a control, a safety supervision and a range correction
module, has been developed [43]. A health monitoring system is introduced in [44] as a safety layer
in the AP device system. A meal detection algorithm either based on the calculation of the glucose

Processes 2016, 4, 35 6 of 29

rate of change [45,46] or model based [47] is proposed to prevent postprandial hyperglycemia for the
case of unannounced meals. A low-glucose suspend system includes a threshold-suspend feature
of sensor-augmented insulin pumps that forces the pump to shut off when CGM values drop below
a certain threshold [48]. This feature is now commercially available, and it is the first step towards the
development of a safe portable AP system.

The AP software architecture is structured in layers and presented in Figure 2a.

Processes 2016, 4, 35 6 of 29

rate of change [45,46] or model based [47] is proposed to prevent postprandial hyperglycemia for the
case of unannounced meals. A low-glucose suspend system includes a threshold-suspend feature of
sensor-augmented insulin pumps that forces the pump to shut off when CGM values drop below a
certain threshold [48]. This feature is now commercially available, and it is the first step towards the
development of a safe portable AP system.

The AP software architecture is structured in layers and presented in Figure 2a.

Figure 2. Software architecture for AP. (a) Overview of the layered software architecture. The control
and safety layer enclosed in the orange dashed line is enlarged and presented in (b,c); (b)
architecture with fault detection layer; and (c) architecture with control and safe control layers. IOB,
insulin-on-board.

2.3.1. User Interface Layer

The user interface layer (UI) is used for the communication between the user and the embedded
control system. This layer receives instructions from the patient, for example: the announcement of a
meal, report of exercise, request for a manually-determined insulin bolus; and, along with the CGM
data, this information is directed to the next layer. The UI layer is also responsible for displaying the
returning information from the embedded system to the user. Appropriate functioning of the
embedded control system is dependent on the receipt of good data from the patient, and a
well-designed UI is crucial for this, making it as difficult as possible for the user to make mistakes in
entering data that should be entered mistake free. On the other hand, effective communication and
presentation of data to the subject is imperative for AP users to understand the inner workings of the
control algorithm in order to improve their personal health management.

2.3.2. Task Handling Layer

The task handling layer is responsible for defining, executing and deleting a task. The tasks
involve the filtering and coordination of data [43], the estimation of the metabolic state, the
definition of operational and safety constraints, such as insulin-on-board (IOB) constraints, and the
calculation of time varying glucose targets. Depending on the exact implemented control algorithm,
different tasks may be created.

2.3.3. Control and Safety Layer

The next two layers, the control and safety layers, are the kernel of the AP system. The control
layer is responsible for the calculation of the optimal insulin infusion to be delivered by the pump.
Alternative control strategies have been suggested for the AP system [2], whose implementation in
embedded platforms is discussed in detail in Section 3. The safety layer acts as a supervision layer
that is responsible for evaluating the quality of the input data and detecting any faults originating in

Figure 2. Software architecture for AP. (a) Overview of the layered software architecture.
The control and safety layer enclosed in the orange dashed line is enlarged and presented in (b,c);
(b) architecture with fault detection layer; and (c) architecture with control and safe control layers.
IOB, insulin-on-board.

2.3.1. User Interface Layer

The user interface layer (UI) is used for the communication between the user and the embedded
control system. This layer receives instructions from the patient, for example: the announcement
of a meal, report of exercise, request for a manually-determined insulin bolus; and, along with
the CGM data, this information is directed to the next layer. The UI layer is also responsible for
displaying the returning information from the embedded system to the user. Appropriate functioning
of the embedded control system is dependent on the receipt of good data from the patient,
and a well-designed UI is crucial for this, making it as difficult as possible for the user to make mistakes
in entering data that should be entered mistake free. On the other hand, effective communication and
presentation of data to the subject is imperative for AP users to understand the inner workings of the
control algorithm in order to improve their personal health management.

2.3.2. Task Handling Layer

The task handling layer is responsible for defining, executing and deleting a task. The tasks
involve the filtering and coordination of data [43], the estimation of the metabolic state, the definition
of operational and safety constraints, such as insulin-on-board (IOB) constraints, and the calculation of
time varying glucose targets. Depending on the exact implemented control algorithm, different tasks
may be created.

2.3.3. Control and Safety Layer

The next two layers, the control and safety layers, are the kernel of the AP system. The control
layer is responsible for the calculation of the optimal insulin infusion to be delivered by the pump.
Alternative control strategies have been suggested for the AP system [2], whose implementation in
embedded platforms is discussed in detail in Section 3. The safety layer acts as a supervision layer that
is responsible for evaluating the quality of the input data and detecting any faults originating in the

Processes 2016, 4, 35 7 of 29

control layer. In such scenarios, the safety layer overrides the suggested control action and signals
the lower levels to perform an alternative, safer action. Such an action could be a low risk insulin
infusion or the generation of an alarm that warns the patient to intercede. The interplay between the
controller and the safety layer is as follows. The control is designed to produce insulin infusions with
the end goal of maintaining safe levels of blood glucose. To this end, it is accessorized with basic
safety constraints. However, in the event of controller failure, it is crucial to have a reliable secondary
level of protection for the patient. This is the role of the safety layer: a dedicated function to prevent
life-threatening failures.

As argued in [49], for medical embedded control, the highest priority is to maintain reliability
and safe functionality (fault tolerance, disturbance rejection) while running at optimal operation
levels. Different safety protocols can be implemented in conjunction with the core control strategy,
as presented in Figure 2b,c. For example, in Figure 2b, a distinct fault detection layer is included [50,51]
that identifies if a fault has occurred in the control layer and adapts the control parameters according
to the dynamics of the faulty system. Another way to reconfigure the controller is to switch between
pre-designed controllers depending on the specific fault. However, issues of stability, performance
degradation and increase in storage requirements may arise when switching between controllers,
which is not desirable in medical embedded control. An alternative configuration based on the principle
of functional redundancy has been suggested in [49,52] and is presented in Figure 2c. This architecture
considers two or more control alternatives that run in parallel, and based on pre-specified criteria,
the best solution is selected. However, increased computational complexity and storage requirements
should be taken into consideration. If the control layer cannot provide the optimal solution within the
timing constraints imposed by the hardware, the safe control layer provides a feasible solution that
satisfies basic safety requirements. To address this issue, in [52], the safe control layer solves an iterative
optimization procedure utilizing Hildreth’s algorithm [53] in order to fulfil the strict timing deadlines
of real-time systems while maintaining a minimal set of safety constraints. However, it is not clear that
the solution to runtime constraints lies only in the selection of suitable solvers. For example, in [49],
the authors propose a safe controller that uses the same solver as the control layer, but with settings
tailored towards reducing memory or timing overheads. Such a method may involve warm-start
initialization, where the tail of the previous control trajectory is used as an initial guess for computing
the next control iteration. The overarching objective of this “safe” controller is to construct a solution
that prioritizes the safety of the next control action in spite of the sudden appearance of failure modes.
A detailed description of potential faults in an AP system is presented in Section 6.

2.3.4. Operating System and Hardware Layers

The suggested control solution is then passed to the operating system, which acts as the
communication channel between the upper layers and hardware. It is responsible for scheduling tasks,
memory management, parallel executions and communication with peripherals.

Finally, the processor hardware layer includes the firmware of the microprocessor that controls
directly the operation of the hardware by managing the operating system. It is stored in non-volatile
memory, and its main responsibility is to load the operating system’s kernel into primary memory.
In small embedded devices, the last two layers may be combined.

3. Control Algorithms for the Artificial Pancreas

Mainly three control design approaches have been suggested for the regulation of blood glucose
within a closed-loop framework: PID, fuzzy logic and MPC [2]. PID controllers operate on the
difference between the measured and the desired glucose levels and calculate a control signal
(insulin infusion) that is then applied on the system (patient). The relatively simple implementation
and the argument that the PID algorithm is expected to emulate and replace the biological pancreas
action well [54,55] have established PID controllers as a significant candidate for the AP system [56,57].
The wealth of clinical experience behind the decision-making for glucose regulation has, on the other

Processes 2016, 4, 35 8 of 29

hand, motivated the consideration of fuzzy logic control as a potential candidate [58]. Fuzzy logic
aims to solve a problem by mimicking the way a person would make decisions, by introducing
heuristic variables. Finally, the inherent complexity of the system with hard constraints, time delays,
metabolic uncertainty and variability has encouraged the use of MPC. MPC uses a mathematical
model of patients with type 1 diabetes to predict the future effect of control action (insulin/and
glucagon) on their blood glucose concentration. The model is used to formulate an optimization
problem that minimizes an appropriately chosen performance objective that is solved to obtain the
optimal control trajectory. Several formulations of the MPC problem have been proposed for the AP
system, depending on the controller objectives, the type of the mathematical model used and the
control specifications. For example, the desired blood glucose can be of a constant or time-varying
value [59,60] or a euglycemic zone may be formulated that can also be constant [61] or time varying [62].
The mathematical model can be physiological or empirical, time invariant or adaptive.

In this section, the requirements in terms of design, implementation and computation of the
alternative control algorithms that need to be considered in order to develop an embedded AP control
system are discussed. First, a brief description of PID and fuzzy logic control implementation in
embedded systems is provided, and then, the requirements for embedded MPC development are
discussed in detail.

3.1. Proportional Integral Derivative Control

The PID controller consists of three components: the proportional (P), the integral (I) and the
derivative (D). The control update equation of the PID controller [63] is given by:

u (t) = KP

[
e (t) +

1
τI

∫ t

0
e (s) ds + τD

de (t)
dt

]
, e (t) = r (t)− y (t) (1)

where u(t) is the control output, e(t) is the error signal, represented by a difference between the
reference signal r(t) and the measured output y(t). The scalars KP, τI , τD, denote the controller
parameters. The PID update Equation (1) has to be discretized in order to be implemented in digital
platforms [64,65], given by:

uk = KP

[
ek−1 +

∆t
τI

k−1

∑
s=1

es +
τD
∆t

(ek−1 − ek−2)

]
, ek = rk − yk (2)

where ∆t is the sampling time. Once the discrete PID control algorithm is obtained, anti-windup
algorithms should be considered to account for inaccuracies and oscillations imposed by saturating
constraints on the actuator. Then, the aim is to efficiently implement the controller with respect to
minimizing the execution time and the required memory size to meet the hardware requirements.
Issues of finite word length and precision, signal conditioning, pre-filtering and computational delays
will arise when PID is implemented on digital hardware. Methods for addressing some of these issues
are discussed, for example, in [65]. The optimal use of the hardware resources has been recognized to
play an important role in complexity reduction and speed increase in PID implementation. An efficient
FPGA (field programmable gate array) design scheme for PID implementation is proposed in [66].

3.2. Fuzzy Logic Control

Fuzzy logic can be employed to construct rule-based fuzzy logic control methods. The original
model-free nature of fuzzy logic control has gradually changed to model-based FLC [67] with the
introduction of Takagi–Sugeno (T-S) fuzzy models [68]. The dynamics of nonlinear systems can
be expressed using a T-S fuzzy model built on fuzzy rules. These rules denote local input-output
dynamics and are expressed by local linear models; see, for example [69]. The fuzzy inference process
consists of four steps: initialization, fuzzification, fuzzy inferencing and defuzzification. The first
step involves the definition of the linguistic variables and terms, the construction of the membership

Processes 2016, 4, 35 9 of 29

functions (MF) and the rule base. During the fuzzification step, membership functions are used to
convert the crisp data to fuzzy data, which are then used to evaluate the rules in the rule base using
a fuzzy inference system (FIS). The results are combined, and finally, the output data are converted to
non-fuzzy values during the defuzzification step. The key points that need to be considered for small
footprint hardware implementations of fuzzy logic are [70]: (i) evaluation of the contribution of the
active rules only; (ii) restriction of the shapes of the membership functions; and (iii) simplification
of the defuzzification methods. A single-input FLC is proposed in [71] to simplify the involved
evaluation rules, and with an appropriate choice of the MF shape and fuzzification/defuzzification
methods, the proposed embedded scheme achieved reduced memory needs while maintaining the
performance requirements. In [70], a hybrid software/hardware approach was proposed for FLC
hardware implementation that resulted in improved performance and flexibility perfectly suitable for
low-cost and rapid implementations in robotics.

3.3. Model Predictive Control

At each sampling instant, MPC solves an on-line optimization problem in order to find the optimal
control action that minimizes the objective over a specified time horizon and also satisfies constraints
on inputs (insulin/and glucagon), states (physiological/artificial) or outputs (glucose). When the
optimal sequence of the future control actions {ui, ui+1, . . . , ui + Nc−1} is obtained, only the first value
ui is applied to the system, and the optimization problem is then reformulated and solved at the
next time instant, when new measurement information (namely, yi+1) is available. The optimization
problem that yields the optimal zone-MPC control action, described in [62,72], is given by,

min
ûk ,ǔk

Q
Np

∑
k=1

(zk)
2 +

Nc−1
∑

k=0
(R̂û2

k + Řǔ2
k),

subject to :
xk+1 = Axk + Buk

yk = Cxk
zk = Z(yk, yk+i, y

k+i
)

−uk+i ≤ uk ≤ uk+i
ûk = max (uk, 0)
ǔk = min (uk, 0) ,

(3)

where i denotes the current sampling instant and yi is the current measurement output. With glucose
excursions zk deviating from the euglycemic zone defined with the zone-excursion function Z, where,

Z
(

y, y, y
)
=

y − y, if y > y
y − y, if y ≤ y
0, otherwise

the scalar u denotes the control input, y is the measured scalar output, y and y are the upper and
lower bounds of the euglycemic zone and A, B, C are system matrices. The matrix Q penalizes the
glucose deviation from the target zone, and the matrices R̂ and Ř denote the control input weights
above and below the basal insulin level, respectively. The positive integers Np and Nc, with Nc ≤ Np,
denote the prediction and control horizons of the MPC. The successful implementation of MPC in
real-time applications relies on balancing the different aspects of controller design, such as constraint
satisfaction, optimality, stability and complexity reduction. The repetitive solution of the optimization
problem (3) is computationally intensive and possibly prohibitive for low-memory and low-power
hardware implementation. In real-time applications with hard constraints on execution time and
storage capabilities, it is very challenging to compute an optimal solution in actual time. To overcome
this challenge, alternative approaches that can be employed are discussed in this section.

Processes 2016, 4, 35 10 of 29

3.3.1. Explicit/Multi-Parametric MPC

An approach to overcome implementation complications related to demanding online
computations of traditional MPC is the so-called explicit/multi-parametric MPC (mp-MPC) that
has been proposed in [73,74]. The online optimization problem solved in MPC is now solved offline
by leveraging multi-parametric programming to obtain the optimal control laws as explicit functions
of the states/outputs (defined as the parameters of the system) and the “critical regions” where
these functions are valid. Therefore, the online optimization involved in MPC is replaced by simple
function evaluations in the form of a look-up table that leads to a significant decrease in the on-line
computational effort. Hence, mp-MPC is regarded as a potential alternative for low-power hardware
implementations [75,76]. The idea of an explicit MPC-based AP system has been proposed in [16,77,78]
with simplified computational models.

Increasing the complexity of the system’s description produces a significant increase in memory
demands that could be prohibitive for hardware implementation. In fact, increasing the dimensions
of the states and inputs, the length of the prediction horizon or the number of constraints of the
optimization problem can lead to very expensive off-line computations and an increase in the
number of critical regions. The increased complexity of the solution and the large number of critical
regions can consequently affect the efficiency of the online search algorithm. The disproportionate
scaling of the memory, the off-line computational demands and the complexity of the online
search algorithm with the increase of the problem’s complexity has been recognized widely as
a barrier for further consideration of the mp-MPC approach in real-time applications [79–81].
Many studies have tried to address this problem and suggested countermeasures based on the
problem’s formulation and solution. The common rule is to reduce the dimension of the states and
prediction horizon or the number of dynamics in the case of hybrid systems. However, this could
lead to significant loss of optimality and, potentially, the infeasibility of the computed control action.
An effective solution with direct applicability is the inclusion of manipulated variable blocking [82,83].
In essence, the manipulated variables remain constant during specified intervals, which implies
that the number of optimization variables is decreased. Therefore, the computational complexity
of the corresponding mp-MPC problem is also decreased. Complexity reduction of the calculated
explicit solution is suggested in [84,85], where the number of critical regions is decreased, but the
optimality of the simplified feedback is maintained. However, due to their post-processing nature,
these approaches may be inappropriate for certain applications where the offline computation time is
critical. An alternative approach is the development of approximation designs and search algorithms
that produce approximate descriptions of the explicit sub-optimal solutions for reducing both online
and offline computations [86–89]. An alternative, effective way to decrease storage costs and reduce
complexity in explicit model predictive controllers (EMPCs) is by the characterizing the EMPC surface
using regression or interpolation methods [90–93].

Therefore, the successful implementation of explicit MPC on embedded platforms for a particular
application depends on the system formulation (prediction horizon, number of states and inputs),
the available resources and, if necessary, the applicability of a potential approximation algorithm.

3.3.2. Modified On-Line MPC for Embedded Control Systems

Alternative approaches for online MPC implementation have been developed with the main
objective being to decrease the required time for online execution of the computations in order
to fulfil the time constraints imposed by the hardware resources. The efficiency of implementing
online MPC in microscale devices is dependent not only on the optimization problem inherent to the
MPC algorithms, but also on the choice of the optimization solvers. In [94], a direct application
of Newton’s method is considered that results in solving an unconstrained nonlinear problem
and presents direct applicability to different problem formulations. Then, the precision of the
arithmetic operations of the optimization problem is reduced [95] using a logarithmic number system
(LNS) microprocessor-based architecture [96]. LNS demonstrates a significant decrease in memory

Processes 2016, 4, 35 11 of 29

requirements and an increase in optimization speed compared to arithmetic units. Another common
approach is the implementation of the warm-start procedure. The previously computed control
trajectory for the next control horizon is suitably shifted to be used as a starting point for computing
the current optimal controller. This leads to a reduction in the number of iterations in comparison to
cold-start, with some smoothness assumptions on the optimal MPC space. Alternatively, an option
could be to terminate the optimization procedure early, so long as the optimization method produces
feasible solutions at each iteration. The early termination of an appropriate interior-point method
resulted in high quality control, as reported in [80]. Similar to the explicit MPC, manipulated variable
blocking is an efficient method to reduce the complexity of the computations. Additionally, evaluation
points can be introduced to evaluate the control variables at specific time instants and not over the
entire prediction horizon [83]. Another approach that can be employed for complexity reduction is
linear interpolation between precomputed predicted trajectories with desirable characteristics [97,98].
Each predicted trajectory is tuned to achieve different objectives, i.e., optimal performance or
maximum feasibility. Then, interpolation between the predictions is performed to obtain the best
performance subject to feasibility [99]. This method achieves larger feasibility regions for the same
computational load and a performance close to the exact MPC, but with reduced computational
burden. A conceptually similar idea that aims to meet the performance objectives within a limited
time frame is to derive alternative control laws off-line and then online to choose the one that gives the
best performance using a scheduler or supervisor [100]. A feedback scheduler is suggested in [101,102]
that uses feedback information from the optimization algorithm to dynamically allocate CPU time
to tasks and to determine when to terminate the optimization problem and output the control signal.
A hybrid logic MPC is suggested in [94] to decrease further the computational complexity. A less
expensive control-scheme is employed when the output reaches the set-point. In this particular
example, the optimizations are aborted when the output lies within a range. Other approaches based
on suboptimal MPC strategies are investigated in [103,104] that reduce the online computational effort
of MPC.

3.3.3. Optimization Algorithms and Solvers

As discussed in the previous section, the most demanding part of MPC is the repetitive solution
of the optimization problem (3). Therefore, the choice of the optimization algorithm and solver for
embedded control applications is crucial. The solver’s efficiency is directly related to the real-time
specifications of the available hardware platform as discussed in [105]. In essence, the runtime
specifications impose a limit on the number of iterations that can be performed by the solver,
which subsequently affects the level of achieved optimality. Moreover, reduced solver runtimes
imply decreased power consumption that can considerably contribute to extending the life of the
battery that powers the system. Two of the most commonly-used optimization algorithms that are
briefly discussed here are active-set and interior point:

3.3.4. Active-Set Method

This is a very popular method that is based on defining (at each time step) a set of constraints
that are active at the solution and treated as equalities. The active-set method iteratively adjusts the
working set, i.e., an estimate of the active set, since constraints may become active or inactive at
every time step. The process terminates when the current iterate minimizes the cost function over the
working set and all Lagrange multipliers related to the constraints of the working set are non-negative.
The major advantage of the method is the fast solution of the optimization problem since only active
constraints are considered for every iteration. However, since the active set varies from step to step,
the structure of the problem may also change.

Processes 2016, 4, 35 12 of 29

3.3.5. Interior Point Method

The notion of the interior point method (IPM) involves posing the inequality-constrained
optimization problem as a sequence of a system of linear equations [106] that can be solved efficiently
by using Cholesky factorization or exploiting the sparsity of the structure of matrices involved.
The interior point method provides an attractive alternative to the active-set algorithm because
the dimension and structure of the system of linear equations is invariant across iterations [107].
In [108], a comparison of the active-set method (ASM) and IPM performance when implemented
on an FPGA was made. It is suggested that ASM performs better for small-scale applications,
while IPM should be preferred in the case of larger applications. It was also shown that the storage
requirements increase exponentially with the number of inequality constraints for ASM compared to
IPM, which demonstrates a linear storage requirement trend.

Open-source software packages can be used to implement the afore-mentioned optimization
algorithms in embedded platforms. These software tools can generate custom optimization codes
using high-level programming languages, such as C/C++ or Python, that are suitable for real-time
applications. The solvers interfacing with C that were used in this work are briefly presented in
the following.

(1) qpOASES (Quadratic Programming Online Active Set Strategy)

qpOASES [109] is an open source software package that implements a parametric active-set
method. This method is inspired by parametric quadratic programming, and it is built on the idea
that the active set does not change much from one quadratic programming problem (QP) to the
next; since the move from the old QP to the new is made in a convex set, the feasibility of all QPs is
ensured [110]. qpOASES was originally implemented in C++, but a C version can now be used. It is
programmed generally to handle any problem specifications, and therefore, the storage requirements
do not change with the problem size.

(2) CVXGEN (Code Generator for Embedded Convex Optimization)

CVXGEN [111] is an open source software tool that implements the Mehrotra predictor-corrector
IPM. The advantage of CVXGEN is that it generates a custom library-free solver while taking
into account the problem structure and performing pre-conditioning accordingly to boost solution
speed [111]. Additionally, its implementation is straightforward and tailored for seamless integration
into the MPC algorithm. Although CVXGEN works well for small-sized problems with up to 4000 KKT
(Karush–Kuhn–Tucker) coefficients in the constraints and objective, it cannot handle larger problems,
for example an MPC with a large predictive horizon.

(3) ECOS (embedded conic optimization solver)

ECOS [112] is an open-source numerical software package that implements a standard Mehrotra
predictor-corrector interior-point algorithm. It is designed to compute the solution of second-order
cone optimization problems (SOCP). A quadratic programming MATLAB interface rewrites the QP
through an epigraph reformulation of the objective function as a SOCP to be further handled by ECOS.
ECOS code is short and simple with a low footprint, making it suitable for embedded applications.

(4) QPC (Quadratic Programming in C)

QPC [113] is a quadratic programming solver library written in C interfaced with MATLAB.
It provides the option to use ASM or IPM algorithms to obtain the optimal solution. In particular,
qpas (quadratic programming active set) uses a dual active-set algorithm and qpip (quadratic programming
interior point) a primal-dual interior-point algorithm to solve strictly convex QPs.

(5) FORCES (Code Generator for Fast Optimization) Pro

FORCES [114] is an extension of ECOS designed specifically for MPC applications to linear and
nonlinear systems. The toolbox enables automatic code generation for embedded design, making it

Processes 2016, 4, 35 13 of 29

an attractive proposition for integration into the AP system. However, since it is a specialized MPC
solver and not a generic QP solver, a comparison to the other QP solvers detailed above is not a fair
comparison. Therefore, FORCES Pro is not considered in the comparative study that follows.

(6) CVXOPT (Python Software for Convex Optimization)

CVXOPT [115] is an open source software package for convex optimization written in Python.
The implemented algorithm is a standard Mehrotra predictor-corrector interior-point algorithm.

(7) CVXPY (Python-Embedded Modeling Language for Convex Optimization Problems)

CVXPY [116] is an open source software package that converts the optimization problem, specified
by the user, into a standard, conic form and interfaces with a solver to obtain the optimal solution.
The solvers called by CVXPY are CVXOPT and ECOS for small–medium-scale problems and SCS
(splitting conic solver) [117] for large-scale problems.

3.3.6. Performance Comparison

The performance of the solvers is evaluated for zone-MPC as described in [62] and presented
in (3) for the AP system. The zone-MPC incorporates a hybrid logic, which essentially states that the
controller is activated when the output lies outside a zone that can periodically change. The zone
represents the clinically safe range of glucose concentration.

We present the following methodological framework (Figure 3) that describes the steps towards
the implementation of our optimization problem in an embedded setting. Our objective is to determine
which algorithm (not necessarily which solver) performs best with small runtimes and memory footprint
and is therefore suitable for embedded implementation. Initially, we perform a series of simulation
studies to evaluate the performance of the previously presented QP-solvers in a desktop environment
using MATLAB (2015b, The MathWorks Inc., Natick, MA, USA). This step is a high-level assessment of
the available solvers based on their suitability for embedded implementation. For the field of AP, this step
usually is the starting point for any control design evaluation, since the Universities of Padova/Virginia
metabolic Simulator (UVA/Padova) [118], an FDA-accepted tool, is implemented in MATLAB. According
to Figure 3, we propose an intermediate step for the transition between desktop implementation and
dedicated hardware design. This intermediate step is the use of an embedded prototype platform, in our
case a Raspberry Pi Zero and a Raspberry Pi 3 Model B (https://www.raspberrypi.org/). The advantage
of this step is that we will not focus on the explicit design of the system on chip as it is readily
available; instead, we focus on deploying our control algorithm from this embedded device and
address implementation challenges, such as fixed-point/floating precision-related numerical errors
and data communication. Therefore, the performance of the QP solvers is evaluated in preliminary
hardware-in-the-loop simulation studies using the Raspberry Pi as a development tool. The final step
is the evaluation of the solver that the previous steps indicated as the most appropriate in a dedicated
system-on-chip (ASIC) that meets the requirements of the AP application. This final step has not been
investigated thoroughly and is the subject of future work.

Processes 2016, 4, 35 13 of 29

solver and not a generic QP solver, a comparison to the other QP solvers detailed above is not a fair
comparison. Therefore, FORCES Pro is not considered in the comparative study that follows.

(6) CVXOPT (Python Software for Convex Optimization)

CVXOPT [115] is an open source software package for convex optimization written in Python.
The implemented algorithm is a standard Mehrotra predictor-corrector interior-point algorithm.

(7) CVXPY (Python-Embedded Modeling Language for Convex Optimization Problems)

CVXPY [116] is an open source software package that converts the optimization problem,
specified by the user, into a standard, conic form and interfaces with a solver to obtain the optimal
solution. The solvers called by CVXPY are CVXOPT and ECOS for small–medium-scale problems
and SCS (splitting conic solver) [117] for large-scale problems.

3.3.4. Performance Comparison

The performance of the solvers is evaluated for zone-MPC as described in [62] and presented
in (3) for the AP system. The zone-MPC incorporates a hybrid logic, which essentially states that the
controller is activated when the output lies outside a zone that can periodically change. The zone
represents the clinically safe range of glucose concentration.

We present the following methodological framework (Figure 3) that describes the steps towards
the implementation of our optimization problem in an embedded setting. Our objective is to
determine which algorithm (not necessarily which solver) performs best with small runtimes and
memory footprint and is therefore suitable for embedded implementation. Initially, we perform a
series of simulation studies to evaluate the performance of the previously presented QP-solvers in a
desktop environment using MATLAB (2015b, The MathWorks Inc., Natick, MA, USA). This step is a
high-level assessment of the available solvers based on their suitability for embedded
implementation. For the field of AP, this step usually is the starting point for any control design
evaluation, since the Universities of Padova/Virginia metabolic Simulator (UVA/Padova) [118], an
FDA-accepted tool, is implemented in MATLAB. According to Figure 3, we propose an intermediate
step for the transition between desktop implementation and dedicated hardware design. This
intermediate step is the use of an embedded prototype platform, in our case a Raspberry Pi Zero and
a Raspberry Pi 3 Model B (https://www.raspberrypi.org/). The advantage of this step is that we will
not focus on the explicit design of the system on chip as it is readily available; instead, we focus on
deploying our control algorithm from this embedded device and address implementation challenges,
such as fixed-point/floating precision-related numerical errors and data communication. Therefore,
the performance of the QP solvers is evaluated in preliminary hardware-in-the-loop simulation
studies using the Raspberry Pi as a development tool. The final step is the evaluation of the solver
that the previous steps indicated as the most appropriate in a dedicated system-on-chip (ASIC) that
meets the requirements of the AP application. This final step has not been investigated thoroughly
and is the subject of future work.

Figure 3. Methodological framework towards an Application-Specific Integrated Circuit (ASIC)
implementation.

Figure 3. Methodological framework towards an Application-Specific Integrated Circuit (ASIC)
implementation.

https://www.raspberrypi.org/

Processes 2016, 4, 35 14 of 29

(1) MATLAB implementation

All numerical examples are performed using MATLAB (2015b, The MathWorks Inc., Natick,
MA, USA) running on a computer with two Intel Xeon ES-2623 processors with 32 GB of RAM
(Intel, Santa Clara, CA, USA). A 30-h closed-loop in silico experiment is run using the UVA/Padova
metabolic Simulator (The Epsilon Group, Charlottesville, VA, USA) [118], with unannounced meal
disturbances of 50 g and 70 g of carbohydrates at 17:00 p.m. and 11:00 a.m., respectively. The zone-MPC
problem leverages a discrete-time linear model containing three states, one control input and one
control output, which is an abstraction of the T1DM patient. Two sets of time horizons are evaluated,
namely (i) Np = 20, Nc = 10 and (ii) Np = 12, Nc = 5, to investigate the solvers’ performance for
different problem sizes. The resulting quadratic program, which is to be solved every 5 min, involves
4Nc + 2(Np − Nc) optimization variables and 8Nc + 4(Np − Nc) inequality constraints.

Table 2 summarizes the execution time required for each of the previously-described C solvers
to solve the QP problem (3) for both sets of prediction and control horizons. Multiple runs of the in
silico experiment are performed, and 4000 time points are generated in total. The average runtime,
the standard deviation and the worst case runtime are presented for every solver. The runtime indicates
the computational effort required for the solver to provide the optimal solution. The possibility of the
warm-start procedure for each solver is reported and compared with cold-start. MATLAB’s native
quadratic programming solver quadprog is also tested to compare its performance with the C-based
solvers and to note the acceleration in runtime provided by the C solvers. It should be highlighted
that all solvers converge to the same optimal insulin dosing trajectory during multiple runs of the
experiment with both short and longer predictive horizons and their corresponding control horizons.

Table 2. Solver runtime performance computed for 4000 time points; taver, tmax and SD
(standard deviation) are the average, the maximum and the standard deviation of the solver
runtime in ms observed over the duration of the experiment; IPM (interior point method) and ASM
(active-set method) are the interior point method and the active-set method, respectively, and Y/N
indicate the inclusion or not of the warm-start procedure. In detail, the examined solvers are Quadprog
(quadratic programming) of Matllab, qpOASES (quadratic programming online active set strategy),
CVXGEN (code generator for embedded convex optimization), QPC (quadratic programming in C)
using either qpas (quadratic programming active set) or qpip (quadratic programming interior point)
and ECOS (embedded conic optimization solver).

Solver Quadprog Quadprog Quadprog qpOASES qpOASES CVXGEN QPC (qpas) QPC (qpip) ECOS

Algorithm IPM ASM ASM ASM ASM IPM ASM IPM IPM

Warm-start? N N Y N Y N N N N

Case 1: Np = 20, Nc = 10

taver (±SD)
(ms) 8.6 (±3.3) 12.9 (±20.6) 9.9 (±14.5) 13.7 (±6.9) 12.7 (±6.1) N/A 0.4 (±0.3) 4.3 (±1.9) 7.2 (±2.5)

tmax (ms) 34 114 93 49 48 N/A 2 15 30

Case 2: Np = 12, Nc = 5

taver (±SD)
(ms) 7.9 (±2.8) 6.6 (±7.6) 5.8 (±6.0) 2.5 (±1.4) 2.5 (±1.3) 3.0 (±0.7) 0.2 (±0.15) 1.6 (±0.7) 6.6 (±2.3)

tmax (ms) 33 46 53 22 10 8 2 5 39

It can be deduced from Table 2 that for the problem with longer horizons, the most efficient solver
is qpas with an average runtime equal to 0.4 ms with a standard deviation of 0.3 ms. The solvers qpip
and ECOS follow with computation times of 4.3 (±1.9) and 7.2 (±2.5) ms, respectively. For this case,
CVXGEN is not able to generate a solver because the problem exceeds the number of KKT multipliers
the software can handle. qpOASES requires the most time to compute the solution with an average
runtime of 12.7 (±6.1) ms even with warm-start.

For the case of smaller time horizons, again qpas and qpip perform very efficiently with an average
runtime of 0.2 (±0.15) and 1.6 (±0.7) ms, respectively. For qpOASES with warm-start, the runtime

Processes 2016, 4, 35 15 of 29

reduced by 80% compared to the larger-sized problem without a large degradation in control
performance. Once more, the warm-start procedure does not provide any noticeable improvement in
runtime characteristics compared to cold-start. A reason for this is that for most of the simulation time,
the glucose is within the prescribed zone, and so, the optimal insulin to be applied is known to be the
basal rate, thereby obviating the need for warm-starting in the zone-MPC formulation. CVXGEN also
presents a very robust performance considering that it provides a small runtime value in the worst
case and the standard deviation is relatively small. In the case of quadprog, IPM outperforms ASM
in the case of the larger-sized problem, whereas in the smaller-sized problem, ASM presents better
runtime characteristics. For both cases, the warm-start procedure for ASM improves the performance
of the solver.

Since the most appropriate values of Np and Nc for this application are those of the second case
as also reported in [62], we can conclude that the best choice for further consideration is qpas for the
active-set algorithm if runtime minimization is the highest priority during design. The rationale behind
the study of runtimes is to obtain an insight into the complexity of the solvers’ algorithms. We expect
that the ratio of runtimes provides an estimate of complexity, with small runtimes indicating lower
computational resource requirements. From Table 2, we conclude that qpas performs satisfactorily with
small runtimes, indicating that this implementation of the active-set algorithm may be tractable for
the embedded implementation. An additional metric of the algorithms’ capabilities and limitations
is the resulting code-size/storage requirements, presented in Table 3. We infer that for the smaller
time horizon problem, the solver ECOS has the minimum memory footprint, while the CVXGEN and
qpOASES code size can be prohibitive for the available hardware platforms.

Table 3. Solvers’ storage requirements for the examined problem characteristics.

Solver qpOASES CVXGEN ECOS qpas qpip

Code size (KB) 835 1800 7 25 43

(2) Raspberry Pi implementation

Tables 2 and 3 indicate that ECOS is an efficient solver that performs well for the examined
optimization problems while it has the minimum memory footprint. This solver is based on
CVXOPT [112], which is a Python solver implementing an IPM algorithm. CVXPY, on the other
hand, uses either ECOS or CVXOPT for small-scale problems to obtain the optimal solution. Therefore,
the performance of the zone-MPC that leverages CVXOPT and CVXPY solver protocols is evaluated
with preliminary hardware-in-the-loop simulation studies to provide estimates of runtime and energy
consumption on an embedded device. The previously-defined experiment of two unannounced meals
of carbohydrates is used. The zone-MPC algorithm is deployed from the Raspberry Pi Zero and
Raspberry Pi 3 Model B. The operating system of both models is a dedicated version of Linux known
as Raspbian. The RPi 3 has 1 GB of RAM, while the RPi Zero 512 KB of RAM. The zone-MPC code
is translated from MATLAB to Python, since the Raspberry Pi compiles Python code. A TCP/IP
connection is used to receive virtual glucose data (CGM) wirelessly from the simulator that runs on
a desktop and sends the suggested control action (u) back to the simulator, as presented in Figure 4.

Processes 2016, 4, 35 15 of 29

control performance. Once more, the warm-start procedure does not provide any noticeable
improvement in runtime characteristics compared to cold-start. A reason for this is that for most of
the simulation time, the glucose is within the prescribed zone, and so, the optimal insulin to be
applied is known to be the basal rate, thereby obviating the need for warm-starting in the zone-MPC
formulation. CVXGEN also presents a very robust performance considering that it provides a small
runtime value in the worst case and the standard deviation is relatively small. In the case of
quadprog, IPM outperforms ASM in the case of the larger-sized problem, whereas in the
smaller-sized problem, ASM presents better runtime characteristics. For both cases, the warm-start
procedure for ASM improves the performance of the solver.

Since the most appropriate values of 𝑁𝑁𝑝𝑝 and 𝑁𝑁𝑐𝑐 for this application are those of the second
case as also reported in [62], we can conclude that the best choice for further consideration is qpas for
the active-set algorithm if runtime minimization is the highest priority during design. The rationale
behind the study of runtimes is to obtain an insight into the complexity of the solvers’ algorithms.
We expect that the ratio of runtimes provides an estimate of complexity, with small runtimes
indicating lower computational resource requirements. From Table 2, we conclude that qpas
performs satisfactorily with small runtimes, indicating that this implementation of the active-set
algorithm may be tractable for the embedded implementation. An additional metric of the
algorithms’ capabilities and limitations is the resulting code-size/storage requirements, presented in
Table 3. We infer that for the smaller time horizon problem, the solver ECOS has the minimum
memory footprint, while the CVXGEN and qpOASES code size can be prohibitive for the available
hardware platforms.

Table 3. Solvers’ storage requirements for the examined problem characteristics.

Solver qpOASES CVXGEN ECOS qpas qpip
Code size (KB) 835 1800 7 25 43

(2) Raspberry Pi implementation
Tables 2 and 3 indicate that ECOS is an efficient solver that performs well for the examined

optimization problems while it has the minimum memory footprint. This solver is based on
CVXOPT [112], which is a Python solver implementing an IPM algorithm. CVXPY, on the other hand,
uses either ECOS or CVXOPT for small-scale problems to obtain the optimal solution. Therefore, the
performance of the zone-MPC that leverages CVXOPT and CVXPY solver protocols is evaluated
with preliminary hardware-in-the-loop simulation studies to provide estimates of runtime and
energy consumption on an embedded device. The previously-defined experiment of two
unannounced meals of carbohydrates is used. The zone-MPC algorithm is deployed from the
Raspberry Pi Zero and Raspberry Pi 3 Model B. The operating system of both models is a dedicated
version of Linux known as Raspbian. The RPi 3 has 1 GB of RAM, while the RPi Zero 512 KB of RAM.
The zone-MPC code is translated from MATLAB to Python, since the Raspberry Pi compiles Python
code. A TCP/IP connection is used to receive virtual glucose data (CGM) wirelessly from the
simulator that runs on a desktop and sends the suggested control action (u) back to the simulator, as
presented in Figure 4.

Figure 4. TCP (Transmission Control Protocol) communication protocol for RPi (Raspberry Pi) and
PC. RCV and SND indicate receive and send data respectively.

Figure 4. TCP (Transmission Control Protocol) communication protocol for RPi (Raspberry Pi) and PC.
RCV and SND indicate receive and send data respectively.

Processes 2016, 4, 35 16 of 29

The code is designed to internally set the floating point precision to 32 and 64 bits for the
construction of the QP parameters, MPC constraint updates and the communication between MATLAB
and Raspberry Pi. An estimate of the average energy in mAh consumed over the duration of the
experiment is calculated using a DROK USB 2.0 digital multimeter (DROK, Service@droking.com)
to measure the average current (in mA) entering the hardware platform. An estimate of the total
energy consumed is found by multiplying the average current by the total simulation time. The results
of runtime and energy consumption are summarized in Table 4. Results of glucose concentration
profiles and the corresponding insulin actions obtained by the zone-MPC when implemented on the
PC, the Raspberry Pi 3 and the Raspberry Pi Zero (blue, yellow and red lines) are presented in Figure 5.

Processes 2016, 4, 35 16 of 29

The code is designed to internally set the floating point precision to 32 and 64 bits for the
construction of the QP parameters, MPC constraint updates and the communication between
MATLAB and Raspberry Pi. An estimate of the average energy in mAh consumed over the duration
of the experiment is calculated using a DROK USB 2.0 digital multimeter (DROK,
Service@droking.com) to measure the average current (in mA) entering the hardware platform. An
estimate of the total energy consumed is found by multiplying the average current by the total
simulation time. The results of runtime and energy consumption are summarized in Table 4. Results
of glucose concentration profiles and the corresponding insulin actions obtained by the zone-MPC
when implemented on the PC, the Raspberry Pi 3 and the Raspberry Pi Zero (blue, yellow and red
lines) are presented in Figure 5.

Figure 5. (Top) Comparison of glucose regulation with zone-MPC implemented on a PC, on
Raspberry Pi 3 and Raspberry Pi Zero for 50-g and 70-g unannounced meal (blue, red, yellow lines).
Comparison of glucose regulation with zone-MPC implemented on Raspberry Pi Zero with multiple
bit precisions for quadratic programming problem (QP) solving and associated computations
(yellow and purple lines). (Bottom) Comparison of optimal insulin levels computed by the different
implementations.

Figure 5 demonstrates that the solvers implemented on Raspberry Pi 3 and Raspberry Pi Zero
converged to the same optimal solution that is found in the MATLAB implementation, and therefore,
identical glucose profiles are obtained. It should be noted that for this comparison study, 64-bit
precision is considered.

Table 4. Solver runtime performance computed for 4000 time points; taver, tmax and SD are the average,
the maximum and the standard deviation of the solver runtime in ms observed over the duration of
the experiment; the average and the standard deviation of the total energy in mAh consumed over
the duration of the experiment are reported for both platforms.

Prototype Platform Raspberry Pi Zero Raspberry Pi 3
Solver CVXOPT CVXPY CVXOPT CVXPY

Case 1: Np = 20, Nc= 10
taver ± SD (ms) 128.8 ± 14.1 189.7 ± 16.3 50.0 ± 10.2 73.7 ± 11.7

tmax (ms) 196.8 268 104.8 143.2
Energy Consumed (mAh) 39.9 ± 0.2 59.9 ± 0.4 16.5 ± 0.0 25.1 ± 0.1

Case 2: Np = 12, Nc = 5
taver ± SD (ms) 56.9 ± 9.2 104.9 ± 11.3 22.4 ± 7.8 41.2 ± 9.6

tmax (ms) 110.3 269 40.2 98.2

Figure 5. (Top) Comparison of glucose regulation with zone-MPC implemented on a PC, on Raspberry
Pi 3 and Raspberry Pi Zero for 50-g and 70-g unannounced meal (blue, red, yellow lines). Comparison of
glucose regulation with zone-MPC implemented on Raspberry Pi Zero with multiple bit precisions for
quadratic programming problem (QP) solving and associated computations (yellow and purple lines).
(Bottom) Comparison of optimal insulin levels computed by the different implementations.

Figure 5 demonstrates that the solvers implemented on Raspberry Pi 3 and Raspberry Pi
Zero converged to the same optimal solution that is found in the MATLAB implementation, and
therefore, identical glucose profiles are obtained. It should be noted that for this comparison study,
64-bit precision is considered.

Table 4. Solver runtime performance computed for 4000 time points; taver, tmax and SD are the average,
the maximum and the standard deviation of the solver runtime in ms observed over the duration of
the experiment; the average and the standard deviation of the total energy in mAh consumed over the
duration of the experiment are reported for both platforms.

Prototype Platform Raspberry Pi Zero Raspberry Pi 3

Solver CVXOPT CVXPY CVXOPT CVXPY

Case 1: Np = 20, Nc= 10

taver ± SD (ms) 128.8 ± 14.1 189.7 ± 16.3 50.0 ± 10.2 73.7 ± 11.7
tmax (ms) 196.8 268 104.8 143.2

Energy Consumed (mAh) 39.9 ± 0.2 59.9 ± 0.4 16.5 ± 0.0 25.1 ± 0.1

Case 2: Np = 12, Nc = 5

taver ± SD (ms) 56.9 ± 9.2 104.9 ± 11.3 22.4 ± 7.8 41.2 ± 9.6
tmax (ms) 110.3 269 40.2 98.2

Energy Consumed (mAh) 16.5 ± 0.2 32.4 ± 2.0 6.7 ± 0.4 13.2 ± 0.1

Processes 2016, 4, 35 17 of 29

Table 4 shows that for both hardware testing platforms, CVXOPT computes optimal MPC actions
almost twice as fast as CVXPY. As expected, the execution times obtained from the Raspberry Pi Zero
are slower than those reported for the Raspberry Pi 3 because Raspberry Pi Zero has a single-core
CPU, whereas Raspberry Pi 3 a quad-core. The energy consumed (measured via the aforementioned
multimeter) over the duration of the experiment is decreased for CVXOPT by approximately 50% and
95% for the long and short prediction horizons respectively in both platforms.

It can also be deduced from Table 4 that the Raspberry Pi Zero requires more energy than the
Raspberry Pi 3 for longer simulation periods. This is because of the increased execution time of the
Raspberry Pi Zero and also because the average current entering the device does not differ significantly
from the Raspberry Pi 3 due to significant power used in communication and peripheral computing
(for example, updating the state, computing the MPC constraints).

Additionally, we performed a preliminary robustness testing of the glucose regulation
performance on the Raspberry Pi 3 using CVXOPT with 32- and 64-bit precision levels that are
supported by the numpy package in Python. From Figure 5, we can see that glucose and insulin profiles
obtained with floating point precision set to 32 bits are identical to those obtained with the precision of
64 bits (yellow and purple lines). Therefore, a floating point precision of 32 bits can be considered for
safe glycemic regulation with our current precision-agnostic design; there is no need to have a 64-bit
design since that has a higher memory requirement without offering an ascertainable improvement
in performance.

As illustrated in the above screening process, the intermediate step of hardware implementation
on a prototyping platform such as the Raspberry Pi provides keener insights into embedded
implementation as compared to a strictly high-level implementation on a desktop. The comparison
of 32- and 64-bit precision indicated that the current implementation of our control problem can be
supported by 32-bit precision resulting in decreased storage requirements and, therefore, memory
savings. Conversely, choosing a microcontroller offering a 64-bit implementation will increase
the manufacturing cost without providing better control performance. A potential hardware that
enables low floating point precision (16 or eight bits) requires a revised design approach of our MPC
control problem (for example, alteration of the MPC parameters) to ensure safe glucose regulation.
The end goal is to find a compromise to the inherent trade-off between hardware selection and
controller performance implementation. Other trade-offs include: selection of ROM and RAM memory,
wireless communication methods, controller design flexibility, available hardware platforms and
economic constraints, to name a few. Our proposed intermediate step leverages a suitable prototyping
environment to investigate these objectives in order to inform the next (and perhaps the most important)
step of the embedding process: the selection of the chip for deploying the AP.

4. Brief Overview on Design Approaches

The design of an embedded AP system is a complex and challenging procedure. Firstly,
the requirements of the system in terms of performance, manufacturing cost, power, size and weight
need to be determined. Depending on the type of insulin pump considered, i.e., tubed or patch,
different requirements must be met for the underlying system-on-a-chip. The tubed-pump can last
up to five years, and therefore, the control unit should be designed with a long-term perspective;
conversely, patch pumps are replaced every three days, and hence, the design specifications are
completely different. Consecutively, these requirements must be translated to detailed and formal
specifications that will then be used to determine the appropriate architecture design for both software
and hardware. It is crucial that the chosen architecture satisfies the constraints imposed by both
the functional and the non-functional requirements [119]. Safety is an additional, but crucial design
parameter. A safety-aware design procedure is developed as such to guarantee system safety in spite
of exogenous disturbances or unexpected failure modes.

When the various components are combined together, the compliance with the overall
requirements of the integrated system is evaluated. The validation process evaluates whether the

Processes 2016, 4, 35 18 of 29

developed system performs exactly as planned. For safety-critical systems, it is of paramount
importance that the final product integrating both hardware and software is formally certified [120,121].
An overview of the design, verification and validation methods for medical devices can be found
in [122–124]. The performance of different control algorithms and formulations can be evaluated
using a prototyping environment before testing with the actual device, to ensure that the suggested
control method is suitable for the application [125]. In fact, hardware-in-the-loop (HIL) simulation
has been gradually considered as the necessary step from pure virtual simulation to full physical
prototyping [126] for many safety-critical applications. Field programmable gate arrays (FPGAs)
have been considered as very useful platforms for MPC hardware prototyping, especially for the
development of customized boards. The flexibility to design the entire circuit including the processor
and peripherals provides the designer with the ability to create an application-specific optimized
design at both the hardware and software level. On the other hand, the advent of flash memory in
modern microcontrollers has enabled their use as prototyping platforms.

An open source FPGA prototyping toolbox for embedded optimization has been recently
developed [127] to allow fast designing, validation and prototyping of algorithms written in C
or MATLAB on FPGA platforms. An FPGA-in-the-loop simulation experiment was performed
in [128] to evaluate the performance of an MPC controller for an aircraft application with a relatively
large number of inputs and constraints. The problem involved not only an MPC solver based on
primal-dual IPM, but also a target calculator using a fast gradient method. The required custom
solutions for the implementation of MPC solvers such as ASM, IPM or fast gradient method (FGM) on
FPGAs have been exploited in [108,129,130]. In [131] the authors propose a co-design methodology
for MPC implementation on a chip that resulted in a dual architecture consisting of a general
purpose microcontroller and a matrix coprocessor. The matrix coprocessor is responsible for all
of the computationally-demanding operations. The final design was downloaded into an FPGA
for verification and validation. An explicit-MPC scheme for the control of intravenous anesthesia
was implemented and prototyped into an FPGA [132,133]. The performance of the controller was
validated with HIL simulation. Moreover, many low-power microcontrollers have been used for
controller-in-the-loop hardware prototyping. For example, a LEGO NXT testing platform was
used in [134] for the implementation of MPC based on the fast gradient method to control the
position of a Segway-like mobile robot. An Arduino-based microcontroller was used in [135] to
implement an optimized PID that uses MPC as a reference governor; where the reference governor
optimization problem is solved parametrically in an effort to decrease the online computational effort;
and finally, in [136], MPC implementation requirements were exploited using the Cortex-A family of
ARM-based microcontrollers.

5. Key Challenges of Embedded Artificial Pancreas Systems

5.1. Known and Foreseeable Hazards Associated with the Operation of the AP System

The identification and analysis of known and foreseeable hazards is critical for the design of
a safe and reliable system. The potential hazards that can occur during the operation of the AP system
are illustrated in Figure 6 and explained in Table 5. Both Configurations A and B (Figure 6a,b) are
considered. A failure of the AP system can be defined as either: extreme and prolonged hypoglycemia
(denoted as C1 in Figure 6) or extreme and prolonged hyperglycemia (denoted as C2 in Figure 6).
These are two life-threatening medical states, and, therefore the system must prevent them from
occurring. Although the hypo- or hyper-glycemic conditions are the most unsafe, there are numerous
other faults and errors that potentially lead to failure modes. Safety issues related to each component
and the complete AP system are described in [137]. Faults related specifically to the insulin pump
operation and communication channels have been studied in [138–140].

Here, we will focus on potential faults due to MPC implementation on limited power resources,
and we will compare the two different configurations. In the case of MPC, either online or explicit,
it should be guaranteed that a feasible solution can always be obtained; otherwise the control unit

Processes 2016, 4, 35 19 of 29

would fail. This can be accomplished during the control design phase by modifying the optimization
problem to ensure recursive feasibility. As described in Section 3.3, strict runtime deadlines imposed by
the hardware can restrict the number of iterations that can be performed, and so, suboptimal solutions
are obtained. The level of potential performance degradation that can be allowed has to be carefully
considered in order not to promote the hyper- or hypo-glycemic state.

Processes 2016, 4, 35 19 of 29

Here, we will focus on potential faults due to MPC implementation on limited power resources,
and we will compare the two different configurations. In the case of MPC, either online or explicit, it
should be guaranteed that a feasible solution can always be obtained; otherwise the control unit
would fail. This can be accomplished during the control design phase by modifying the optimization
problem to ensure recursive feasibility. As described in Section 3.3, strict runtime deadlines imposed
by the hardware can restrict the number of iterations that can be performed, and so, suboptimal
solutions are obtained. The level of potential performance degradation that can be allowed has to be
carefully considered in order not to promote the hyper- or hypo-glycemic state.

(a) (b)

Figure 6. Potential hazards in the AP system: (a) controller as a smartphone app; (b) controller
embedded in the pump.

Table 5. Foreseeable hazards in the AP system.

Cause Hazard

Control Unit

(1) Battery failure
(2) No value displayed
(3) Over/under delivery of insulin
(4) Over delivery of insulin

Control Algorithm
(5) Numerical inaccuracies
(6) Resource limitation-suboptimal control action
(7) Software aging

CGM (continuous glucose
monitoring)

(8) No signal
(9) Under/over reading
(10) No glucose display
(11) No communication
(12) Receiver displays failure

Insulin Pump

(13) Failure in reservoir
(14) Failure in delivery line
(15) Battery failure
(16) Mechanical/electrical failure
(17) Request for new delivery while delivering previous bolus
(18) Insulin delivered at maximum infusion rate (60 U/h)
(19) Over/under/no delivery of insulin

User
(20) Infusion set disconnected
(21) Over/under delivery of insulin

Communication

(22) No communication between CGM and transmitter
(23) No communication between CGM and control unit
(24) Loss of communication between CGM and insulin pump
(25) No communication between control unit and insulin pump

Safety Layer
(26) Algorithmic fault
(27) No detection made
(28) Failure to trigger an alarm

Figure 6. Potential hazards in the AP system: (a) controller as a smartphone app; (b) controller
embedded in the pump.

Table 5. Foreseeable hazards in the AP system.

Cause Hazard

Control Unit

(1) Battery failure

(2) No value displayed

(3) Over/under delivery of insulin

(4) Over delivery of insulin

Control Algorithm

(5) Numerical inaccuracies

(6) Resource limitation-suboptimal control action

(7) Software aging

CGM (continuous glucose monitoring)

(8) No signal

(9) Under/over reading

(10) No glucose display

(11) No communication

(12) Receiver displays failure

Insulin Pump

(13) Failure in reservoir

(14) Failure in delivery line

(15) Battery failure

(16) Mechanical/electrical failure

(17) Request for new delivery while delivering previous bolus

(18) Insulin delivered at maximum infusion rate (60 U/h)

(19) Over/under/no delivery of insulin

User
(20) Infusion set disconnected

(21) Over/under delivery of insulin

Communication

(22) No communication between CGM and transmitter

(23) No communication between CGM and control unit

(24) Loss of communication between CGM and insulin pump

(25) No communication between control unit and insulin pump

Safety Layer

(26) Algorithmic fault

(27) No detection made

(28) Failure to trigger an alarm

Handheld Device

(29) Operating system upgrade

(30) Interference with other applications

(31) Cybersecurity vulnerabilities

Processes 2016, 4, 35 20 of 29

The numerical performance of the iteration algorithms used to solve the optimization problem
depends on whether floating or fixed point arithmetic is used. The floating point arithmetic employed
by the smartphone configuration is subject to numerical round-off errors and accumulation of these
errors that should be accounted for [141]. The use of fixed-point precision in efficient embedded
systems results in quantization errors that could lead to degradation in closed-loop performance.
A problem of interest, therefore, is to develop fast MPC methods robust to quantization effects. This is
a relatively open problem, with only a few methods proposed in the literature to design MPC for
systems with quantized inputs, or equivalently, systems with finite/discrete input alphabet. An early
attempt at guaranteeing the stability of receding horizon control of linear time-invariant (LTI) systems
with quantized inputs is presented in [142], by estimating a region of attraction of the quantized
MPC (Q-MPC). A terminal state penalty term formulation based on an algebraic Lyapunov equation
is proposed in [143] for open-loop-stable LTI systems for analyzing the closed-loop stability of the
Q-MPC-controlled system. Modern Q-MPC methodologies pose the quantization effects as an additive
disturbance term, and robust control methods are leveraged to provide closed-loop stability guarantees;
see, for example, [144]. Robust tube-based MPC formalisms, such as those studied in [145,146], can then
be used to construct Q-MPCs for nonlinear systems that ensure ultimate boundedness or robust stability
in a closed-loop. Recently, the authors in [147] demonstrated that such tube-based Q-MPCs can result
in conservative controllers because the worst-case quantization error is propagated to every step of the
predictive horizon during control action computation. To ameliorate this issue, a practical stability
approach with one-step MPC was proposed in [148] yielding less conservative ultimate bounds on
the closed-loop trajectories. Although not verified, we believe the method in [93] could be extended
seamlessly to construct explicit MPCs for systems with quantized inputs.

Another challenge relevant to embedded MPC is ‘software aging’ that is originated by memory
bloating and leaking, data corruption or storage space fragmentation [49] and can progress with the
extensive usage of the system, resulting possibly in system failure.

The resource capabilities of a smartphone motivate the development and implementation of
advanced controllers that can provide optimal blood glucose regulation. However, the inclusion
of an additional device accompanies the development of new hazards and potential errors in the
AP system, as seen in Figure 6a. Battery failure, loss of wireless communication with the other
AP components, compatibility issues during software upgrades, interference with other apps and
vulnerability to network threats are some of the possible hazards that should be taken into consideration
for the development of a reliable system. On the other hand, the insulin pump system-on-a-chip
provides a more robust configuration because communication issues are restricted since the number
of involved devices is reduced and also the system is treated as a stand-alone medical device whose
reliability and integrity will be formally certified by the manufacturer. However, issues of battery drain,
power and runtime capacities should be considered when advanced algorithms are used. The following
subsection discusses in more detail challenging issues related to system communication in terms of
security and confidentiality.

5.2. Communication: Security and Confidentiality

The communication between the involved components of an AP system introduces significant
challenging issues and potential vulnerabilities in the system. The continuous blood glucose monitor
communicates wirelessly with the pump to transmit the current glucose concentration values.
The security and integrity of these “data in motion” is of high importance, especially in a closed-loop
system because the patient’s treatment is based on the reliable transmission of glucose data. Moreover,
the AP system is integrated wirelessly with peripheral devices, such as a remote control, a PC,
a mobile phone or a tablet, where the history of the patient’s data (glucose values, insulin infusions,
meal announcements and other “data at rest”) is gathered and used as a helpful tool for the patients to
acquire familiarity with their blood glucose regulation and as the physician’s support platform for

Processes 2016, 4, 35 21 of 29

future alterations in patient’s treatment. The peripheral devices can pose additional security challenges
in the AP system [149].

In [150,151] it was demonstrated that malicious attacks can compromise the privacy and integrity
of the AP system. The wireless channel for communicating between the insulin pump and the CGM,
the remote control and peripheral devices is vulnerable to seemingly innocuous attacks that can
be launched using public-domain information and off-the-shelf hardware. As a result, erroneous
insulin treatment can arise that jeopardizes the patient’s health. The development of responsive
medical devices to cybersecurity vulnerabilities is now more important than before because the
once isolated and stand-alone medical devices are integrated with networking, software, operational
systems that are widely exposed to threats [152,153]. A brief overview of some challenges in designing
“high-confidence” medical devices is given in [154].

Other sensitive data include device information (model, serial numbers), physicians and health
team center identification, patient identity information, medical condition, health history and treatment
history. Access to this sensitive and confidential data should only be allowed to the patient or their
legal guardian and their physicians. Attacks that threaten the secure transmission of private data
and therefore violate the patient’s medical record confidentiality are referred as eavesdropping.
Impersonation, on the other hand, refers to failure to authenticate the operation of a medical device
that can lead to malfunctions caused by viruses and threats or deliberate illegitimate usage of the
device. Finally, jamming attacks refer to attacks that aim for the denial of service (DoS). In [155],
potential methods to mitigate these types of threats are discussed for implantable medical devices
that include: cryptography [156], either regular or physiological signal (PV) based, anomaly detection,
external device deployment and direct sequence-spread spectrum (DSSS) or frequency hopping (FH).

Therefore, AP-specific security guarantees need to be defined, and information security
requirements need to be expressed and enforced in order to develop secure and trustworthy AP
systems. Each of the AP devices should be secure at the hardware level to ensure that the computations
will not be corrupted and at the operational system level to ensure that the system will not be
vulnerable to viruses and threats. Two alternative options have been proposed in [150] to defend
a system against the risks: (i) a rolling code based on the cryptographic method; and (ii) a defense
based on body-coupled communication. In [151], a personalized patient infusion pattern-based access
control scheme for a wireless insulin pump is proposed, which can identify abnormal insulin overdose
attacks using patient-specific insulin infusion patterns.

Another risk that must be considered is that the system’s security can be also threatened
through physical access, since the pump’s settings can be easily changed through the user interface.
An unauthorized alteration in the pump’s setting while the system is unattended can pose a serious
threat to the security of the system that can put the patients’ health at risk. In [149], potential options
for risk mitigation are proposed: (i) a fail-safe physical interface for the patient to acquire the device
control in case of a lost or stolen remote; and (ii) the ability to disable wireless communication.

6. Conclusions

Embedded control for medical applications is an emerging field that is driven by the need to
develop wearable medical devices that actively control the patient’s treatment and health management.
The miniaturization of the available hardware resources, induced by the required flexibility of a wearable
device, imposes stringent design constraints on the system (power, memory, execution time).

We have focused in this paper on the regulation of glucose using embeddable algorithms. In this
context, the advantages and the wide use of MPC for glucose regulation within an AP system
motivate the development of lightweight MPC adequate for hardware implementation. Approximation
techniques, appropriate problem formulation and computational considerations for the optimization
algorithms [80,134,157] can be employed to derive low footprint, but efficient MPC controllers. For such
safety-critical applications, the controller must be integrated in a system that is able, in the case of
external causes that lie outside the area of the controller’s responsibilities, to detect any abnormal

Processes 2016, 4, 35 22 of 29

behavior and to respond adequately. Thus, the system’s architecture design at the software and
hardware level has to be developed in a safety-aware manner with a high degree of redundancy.
Safety is the most crucial parameter that imposes hard constraints on the system requirements and
must be satisfied even at the cost of performance degradation. Safety constraints should be strongly
connected to and included within the control algorithm. The fact that MPC has been demonstrated to
work with safety constraints makes it a great candidate in the context of embedded medical controllers.

In general, a holistic approach that involves engineering, safety and security requirements
should be aimed at the design of a system architecture that ensures the reliability of the embedded
medical device.

Acknowledgments: The authors would like to thank Gondhalekar, Ravi (Harvard John A. Paulson School of
Engineering and Applied Sciences, Harvard University) for helpful discussions. We acknowledge the National
Institutes of Health (Grants DP3DK104057, DP3DK101068 and DP3DK094331) and the Juvenille Diabetes Research
Foundation (JDRF) (Grant 1-SRA-2016-147-M-R) for their financial support.

Author Contributions: S.Z. and A.C. conceived of and performed the simulation experiments and analyzed the
resulting data. S.Z., A.C., E.D. and F.J.D. contributed to writing and correcting the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. National Center for Chronic Disease Prevention and Health Promotion. National Diabetes Statistics
Report. 2014. Available online: https://www.cdc.gov/diabetes/pubs/statsreport14/national-diabetes-
report-web.pdf (accessed on 5 May 2016).

2. Doyle, F.J., III; Huyett, L.M.; Lee, J.B.; Zisser, H.C.; Dassau, E. Closed-loop artificial pancreas systems:
Engineering the algorithms. Diabetes Care 2014, 37, 1191–1197. [CrossRef] [PubMed]

3. Nimri, R.; Phillip, M. Artificial pancreas: Fuzzy logic and control of glycemia. Curr. Opin. Endocrinol.
Diabetes Obes. 2014, 21, 251–256. [CrossRef] [PubMed]

4. Mauseth, R.; Lord, S.M.; Hirsch, I.B.; Kircher, R.C.; Matheson, D.P.; Greenbaum, C.J. Stress testing of
an artificial pancreas system with pizza and exercise leads to improvements in the system’s fuzzy logic
controller. J. Diabetes Sci. Technol. 2015, 9, 1253–1259. [CrossRef] [PubMed]

5. Ly, T.T.; Roy, A.; Grosman, B.; Shin, J.; Campbell, A.; Monirabbasi, S.; Liang, B.; Von Eyben, R.;
Shanmugham, S.; Clinton, P.; et al. Day and night closed-loop control using the integrated medtronic
hybrid closed-loop system in type 1 diabetes at diabetes camp. Diabetes Care 2015, 38, 1205–1211. [CrossRef]
[PubMed]

6. Pinsker, J.E.; Lee, J.B.; Dassau, E.; Seborg, D.E.; Bradley, P.K.; Gondhalekar, R.; Bevier, W.C.; Huyett, L.;
Zisser, H.C.; Doyle, F.J., III. Randomized crossover comparison of personalized MPC and PID control
algorithms for the artificial pancreas. Diabetes Care 2016, 39, 1135–1142. [CrossRef] [PubMed]

7. Harvey, R.A.; Dassau, E.; Bevier, W.C.; Seborg, D.E.; Jovanovič, L.; Doyle, F.J., III; Zisser, H.C.
Clinical evaluation of an automated artificial pancreas using zone-model predictive control and health
monitoring system. Diabetes Technol. Ther. 2014, 16, 348–357. [CrossRef] [PubMed]

8. Dassau, E.; Brown, S.A.; Basu, A.; Pinsker, J.E.; Kudva, Y.C.; Gondhalekar, R.; Patek, S.; Lv, D.; Schiavon, M.;
Lee, J.B.; et al. Adjustment of open-loop settings to improve closed-loop results in type 1 diabetes:
A multicenter randomized trial. J. Clin. Endocrinol. Metab. 2015, 100, 3878–3886. [CrossRef] [PubMed]

9. Stewart, Z.A.; Wilinska, M.E.; Hartnell, S.; Temple, R.C.; Rayman, G.; Stanley, K.P.; Simmons, D.;
Law, G.R.; Scott, E.M.; Hovorka, R.; et al. Closed-Loop Insulin Delivery during Pregnancy in Women
with Type 1 Diabetes. N. Engl. J. Med. 2016, 375, 644–654. [CrossRef] [PubMed]

10. Del Favero, S.; Place, J.; Kropff, J.; Messori, M.; Keith-Hynes, P.; Visentin, R.; Monaro, M.; Galasso, S.;
Boscari, F.; Toffanin, C.; et al. Multicenter outpatient dinner/overnight reduction of hypoglycemia and
increased time of glucose in target with a wearable artificial pancreas using modular model predictive
control in adults with type 1 diabetes. Diabetes Obes. Metab. 2015, 17, 468–476. [CrossRef] [PubMed]

11. Nimri, R.; Phillip, M. Toward Automation of Insulin Delivery—Management Solutions for Type 1 Diabetes.
Endocr. Dev. 2016, 30, 1–13. [PubMed]

https://www.cdc.gov/diabetes/pubs/statsreport14/national-diabetes-report-web.pdf
https://www.cdc.gov/diabetes/pubs/statsreport14/national-diabetes-report-web.pdf
http://dx.doi.org/10.2337/dc13-2108
http://www.ncbi.nlm.nih.gov/pubmed/24757226
http://dx.doi.org/10.1097/MED.0000000000000073
http://www.ncbi.nlm.nih.gov/pubmed/24937038
http://dx.doi.org/10.1177/1932296815602098
http://www.ncbi.nlm.nih.gov/pubmed/26370244
http://dx.doi.org/10.2337/dc14-3073
http://www.ncbi.nlm.nih.gov/pubmed/26049550
http://dx.doi.org/10.2337/dc15-2344
http://www.ncbi.nlm.nih.gov/pubmed/27289127
http://dx.doi.org/10.1089/dia.2013.0231
http://www.ncbi.nlm.nih.gov/pubmed/24471561
http://dx.doi.org/10.1210/jc.2015-2081
http://www.ncbi.nlm.nih.gov/pubmed/26204135
http://dx.doi.org/10.1056/NEJMoa1602494
http://www.ncbi.nlm.nih.gov/pubmed/27532830
http://dx.doi.org/10.1111/dom.12440
http://www.ncbi.nlm.nih.gov/pubmed/25600304
http://www.ncbi.nlm.nih.gov/pubmed/26682752

Processes 2016, 4, 35 23 of 29

12. Qin, S.J.; Badgwell, T.A. A survey of industrial model predictive control technology. Control Eng. Pract. 2003,
11, 733–764. [CrossRef]

13. Joosten, D.A.; Van Den Boom, T.J.J.; Lombaerts, T.J.J. Fault-tolerant control using dynamic inversion and
model-predictive control applied to an aerospace benchmark. In Proceedings of the 17th IFAC World
Congress, Seoul, Korea, 6–11 July 2008; pp. 12030–12035.

14. Hrovat, D.; Di Cairano, S.; Tseng, H.E.; Kolmanovsky, I.V. The development of Model Predictive Control
in automotive industry: A survey. In Proceedings of the 2012 IEEE International Conference on Control
Applications, Dubrovnik, Croatia, 3–5 October 2012; pp. 295–302.

15. Valencia-Palomo, G.; Rossiter, J.A. Efficient suboptimal parametric solutions to predictive control for PLC
applications. Control Eng. Pract. 2011, 19, 732–743. [CrossRef]

16. Dassau, E.; Zisser, H.; Harvey, R.A.; Percival, M.W.; Grosman, B.; Bevier, W.; Atlas, E.; Miller, S.; Nimri, R.;
Jovanovič, L.; et al. Clinical evaluation of a personalized artificial pancreas. Diabetes Care 2013, 36, 801–809.
[CrossRef] [PubMed]

17. Hovorka, R.; Elleri, D.; Thabit, H.; Allen, J.M.; Leelarathna, L.; El-Khairi, R.; Kumareswaran, K.; Caldwell, K.;
Calhoun, P.; Kollman, C.; et al. Overnight closed-loop insulin delivery in young people with type 1 diabetes:
A free-living, randomized clinical trial. Diabetes Care 2014, 37, 1204–1211. [CrossRef] [PubMed]

18. El-Khatib, F.H.; Russell, S.J.; Magyar, K.L.; Sinha, M.; McKeon, K.; Nathan, D.M.; Damiano, E.R. Autonomous
and continuous adaptation of a bihormonal bionic pancreas in adults and adolescents with type 1 diabetes.
J. Clin. Endocrinol. Metab. 2014, 99, 1701–1711. [CrossRef] [PubMed]

19. Gondhalekar, R.; Dassau, E.; Doyle, F.J., III. Periodic zone-MPC with asymmetric costs for outpatient-ready
safety of an artificial pancreas to treat type 1 diabetes. Automatica 2016, 71, 237–246. [CrossRef]

20. Jacobs, P.G.; El Youssef, J.; Castle, J.; Bakhtiani, P.; Branigan, D.; Breen, M.; Bauer, D.; Preiser, N.; Leonard, G.;
Stonex, T.; et al. Automated control of an adaptive bihormonal, dual-sensor artificial pancreas and evaluation
during inpatient studies. IEEE Trans. Biomed. Eng. 2014, 61, 2569–2581. [CrossRef] [PubMed]

21. Kovatchev, B.P.; Renard, E.; Cobelli, C.; Zisser, H.C.; Keith-Hynes, P.; Anderson, S.M.; Brown, S.A.;
Chernavvsky, D.R.; Breton, M.D.; Mize, L.B.; et al. Safety of outpatient closed-loop control: First randomized
crossover trials of a wearable artificial pancreas. Diabetes Care 2014, 37, 1789–1796. [CrossRef] [PubMed]

22. Keith-Hynes, P.; Mize, L.B.; Robert, A.; Place, J. The diabetes assistant: A smartphone-based system for
real-time control of blood glucose. Electronics 2014, 3, 609–623. [CrossRef]

23. Kovatchev, B.P.; Renard, E.; Cobelli, C.; Zisser, H.C.; Keith-Hynes, P.; Anderson, S.M.; Brown, S.A.;
Chernavvsky, D.R.; Breton, M.D.; Farret, A.; et al. Feasibility of outpatient fully integrated closed-loop
control. Diabetes Care 2013, 36, 1851–1858. [CrossRef] [PubMed]

24. Anderson, S.M.; Raghinaru, D.; Pinsker, J.E.; Boscari, F.; Renard, E.; Buckingham, B.A.; Nimri, R.;
Doyle, F.J., III; Brown, S.A.; Keith-Hynes, P.; et al. Multinational home use of closed-loop control is safe and
effective. Diabetes Care 2016, 39, 1143–1150. [CrossRef] [PubMed]

25. Renard, E.; Farret, A.; Kropff, J.; Bruttomesso, D.; Messori, M.; Place, J.; Visentin, R.; Calore, R.; Toffanin, C.;
Di Palma, F.; et al. Day and Night Closed-Loop Glucose Control in Patients with Type 1 Diabetes under
Free-Living Conditions: Results of a Single-Arm 1-Month Experience Compared with a Previously Reported
Feasibility Study of Evening and Night at Home. Diabetes Care 2016, 39, 1151–1160. [CrossRef] [PubMed]

26. Huyett, L.M.; Ly, T.T.; Reuschel-DiVirgilio, S.; Clay, S.M.; Bevier, W.C.; Gondhalekar, R.; Dassau, E.;
Forlenza, G.P.; Doyle, F.J., III; Pinsker, J.E.; et al. Outpatient closed-loop control with unannounced moderate
exercise in adolescents using zone model predictive control. Diabetes Technol. Ther. 2016, 18, A24.

27. Kropff, J.; Del Favero, S.; Place, J.; Toffanin, C.; Visentin, R.; Monaro, M.; Messori, M.; Di Palma, F.; Lanzola, G.;
Farret, A.; et al. 2 Month evening and night closed-loop glucose control in patients with type 1 diabetes under
free-living conditions: A randomised crossover trial. Lancet Diabetes Endocrinol. 2015, 3, 10–15. [CrossRef]

28. Russell, S.J.; Hillard, M.A.; Balliro, C.; Magyar, K.L.; Selagamsetty, R.; Sinha, M.; Grennan, K.; Mondesir, D.;
Ehklaspour, L.; Zheng, H.; et al. Day and night glycaemic control with a bionic pancreas versus conventional
insulin pump therapy in preadolescent children with type 1 diabetes: A randomised crossover trial.
Lancet Diabetes Endocrinol. 2016, 4, 233–243. [CrossRef]

29. Elleri, D.; Allen, J.M.; Biagioni, M.; Kumareswaran, K.; Leelarathna, L.; Caldwell, K.; Nodale, M.;
Wilinska, M.E.; Acerini, C.L.; Dunger, D.B.; et al. Evaluation of a portable ambulatory prototype for
automated overnight closed-loop insulin delivery in young people with type 1 diabetes. Pediatr. Diabetes
2012, 13, 449–453. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/S0967-0661(02)00186-7
http://dx.doi.org/10.1016/j.conengprac.2011.04.001
http://dx.doi.org/10.2337/dc12-0948
http://www.ncbi.nlm.nih.gov/pubmed/23193210
http://dx.doi.org/10.2337/dc13-2644
http://www.ncbi.nlm.nih.gov/pubmed/24757227
http://dx.doi.org/10.1210/jc.2013-4151
http://www.ncbi.nlm.nih.gov/pubmed/24483160
http://dx.doi.org/10.1016/j.automatica.2016.04.015
http://dx.doi.org/10.1109/TBME.2014.2323248
http://www.ncbi.nlm.nih.gov/pubmed/24835122
http://dx.doi.org/10.2337/dc13-2076
http://www.ncbi.nlm.nih.gov/pubmed/24929429
http://dx.doi.org/10.3390/electronics3040609
http://dx.doi.org/10.2337/dc12-1965
http://www.ncbi.nlm.nih.gov/pubmed/23801798
http://dx.doi.org/10.2337/dc15-2468
http://www.ncbi.nlm.nih.gov/pubmed/27208316
http://dx.doi.org/10.2337/dc16-0008
http://www.ncbi.nlm.nih.gov/pubmed/27208331
http://dx.doi.org/10.1016/S2213-8587(15)00335-6
http://dx.doi.org/10.1016/S2213-8587(15)00489-1
http://dx.doi.org/10.1111/j.1399-5448.2012.00903.x
http://www.ncbi.nlm.nih.gov/pubmed/22817340

Processes 2016, 4, 35 24 of 29

30. Thabit, H.; Tauschmann, M.; Allen, J.M.; Leelarathna, L.; Hartnell, S.; Wilinska, M.E.; Acerini, C.L.;
Dellweg, S.; Benesch, C.; Heinemann, L.; et al. Home use of an artificial beta cell in type 1 diabetes.
N. Engl. J. Med. 2015, 373, 2129–2140. [CrossRef] [PubMed]

31. Thabit, H.; Lubina-Solomon, A.; Stadler, M.; Leelarathna, L.; Walkinshaw, E.; Pernet, A.; Allen, J.M.;
Iqbal, A.; Choudhary, P.; Kumareswaran, K.; et al. Home use of closed-loop insulin delivery for overnight
glucose control in adults with type 1 diabetes: A 4-week, multicentre, randomised crossover study.
Lancet Diabetes Endocrinol. 2014, 2, 701–709. [CrossRef]

32. Tauschmann, M.; Allen, J.M.; Wilinska, M.E.; Thabit, H.; Stewart, Z.; Cheng, P.; Kollman, C.; Acerini, C.L.;
Dunger, D.B.; Hovorka, R. Day-and-night hybrid closed-loop insulin delivery in adolescents with
type 1 diabetes: A free-living, randomized clinical trial. Diabetes Care 2016, 39. [CrossRef] [PubMed]

33. Grosman, B.; Ilany, J.; Roy, A.; Kurtz, N.; Wu, D.; Parikh, N.; Voskanyan, G.; Konvalina, N.; Mylonas, C.;
Gottlieb, R.; et al. Hybrid closed-loop insulin delivery in type 1 diabetes during supervised outpatient
conditions. J. Diabetes Sci. Technol. 2016, 10, 708–713. [CrossRef] [PubMed]

34. Blauw, H.; Van Bon, A.; Koops, R.; DeVries, J. Performance and safety of an integrated bihormonal artificial
pancreas for fully automated glucose control at home. Diabetes Obes. Metab. 2016, 18, 671–677. [CrossRef]
[PubMed]

35. Reddy, M.; Herrero, P.; Sharkawy, M.; Pesl, P.; Jugnee, N.; Pavitt, D.; Godsland, I.; Alberti, G.; Toumazou, C.;
Johnston, D.; et al. Metabolic control with the bio-inspired artificial pancreas in adults with type 1 diabetes:
A 24-hour randomized controlled crossover study. J. Diabetes Sci. Technol. 2015, 17, 405–413. [CrossRef]
[PubMed]

36. Capozzi, D.; Lanzola, G. A generic telemedicine infrastructure for monitoring an artificial pancreas trial.
Comput. Methods Programs Biomed. 2013, 110, 343–353. [CrossRef] [PubMed]

37. Place, J.; Robert, A.; Ben Brahim, N.; Keith-Hynes, P.; Farret, A.; Pelletier, M.-J.; Buckingham, B.; Breton, M.;
Kovatchev, B.; Renard, E. DiAs web monitoring: A real-time remote monitoring system designed for artificial
pancreas outpatient trials. J. Diabetes Sci. Technol. 2013, 7, 1427–1435. [CrossRef] [PubMed]

38. Altia Insulin Pump Starts GUI Revolution. Available online: http://www.altia.com/downloads/case_
studies/tandem_case_study.pdf (accessed on 6 February 2016).

39. Mossman, J. Insulin pumps: Design basics and tradeoffs. Available online: http://www.eetimes.com/
document.asp?doc_id=1278073 (accessed on 2 January 2016).

40. NXP and Insulet Corporation to Help Improve Diabetes Care. Available online: http://www.nxp.com/about/
our-customers/nxp-and-insulet-corporation-to-help-improve-diabetes-care:CASE_STUDY_INSULET
(accessed on 6 February 2016).

41. Avizienis, A.; Laprie, J.; Randell, B. Fundamental Concepts of Dependability. In Proceedings of the 3rd IEEE
Information Survivability Workshop (ISW-2000), Boston, MA, USA, 24–26 October 2000; pp. 7–12.

42. Bequette, B.W. Challenges and recent progress in the development of a closed-loop artificial pancreas.
Annu. Rev. Control 2012, 36, 255–266. [CrossRef] [PubMed]

43. Patek, S.D.; Magni, L.; Dassau, E.; Toffanin, C.; De Nicolao, G.; Del Favero, S.; Breton, M.; Dalla Man, C.;
Renard, E.; Zisser, H.; et al. Modular closed-loop control of diabetes. IEEE Trans. Biomed. Eng. 2012, 59,
2986–2999. [CrossRef] [PubMed]

44. Harvey, R.A.; Dassau, E.; Zisser, H.; Seborg, D.E.; Jovanovič, L.; Doyle, F.J., III. Design of the health monitoring
system for the artificial pancreas: Low glucose prediction module. J. Diabetes Sci. Technol. 2012, 6, 1345–1354.
[CrossRef] [PubMed]

45. Dassau, E.; Bequette, B.W.; Buckingham, B.A.; Doyle, F.J., III. Detection of a meal using continuous glucose
monitoring. Diabetes Care 2008, 31, 295–300. [CrossRef] [PubMed]

46. Turksoy, K.; Samadi, S.; Feng, J.; Littlejohn, E.; Quinn, L.; Cinar, A. Meal-detection in patients with
type 1 diabetes: A new module for the multivariable adaptive artificial pancreas control system. IEEE J.
Biomed. Health Inform. 2016, 20, 47–54. [CrossRef] [PubMed]

47. Chen, S.; Weimer, J.; Rickels, M.; Peleckis, A.; Lee, I. Towards a Model-based Meal Detector for
Type I Diabetics. In Proceedings of the 6th Medical Cyber-Physical Systems Workshop, Seattle, WA, USA,
13–16 April 2015.

48. Bergenstal, R.M.; Klonoff, D.C.; Garg, S.K.; Bode, B.W.; Meredith, M.; Slover, R.H.; Ahmann, A.J.; Welsh, J.B.;
Lee, S.W.; Kaufman, F.R. Threshold-based insulin-pump interruption for reduction of hypoglycemia. N. Engl.
J. Med. 2013, 369, 224–232. [CrossRef] [PubMed]

http://dx.doi.org/10.1056/NEJMoa1509351
http://www.ncbi.nlm.nih.gov/pubmed/26379095
http://dx.doi.org/10.1016/S2213-8587(14)70114-7
http://dx.doi.org/10.2337/dc15-2078
http://www.ncbi.nlm.nih.gov/pubmed/26740634
http://dx.doi.org/10.1177/1932296816631568
http://www.ncbi.nlm.nih.gov/pubmed/26880389
http://dx.doi.org/10.1111/dom.12663
http://www.ncbi.nlm.nih.gov/pubmed/26996542
http://dx.doi.org/10.1177/1932296815616134
http://www.ncbi.nlm.nih.gov/pubmed/26581881
http://dx.doi.org/10.1016/j.cmpb.2013.01.011
http://www.ncbi.nlm.nih.gov/pubmed/23415079
http://dx.doi.org/10.1177/193229681300700603
http://www.ncbi.nlm.nih.gov/pubmed/24351169
http://www.altia.com/downloads/case_studies/tandem_case_study.pdf
http://www.altia.com/downloads/case_studies/tandem_case_study.pdf
http://www.eetimes.com/document.asp?doc_id=1278073
http://www.eetimes.com/document.asp?doc_id=1278073
http://dx.doi.org/10.1016/j.arcontrol.2012.09.007
http://www.ncbi.nlm.nih.gov/pubmed/23175620
http://dx.doi.org/10.1109/TBME.2012.2192930
http://www.ncbi.nlm.nih.gov/pubmed/22481809
http://dx.doi.org/10.1177/193229681200600613
http://www.ncbi.nlm.nih.gov/pubmed/23294779
http://dx.doi.org/10.2337/dc07-1293
http://www.ncbi.nlm.nih.gov/pubmed/17977934
http://dx.doi.org/10.1109/JBHI.2015.2446413
http://www.ncbi.nlm.nih.gov/pubmed/26087510
http://dx.doi.org/10.1056/NEJMoa1303576
http://www.ncbi.nlm.nih.gov/pubmed/23789889

Processes 2016, 4, 35 25 of 29

49. Johansen, T.A. Toward dependable embedded model predictive control. IEEE Syst. J. 2014, PP, 1–12.
[CrossRef]

50. Colnaric, M. Design of embedded control systems. IEEE Int. Conf. Ind. Technol. 2003, 1, 22–30.
51. Barroso, J. Modeling and Intelligent Control of a Distillation Column. Ph.D. Thesis, Technical University

of Lisbon, Lisbon, Portugal, October 2009.
52. Ng, K.C.; Wang, L.; Peake, I.D. Safety-Critical Multi-Core Software Architecture for Model Predictive

Control. In Proceedings of the Australian Control Conference, Melbourne, Australia, 10–11 November 2011;
pp. 434–439.

53. Hildreth, C. A quadratic programming procedure. Nav. Res. Logist. Q. 1957, 4, 79–85. [CrossRef]
54. Steil, G.M.; Grodsky, G.M. The artificial pancreas: Is it important to understand how the β cell controls blood

glucose? J. Diabetes Sci. Technol. 2013, 7, 1359–1369. [CrossRef] [PubMed]
55. Steil, G.M. Algorithms for a Closed-Loop Artificial Pancreas: The case for proportional-integral-derivative

control. J. Diabetes Sci. Technol. 2013, 7, 1621–1631. [CrossRef] [PubMed]
56. Steil, G.M.; Palerm, C.C.; Kurtz, N.; Voskanyan, G.; Roy, A.; Paz, S.; Kandeel, F.R. The effect of insulin

feedback on closed loop glucose control. J. Clin. Endocrinol. Metab. 2011, 96, 1402–1408. [CrossRef] [PubMed]
57. Weinzimer, S.A.; Steil, G.M.; Swan, K.L.; Dziura, J.; Kurtz, N.; Tamborlane, W.V. Fully automated closed-loop

insulin delivery vs semi-automated hybrid control in pediatric patients with type 1 diabetes using an artificial
pancreas. Diabetes Care 2008, 31, 934–939. [CrossRef] [PubMed]

58. Atlas, E.; Nimri, R.; Miller, S.; Grunberg, E.A.; Phillip, M. MD-Logic Artificial Pancreas System: A pilot study
in adults with type 1 diabetes. Diabetes Care 2010, 33, 1072–1076. [CrossRef] [PubMed]

59. Magni, L.; Raimondo, D.M.; Bossi, L.; Dalla Man, C.; De Nicolao, G.; Kovatchev, B.; Cobelli, C.
Model predictive control of type 1 diabetes: An in silico trial. J. Diabetes Sci. Technol. 2007, 1, 804–812.
[CrossRef] [PubMed]

60. Soru, P.; De Nicolao, G.; Toffanin, C.; Dalla Man, C.; Cobelli, C.; Magni, L. MPC based Artificial Pancreas:
Strategies for individualization and meal compensation. Annu. Rev. Control 2012, 36, 118–128. [CrossRef]

61. Grosman, B.; Dassau, E.; Zisser, H.C.; Jovanovič, L.; Doyle, F.J., III. Zone model predictive control: A strategy
to minimize hyper- and hypoglycemic events. J. Diabetes Sci. Technol. 2010, 4, 961–975. [CrossRef] [PubMed]

62. Gondhalekar, R.; Dassau, E.; Zisser, H.C.; Doyle, F.J., III. Periodic-Zone Model Predictive Control for Diurnal
Closed-Loop Operation of an Artificial Pancreas. J. Diabetes Sci. Technol. 2013, 7, 1446–1460. [CrossRef]
[PubMed]

63. Seborg, D.E.; Edgar, T.F.; Mellichamp, D.A.; Doyle, F.J., III. Process Dynamics and Control; Wiley: Hoboken, NJ,
USA, 2010.

64. Krasňanský, R.; Dvorščák, B.; Kozák, Š. Hardware Realization of Embedded Control Algorithm on FPGA.
In Proceedings of the 5th International Conference on Computational Logics, Algebras, Programming, Tools,
and Benchmarking, Venice, Italy, 25–29 May 2014; pp. 13–18.

65. Astrom, K.J.; Wittenmark, B. Computer-Controlled Systems Theory and Design, 3rd ed.; Prentice Hall:
Upper Saddle River, NJ, USA, 1997.

66. Chan, Y.F.; Moallem, M.; Wang, W. Efficient implementation of PID control algorithm using FPGA technology.
In Proceedings of the 43rd IEEE Conference on Decision and Control (CDC), Atlantis, Paradise Island,
Bahamas, 14–17 December 2004; Volume 5, pp. 4885–4890.

67. Feng, G. A survey on analysis and design of model-based fuzzy control systems. IEEE Trans. Fuzzy Syst.
2006, 14, 676–697. [CrossRef]

68. Takagi, T.; Sugeno, M. Fuzzy identification of systems and its applications to modeling and control.
IEEE Trans. Syst. Man Cybern. 1985, 15, 116–132. [CrossRef]

69. Teixeira, M.C.M.; Zak, S.H. Stabilizing controller design for uncertain nonlinear systems using fuzzy models.
IEEE Trans. Fuzzy Syst. 1999, 7, 133–142. [CrossRef]

70. Sánchez-Solano, S.; Cabrera, A.J.; Baturone, I.; Moreno-Velo, F.J.; Brox, M. FPGA implementation of
embedded fuzzy controllers for robotic applications. IEEE Trans. Ind. Electron. 2007, 54, 1937–1945.
[CrossRef]

71. Taeed, F.; Salam, Z.; Ayob, S. FPGA implementation of a single-input fuzzy logic controller for boost
converterwith the absence of an external analog-to-digital converter. IEEE Trans. Ind. Electron. 2012, 59,
1208–1217. [CrossRef]

http://dx.doi.org/10.1109/JSYST.2014.2368129
http://dx.doi.org/10.1002/nav.3800040113
http://dx.doi.org/10.1177/193229681300700528
http://www.ncbi.nlm.nih.gov/pubmed/24124965
http://dx.doi.org/10.1177/193229681300700623
http://www.ncbi.nlm.nih.gov/pubmed/24351189
http://dx.doi.org/10.1210/jc.2010-2578
http://www.ncbi.nlm.nih.gov/pubmed/21367930
http://dx.doi.org/10.2337/dc07-1967
http://www.ncbi.nlm.nih.gov/pubmed/18252903
http://dx.doi.org/10.2337/dc09-1830
http://www.ncbi.nlm.nih.gov/pubmed/20150292
http://dx.doi.org/10.1177/193229680700100603
http://www.ncbi.nlm.nih.gov/pubmed/19885152
http://dx.doi.org/10.1016/j.arcontrol.2012.03.009
http://dx.doi.org/10.1177/193229681000400428
http://www.ncbi.nlm.nih.gov/pubmed/20663463
http://dx.doi.org/10.1177/193229681300700605
http://www.ncbi.nlm.nih.gov/pubmed/24351171
http://dx.doi.org/10.1109/TFUZZ.2006.883415
http://dx.doi.org/10.1109/TSMC.1985.6313399
http://dx.doi.org/10.1109/91.755395
http://dx.doi.org/10.1109/TIE.2007.898292
http://dx.doi.org/10.1109/TIE.2011.2161250

Processes 2016, 4, 35 26 of 29

72. Gondhalekar, R.; Dassau, E.; Doyle, F.J., III. MPC Design for Rapid Pump-Attenuation and Expedited
Hyperglycemia Response to Treat T1DM with an Artificial Pancreas. In Proceedings of the American Control
Conference (ACC), Portland, OR, USA, 4–6 June 2014; pp. 4224–4230.

73. Bemporad, A.; Morari, M.; Dua, V.; Pistikopoulos, E.N. The explicit linear quadratic regulator for constrained
systems. Automatica 2002, 38, 3–20. [CrossRef]

74. Pistikopoulos, E.N.; Georgiadis, M.; Dua, V. Multi-Parametric Model-Based Control Theory and Applications;
Wiley: Weinhaim, Germany, 2007.

75. Dua, P.; Kouramas, K.; Dua, V.; Pistikopoulos, E.N. MPC on a chip—Recent advances on the application of
multi-parametric model-based control. Comput. Chem. Eng. 2008, 32, 754–765. [CrossRef]

76. Pistikopoulos, E.N. From multi-parametric programming theory to MPC-on-a-chip multi-scale systems
applications. Comput. Chem. Eng. 2012, 47, 57–66. [CrossRef]

77. Dua, P.; Doyle, F.J., III; Pistikopoulos, E.N. Model-based blood glucose control for Type 1 diabetes via
parametric programming. IEEE Trans. Biomed. Eng. 2006, 53, 1478–1491. [CrossRef] [PubMed]

78. Percival, M.W.; Wang, Y.; Grosman, B.; Dassau, E.; Zisser, H.; Jovanovič, L.; Doyle, F.J., III. Development of
a multi-parametric model predictive control algorithm for insulin delivery in type 1 diabetes mellitus using
clinical parameters. J. Process Control 2011, 21, 391–404. [CrossRef] [PubMed]

79. Huyck, B.; Callebaut, L.; Logist, F.; Ferreau, H.J.; Diehl, M.; De Brabanter, J.; Van Impe, J.; De Moor, B.
Implementation and Experimental Validation of Classic MPC on Programmable Logic Controllers.
In Proceedings of the 20th Mediterranean Conference on Control & Automation (MED), Barcelona, Spain,
3–6 July 2012; pp. 679–684.

80. Wang, Y.; Boyd, S. Fast model predictive control using online optimization. IEEE Trans. Control Syst. Technol.
2010, 18, 267–278. [CrossRef]

81. Pannocchia, G.; Rawlings, J.B.; Wright, S.J. Fast, large-scale model predictive control by partial enumeration.
Automatica 2007, 43, 852–860. [CrossRef]

82. Cagienard, R.; Grieder, P.; Kerrigan, E.C.; Morari, M. Move blocking strategies in receding horizon control.
J. Process Control 2007, 17, 563–570. [CrossRef]

83. Kufoalor, D.K.M.; Aaker, V.; Johansen, T.A.; Imsland, L.; Eikrem, G.O. Automatically generated embedded
model predictive control: Moving an industrial PC-based MPC to an embedded platform. Optim. Control
Appl. Methods 2015, 36, 705–727. [CrossRef]

84. Takács, B.; Kvasnica, M.; Di Cairano, S. Nearly-Optimal Simple Explicit MPC Regulators with Recursive
Feasibility Guarantees. In Proceedings of the 52nd IEEE Conference on Decision and Control, Florence, Italy,
10–13 December 2013; pp. 7089–7094.

85. Kvasnica, M.; Fikar, M. Clipping-Based Complexity Reduction in Explicit MPC. IEEE Trans. Autom. Control
2012, 57, 1878–1883. [CrossRef]

86. Johansen, T.A.; Grancharova, A. Approximate explicit model predictive control implemented via orthogonal
search tree partitioning. IEEE Trans. Autom. Control 2003, 48, 810–815. [CrossRef]

87. Bemporad, A.; Filippi, C. Suboptimal explicit receding horizon control via approximate multiparametric
quadratic programming. J. Optim. Theory Appl. 2003, 117, 9–38. [CrossRef]

88. Bemporad, A.; Filippi, C. An Algorithm for approximate multiparametric convex programming.
Comput. Optim. Appl. 2006, 35, 87–108. [CrossRef]

89. Jones, C.N.; Morari, M. Polytopic Approximation of explicit model predictive controllers. IEEE Trans.
Autom. Control 2010, 55, 2542–2553. [CrossRef]

90. Parisini, T.; Zoppoli, R. A Receding-horizon regulator for nonlinear-systems and a neural approximation.
Automatica 1995, 31, 1443–1451. [CrossRef]

91. Parisini, T.; Sanguineti, M.; Zoppoli, R. Nonlinear stabilization by receding-horizon neural regulators.
Int. J. Control 1998, 70, 341–362. [CrossRef]

92. Pin, G.; Filippo, M.; Pellegrino, F.A.; Parisini, T. Approximate Off-Line Receding Horizon Control of
Constrained Nonlinear Discrete-Time Systems. In Proceedings of the European Control Conference (ECC),
Budapest, Hungary, 23–26 August 2009; pp. 2420–2425.

93. Pin, G.; Filippo, M.; Pellegrino, F.A.; Fenu, G.; Parisini, T. Approximate model predictive control laws for
constrained nonlinear discrete-time systems: Analysis and offline design. Int. J. Control 2013, 86, 804–820.
[CrossRef]

http://dx.doi.org/10.1016/S0005-1098(01)00174-1
http://dx.doi.org/10.1016/j.compchemeng.2007.03.008
http://dx.doi.org/10.1016/j.compchemeng.2012.06.031
http://dx.doi.org/10.1109/TBME.2006.878075
http://www.ncbi.nlm.nih.gov/pubmed/16916082
http://dx.doi.org/10.1016/j.jprocont.2010.10.003
http://www.ncbi.nlm.nih.gov/pubmed/21516218
http://dx.doi.org/10.1109/TCST.2009.2017934
http://dx.doi.org/10.1016/j.automatica.2006.10.019
http://dx.doi.org/10.1016/j.jprocont.2007.01.001
http://dx.doi.org/10.1002/oca.2182
http://dx.doi.org/10.1109/TAC.2011.2179428
http://dx.doi.org/10.1109/TAC.2003.811259
http://dx.doi.org/10.1023/A:1023696221899
http://dx.doi.org/10.1007/s10589-006-6447-z
http://dx.doi.org/10.1109/TAC.2010.2047437
http://dx.doi.org/10.1016/0005-1098(95)00044-W
http://dx.doi.org/10.1080/002071798222271
http://dx.doi.org/10.1080/00207179.2012.762121

Processes 2016, 4, 35 27 of 29

94. Bleris, L.G.; Kothare, M.V. Real-time implementation of model predictive control. In Proceedings of the
American Control Conference (ACC), Portland, OR, USA, 8–10 June 2005; pp. 4166–4171.

95. Bleris, L.G.; Kothare, M.V.; Garcia, J.; Arnold, M.G. Embedded Model Predictive Control for System-on-a-chip
Applications. In Proceedings of the 7th IFAC Symposium on Dynamics and Control of Process Systems
(DYCOPS-7), Boston, MA, USA, 5–7 July 2004; Volume 1.

96. Swartzlander, E.E.; Alexopoulos, A.G. The sign/logarithm number system. IEEE Trans. Comput. 1975, 24,
1238–1242. [CrossRef]

97. Rossiter, J.A.; Kouvaritakis, B.; Bacic, M. Interpolation based computationally efficient predictive control.
Int. J. Control 2004, 77, 290–301. [CrossRef]

98. Ding, Y.; Rossiter, J.A. Comparisons and combinations of interpolation methods with conventional predictive
control. In Proceedings of the Mediterranean Conference on Control and Automation (MED), Athens, Greece,
27–29 June 2007.

99. Rossiter, J.A.; Pluymers, B.; De Moor, B. The potential of interpolation for simplifying predictive control
and application to LPV systems. In Assessment and Future Directions of Nonlinear Model Predictive Control;
Springer: Berlin, Germany, 2007; Volume 358, pp. 63–76.

100. Valencia-Palomo, G. Efficient Implementations of Predictive Control. Ph.D. Thesis, University of Sheffield,
Sheffield, UK, October 2010.

101. Henriksson, D.; Cervin, A.; Akesson, J.; Arzen, K.E. Feedback scheduling of model predictive controllers.
In Proceedings of the 8th IEEE Real-Time and Embedded Technology and Applications Symposium, San Jose,
CA, USA, 25–27 September 2002; pp. 207–216.

102. Marti, P.; Lin, C.; Brandt, S.A. Optimal State Feedback Based Resource Allocation for Resource-Constrained
Control Tasks. In Proceedings of the 25th IEEE Real-Time Systems Symposium, Lisbon, Portugal,
5–8 December 2004.

103. Cannon, M.; Kouvaritakis, B. Efficient Constrained Model Predictive Control with Asymptotic
Optimality. In Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, NV, USA,
10–13 December 2002; pp. 2744–2749.

104. Kouvaritakis, B.; Rossiter, J.A.; Schuurmans, J. Efficient robust predictive control. IEEE Trans. Autom. Control
2000, 45, 1545–1549. [CrossRef]

105. Huyck, B.; Ferreau, H.J.; Diehl, M.; De Brabanter, J.; Van Impe, J.F.M.; De Moor, B.; Logist, F. Towards online
model predictive control on a programmable logic controller: Practical considerations. Math. Probl. Eng.
2012, 2012. [CrossRef]

106. Friedlander, M.P.; Orban, D. A primal-dual regularized interior-point method for convex quadratic programs.
Math. Program. Comput. 2012, 4, 71–107. [CrossRef]

107. Rao, C.V.; Wright, S.J.; Rawlings, J.B. Application of interior-point methods to model predictive control.
J. Optim. Theory Appl. 1998, 99, 723–758. [CrossRef]

108. Lau, M.S.K.; Yue, S.P.; Ling, K.V.; Maciejowski, J.M. A comparison of interior point and active set
methods for FPGA implementation of model predictive control. In Proceedings of the European Control
Conference (ECC), Budapest, Hungary, 23–26 August 2009; pp. 156–161.

109. Ferreau, H.J.; Kirches, C.; Potschka, A.; Bock, H.G.; Diehl, M. qpOASES: A parametric active-set algorithm
for quadratic programming. Math. Program. Comput. 2014, 6, 327–363. [CrossRef]

110. Ferreau, H.J.; Bock, H.G.; Diehl, M. An online active set strategy to overcome the limitations of explicit MPC.
Int. J. Robust Nonlinear Control 2008, 18, 816–830. [CrossRef]

111. Mattingley, J.; Boyd, S. CVXGEN: A code generator for embedded convex optimization. Optim. Eng. 2012,
13, 1–27. [CrossRef]

112. Domahidi, A.; Chu, E.; Boyd, S. ECOS: An SOCP solver for embedded systems. In Proceedings of the
European Control Conference (ECC), Zürich, Switzerland, 17–19 July 2013; pp. 3071–3076.

113. Wills, A.; Ninness, B. QPC—Quadratic Programming in C. Available online: http://sigpromu.org/
quadprog/ (accessed on 10 March 2016).

114. Domahidi, A. FORCES: Fast Optimization for Real-Time Control on Embedded Systems. Available online:
http://forces.ethz.ch/doku.php?id=start (accessed on 15 March 2016).

115. Andersen, M.S.; Dahl, J.; Vandenberghe, L. CVXOPT Documentation, Release 1.1.8. Available online:
http://cvxopt.org (accessed on 12 March 2016).

http://dx.doi.org/10.1109/T-C.1975.224172
http://dx.doi.org/10.1080/00207170310001655327
http://dx.doi.org/10.1109/9.871769
http://dx.doi.org/10.1155/2012/912603
http://dx.doi.org/10.1007/s12532-012-0035-2
http://dx.doi.org/10.1023/A:1021711402723
http://dx.doi.org/10.1007/s12532-014-0071-1
http://dx.doi.org/10.1002/rnc.1251
http://dx.doi.org/10.1007/s11081-011-9176-9
http://sigpromu.org/quadprog/
http://sigpromu.org/quadprog/
http://forces.ethz.ch/doku.php?id=start
http://cvxopt.org

Processes 2016, 4, 35 28 of 29

116. Diamond, S.; Boyd, S. CVXPY: A python-embedded modeling language for convex optimization. J. Mach.
Learn. Res. 2016, 17, 1–5.

117. O’Donoghue, B.; Chu, E.; Parikh, N.; Boyd, S. Conic optimization via operator splitting and homogeneous
self-dual embedding. J. Optim. Theory Appl. 2016, 169, 1–27. [CrossRef]

118. Kovatchev, B.P.; Breton, M.; Dalla Man, C.; Cobelli, C. In silico preclinical trials: A proof of concept in
closed-loop control of type 1 diabetes. J. Diabetes Sci. Technol. 2009, 3, 44–55. [CrossRef] [PubMed]

119. Wolf, M. Computers as Components: Principles of Embedded Computing System Design, 2nd ed.; Elsevier: Waltham,
MA, USA, 2012.

120. Kornecki, A.J.; Zalewski, J. Hardware certification for real-time safety-critical systems: State of the art.
Annu. Rev. Control 2010, 34, 163–174. [CrossRef]

121. Kornecki, A.; Zalewski, J. Certification of software for real-time safety-critical systems: State of the art.
Innov. Syst. Softw. Eng. 2009, 5, 149–161. [CrossRef]

122. Fries, R.C. Reliable Design of Medical Devices, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2012.
123. Vogel, D.A. Medical Device Software Verification, Validation and Compliance; Artech House: Norwood, MA,

USA, 2011.
124. Wiklund, M.E.; Kendler, J.; Strochlic, A.Y. Usability Testing of Medical Devices; CRC Press: Boca Raton, FL,

USA, 2010.
125. Ling, K.V.; Yue, S.P.; Maciejowski, J.M. A FPGA Implementation of Model Predictive Control. In Proceedings

of the American Control Conference (ACC), Minneapolis, MN, USA, 14–16 June 2006; pp. 1930–1935.
126. Fathy, H.K.; Filipi, Z.S.; Hagena, J.; Stein, J.L. Review of Hardware-in-the-Loop Simulation and Its Prospects

in the Automotive Area. In Proceedings of the SPIE International Society for Optical Engineering, Kissimmee,
FL, USA, 18–21 April 2006; Volume 6228, pp. 1–20.

127. Suardi, A.; Kerrigan, E.C.; Constantinides, G.A. Fast FPGA prototyping toolbox for embedded optimization.
In Proceedings of the European Control Conference (ECC), Linz, Austria, 15–17 July 2015; pp. 2589–2594.

128. Hartley, E.N.; Jerez, J.L.; Suardi, A.; Maciejowski, J.M.; Kerrigan, E.C.; Constantinides, G.A. Predictive control
using an FPGA with application to aircraft control. IEEE Trans. Control Syst. Technol. 2014, 22, 1006–1017.
[CrossRef]

129. Jerez, J.L.; Constantinides, G.A.; Kerrigan, E.C. FPGA Implementation of an Interior Point Solver for
Linear Model Predictive Control. In Proceedings of the International Conference on Field-Programmable
Technology, Beijing, China, 8–10 December 2010; pp. 316–319.

130. Wills, A.; Mills, A.; Ninness, B. FPGA Implementation of an Interior-Point Solution for Linear
Model Predictive Control. In Proceedings of the 18th IFAC World Congress, Milano, Italy,
28 August–2 September 2011; pp. 14527–14532.

131. Vouzis, P.D.; Bleris, L.G.; Arnold, M.G.; Kothare, M.V. A system-on-a-chip implementation for embedded
real-time model predictive control. IEEE Trans. Control Syst. Technol. 2009, 17, 1006–1017. [CrossRef]

132. Ingole, D.; Holaza, J.; Takács, B.; Kvasnica, M. FPGA-Based Explicit Model Predictive Control for Closed-Loop
Control of Intravenous Anesthesia. In Proceedings of the International Conference on Process Control,
Štrbské Pleso, Slovakia, 9–12 June 2015; pp. 42–47.

133. Ingole, D.; Kvasnica, M. FPGA Implementation of Explicit Model Predictive Control for Closed Loop Control
of Depth of Anesthesia. In Proceedings of the 5th IFAC Conference on Nonlinear Model Predictive Control,
Seville, Spain, 17–20 September 2015; pp. 484–489.

134. Zometa, P.; Kögel, M.; Faulwasser, T.; Findeisen, R. Implementation Aspects of Model Predictive Control for
Embedded Systems. In Proceedings of the American Control Conference (ACC), Montréal, QC, Canada,
27–29 June 2012; pp. 1205–1210.

135. Kalúz, M.; Klaušo, M.; Kvasnica, M. Real-Time Implementation of a Reference Governor on the Arduino
Microcontroller. In Proceedings of the International Conference on Process Control (PC), Štrbské Pleso,
Slovakia, 9–12 June 2015; pp. 350–356.

136. Frison, G.; Jørgensen, J.B. MPC Related Computational Capabilities of ARMv7A Processors. In Proceedings
of the European Control Conference (ECC), Linz, Austria, 15–17 July 2015; pp. 3419–3426.

137. Blauw, H.; Keith-Hynes, P.; Koops, R.; DeVries, J.H. A review of safety and design requirements of the
artificial pancreas. Ann. Biomed. Eng. 2016. [CrossRef] [PubMed]

138. Zhang, Y.; Jones, P.L.; Jetley, R. A hazard analysis for a generic insulin infusion pump. J. Diabetes Sci. Technol.
2010, 4, 263–283. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s10957-016-0892-3
http://dx.doi.org/10.1177/193229680900300106
http://www.ncbi.nlm.nih.gov/pubmed/19444330
http://dx.doi.org/10.1016/j.arcontrol.2009.12.003
http://dx.doi.org/10.1007/s11334-009-0088-1
http://dx.doi.org/10.1109/TCST.2013.2271791
http://dx.doi.org/10.1109/TCST.2008.2004503
http://dx.doi.org/10.1007/s10439-016-1679-2
http://www.ncbi.nlm.nih.gov/pubmed/27352278
http://dx.doi.org/10.1177/193229681000400207
http://www.ncbi.nlm.nih.gov/pubmed/20307387

Processes 2016, 4, 35 29 of 29

139. Cope, J.U.; Samuels-Reid, J.H.; Morrison, A.E. Pediatric Use of Insulin Pump Technology: A retrospective
study of adverse events in children ages 1–12 years. J. Diabetes Sci. Technol. 2012, 6, 1053–1059. [CrossRef]
[PubMed]

140. Martins, L.E.G.; De Oliveira, T. A case study using a protocol to derive safety functional requirements from
fault tree analysis. In Proceedings of the 22nd IEEE International Requirements Engineering Conference,
Karlskrona, Sweden, 25–29 August 2014; pp. 412–419.

141. Jerez, J.L.; Goulart, P.J.; Richter, S.; Constantinides, G.A.; Kerrigan, E.C.; Morari, M. Embedded online
optimization for model predictive control at megahertz rates. IEEE Trans. Autom. Control 2014, 59, 3238–3251.
[CrossRef]

142. Picasso, B.; Pancanti, S.; Bemporad, A.; Bicchi, A. Receding–horizon control of LTI systems with quantized
inputs. In Proceedings of the IFAC Conference on Analysis and Design of Hybrid Systems, St. Malo, France,
16–18 June 2003; pp. 295–300.

143. Quevedo, D.E.; Goodwin, G.C.; De Doná, J.A. Finite constraint set receding horizon quadratic control. Int. J.
Robust Nonlinear Control 2004, 14, 355–377. [CrossRef]

144. Liberzon, D. Quantization, time delays, and nonlinear stabilization. IEEE Trans. Autom. Control 2006, 51,
1190–1195. [CrossRef]

145. Mayne, D.Q.; Seron, M.M.; Raković, S.V. Robust model predictive control of constrained linear systems with
bounded disturbances. Automatica 2005, 41, 219–224. [CrossRef]

146. Limon, D.; Alamo, T.; Salas, F.; Camacho, E.F. Input to state stability of min-max MPC controllers for
nonlinear systems with bounded uncertainties. Automatica 2006, 42, 797–803. [CrossRef]

147. Aguilera, R.P.; Quevedo, D.E. On the stability of MPC with a finite input alphabet. In Proceedings of the
18th IFAC World Congress, Milano, Italy, 28 August–2 September 2011; pp. 7975–7980.

148. Aguilera, R.P.; Quevedo, D.E. Stability analysis of quadratic MPC with a discrete input alphabet. IEEE Trans.
Autom. Control 2013, 58, 3190–3196. [CrossRef]

149. Paul, N.; Kohno, T.; Klonoff, D.C. A review of the security of insulin pump infusion systems. J. Diabetes
Sci. Technol. 2011, 5, 1557–1562. [CrossRef] [PubMed]

150. Li, C.; Raghunathan, A.; Jha, N.K. Hijacking an Insulin Pump: Security Attacks and Defenses for
a Diabetes Therapy System. In Proceedings of the 13th International Conference on e-Health Networking,
Applications and Services, (Healthcom), Columbia, MO, USA, 13–15 June 2011; pp. 150–156.

151. Hei, X.; Du, X.; Lin, S.; Lee, I.; Sokolsky, O. Patient infusion pattern based access control schemes for wireless
insulin pump system. IEEE Trans. Parallel Distrib. Syst. 2015, 26, 3108–3121. [CrossRef]

152. Williams, P.A.; Woodward, A.J. Cybersecurity vulnerabilities in medical devices: A complex environment
and multifaceted problem. Med. Devices Evid. Res. 2015, 8, 305–316. [CrossRef] [PubMed]

153. Burleson, W.; Clark, S.S.; Ransford, B.; Fu, K. Design challenges for secure implantable medical devices.
In Proceedings of the 49th Design Automation Conference (DAC), San Francisco, CA, USA, 3–7 June 2012;
pp. 12–17.

154. Lee, I.; Pappas, G.J.; Cleaveland, R.; Hatclif, J.; Krogh, B.H.; Lee, P.; Rubin, H.; Sha, L. High-confidence
medical device software and systems. IEEE Comput. 2006, 39, 33–38. [CrossRef]

155. Ankaralı, Z.E.; Abbasi, Q.H.; Demir, A.F.; Serpedin, E.; Qaraqe, K.; Arslan, H. A Comparative
Review on the Security Research for Wireless Implantable Medical Devices. In Proceedings of the
4th International Conference on Wireless Mobile Communication and Healthcare (Mobihealth), Athens,
Greece, 3–5 November 2014; pp. 246–249.

156. Fan, J.; Reparaz, O.; Rožić, V.; Verbauwhede, I. Low-energy encryption for medical devices: Security adds
an extra design dimension. In Proceedings of the IEEE/ACM Design Automation Conference (DAC), Austin,
TX, USA, 2–6 June 2013; pp. 1–6.

157. Johansen, T.A.; Jackson, W.; Schreiber, R.; Tøndel, P. Hardware synthesis of explicit model predictive
controllers. IEEE Trans. Control Syst. Technol. 2007, 15, 191–197. [CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1177/193229681200600509
http://www.ncbi.nlm.nih.gov/pubmed/23063031
http://dx.doi.org/10.1109/TAC.2014.2351991
http://dx.doi.org/10.1002/rnc.887
http://dx.doi.org/10.1109/TAC.2006.878780
http://dx.doi.org/10.1016/j.automatica.2004.08.019
http://dx.doi.org/10.1016/j.automatica.2006.01.001
http://dx.doi.org/10.1109/TAC.2013.2264551
http://dx.doi.org/10.1177/193229681100500632
http://www.ncbi.nlm.nih.gov/pubmed/22226278
http://dx.doi.org/10.1109/TPDS.2014.2370045
http://dx.doi.org/10.2147/MDER.S50048
http://www.ncbi.nlm.nih.gov/pubmed/26229513
http://dx.doi.org/10.1109/MC.2006.180
http://dx.doi.org/10.1109/TCST.2006.883206
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	AP System Architecture
	Components of the AP System
	Hardware Configurations of the AP System
	Configuration A
	Configuration B

	Software Architecture
	User Interface Layer
	Task Handling Layer
	Control and Safety Layer
	Operating System and Hardware Layers

	Control Algorithms for the Artificial Pancreas
	Proportional Integral Derivative Control
	Fuzzy Logic Control
	Model Predictive Control
	Explicit/Multi-Parametric MPC
	Modified On-Line MPC for Embedded Control Systems
	Optimization Algorithms and Solvers
	Active-Set Method
	Interior Point Method
	Performance Comparison

	Brief Overview on Design Approaches
	Key Challenges of Embedded Artificial Pancreas Systems
	Known and Foreseeable Hazards Associated with the Operation of the AP System
	Communication: Security and Confidentiality

	Conclusions

